Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Genome Res ; 26(11): 1565-1574, 2016 11.
Article in English | MEDLINE | ID: mdl-27646535

ABSTRACT

Haplotypes are fundamental to fully characterize the diploid genome of an individual, yet methods to directly chart the unique genetic makeup of each parental chromosome are lacking. Here we introduce single-cell DNA template strand sequencing (Strand-seq) as a novel approach to phasing diploid genomes along the entire length of all chromosomes. We demonstrate this by building a complete haplotype for a HapMap individual (NA12878) at high accuracy (concordance 99.3%), without using generational information or statistical inference. By use of this approach, we mapped all meiotic recombination events in a family trio with high resolution (median range ∼14 kb) and phased larger structural variants like deletions, indels, and balanced rearrangements like inversions. Lastly, the single-cell resolution of Strand-seq allowed us to observe loss of heterozygosity regions in a small number of cells, a significant advantage for studies of heterogeneous cell populations, such as cancer cells. We conclude that Strand-seq is a unique and powerful approach to completely phase individual genomes and map inheritance patterns in families, while preserving haplotype differences between single cells.


Subject(s)
Chromosome Mapping/methods , Chromosomes, Human/genetics , Haplotypes , Single-Cell Analysis/methods , Cell Line , HapMap Project , Homologous Recombination , Humans , Lymphocytes/cytology , Lymphocytes/metabolism , Mutation
2.
Am J Hum Genet ; 92(5): 774-80, 2013 May 02.
Article in English | MEDLINE | ID: mdl-23643384

ABSTRACT

Inherited white-matter disorders are a broad class of diseases for which treatment and classification are both challenging. Indeed, nearly half of the children presenting with a leukoencephalopathy remain without a specific diagnosis. Here, we report on the application of high-throughput genome and exome sequencing to a cohort of ten individuals with a leukoencephalopathy of unknown etiology and clinically characterized by hypomyelination with brain stem and spinal cord involvement and leg spasticity (HBSL), as well as the identification of compound-heterozygous and homozygous mutations in cytoplasmic aspartyl-tRNA synthetase (DARS). These mutations cause nonsynonymous changes to seven highly conserved amino acids, five of which are unchanged between yeast and man, in the DARS C-terminal lobe adjacent to, or within, the active-site pocket. Intriguingly, HBSL bears a striking resemblance to leukoencephalopathy with brain stem and spinal cord involvement and elevated lactate (LBSL), which is caused by mutations in the mitochondria-specific DARS2, suggesting that these two diseases might share a common underlying molecular pathology. These findings add to the growing body of evidence that mutations in tRNA synthetases can cause a broad range of neurologic disorders.


Subject(s)
Aspartate-tRNA Ligase/genetics , Leukoencephalopathies/genetics , Models, Molecular , Muscle Spasticity/genetics , Protein Conformation , Aspartate-tRNA Ligase/chemistry , Brain Stem/pathology , Crystallography, X-Ray , Humans , Leg/pathology , Leukoencephalopathies/pathology , Mutation/genetics , Spinal Cord/pathology
3.
Am J Hum Genet ; 92(4): 627-31, 2013 Apr 04.
Article in English | MEDLINE | ID: mdl-23561848

ABSTRACT

The Krebs cycle is of fundamental importance for the generation of the energetic and molecular needs of both prokaryotic and eukaryotic cells. Both enantiomers of metabolite 2-hydroxyglutarate are directly linked to this pivotal biochemical pathway and are found elevated not only in several cancers, but also in different variants of the neurometabolic disease 2-hydroxyglutaric aciduria. Recently we showed that cancer-associated IDH2 germline mutations cause one variant of 2-hydroxyglutaric aciduria. Complementary to these findings, we now report recessive mutations in SLC25A1, the mitochondrial citrate carrier, in 12 out of 12 individuals with combined D-2- and L-2-hydroxyglutaric aciduria. Impaired mitochondrial citrate efflux, demonstrated by stable isotope labeling experiments and the absence of SLC25A1 in fibroblasts harboring certain mutations, suggest that SLC25A1 deficiency is pathogenic. Our results identify defects in SLC25A1 as a cause of combined D-2- and L-2-hydroxyglutaric aciduria.


Subject(s)
Anion Transport Proteins/genetics , Brain Diseases, Metabolic, Inborn/etiology , Citric Acid/metabolism , Genes, Recessive , Mitochondria/metabolism , Mitochondrial Proteins/genetics , Mutation/genetics , Amino Acid Sequence , Biomarkers/analysis , Brain Diseases, Metabolic, Inborn/metabolism , Brain Diseases, Metabolic, Inborn/pathology , Case-Control Studies , Cells, Cultured , Chromatography, Liquid , Exome/genetics , Female , Fibroblasts/metabolism , Fibroblasts/pathology , Glutarates/urine , Humans , Male , Molecular Sequence Data , Organic Anion Transporters , Phenotype , Protein Structure, Tertiary , Retrospective Studies , Sequence Homology, Amino Acid , Stereoisomerism , Tandem Mass Spectrometry
4.
Nat Genet ; 37(12): 1341-4, 2005 Dec.
Article in English | MEDLINE | ID: mdl-16282976

ABSTRACT

Celiac disease is probably the best-understood immune-related disorder. The disease presents in the small intestine and results from the interplay between multiple genes and gluten, the triggering environmental factor. Although HLA class II genes explain 40% of the heritable risk, non-HLA genes accounting for most of the familial clustering have not yet been identified. Here we report significant and replicable association (P = 2.1 x 10(-6)) to a common variant located in intron 28 of the gene myosin IXB (MYO9B), which encodes an unconventional myosin molecule that has a role in actin remodeling of epithelial enterocytes. Individuals homozygous with respect to the at-risk allele have a 2.3-times higher risk of celiac disease (P = 1.55 x 10(-5)). This result is suggestive of a primary impairment of the intestinal barrier in the etiology of celiac disease, which may explain why immunogenic gluten peptides are able to pass through the epithelial barrier.


Subject(s)
Celiac Disease/genetics , Genetic Predisposition to Disease , Myosins/genetics , Polymorphism, Single Nucleotide , Amino Acid Sequence , Celiac Disease/physiopathology , Female , Haplotypes , Humans , Intestine, Small/physiopathology , Introns/genetics , Male , Molecular Sequence Data
6.
Trends Genet ; 18(7): 367-76, 2002 Jul.
Article in English | MEDLINE | ID: mdl-12127777

ABSTRACT

Mice have proved to be powerful models for understanding obesity in humans and farm animals. Single-gene mutants and genetically modified mice have been used successfully to discover genes and pathways that can regulate body weight. For polygenic obesity, the most common pattern of inheritance, many quantitative trait loci (QTLs) have been mapped in crosses between selected and inbred mouse lines. Most QTL effects are additive, and diet, age and gender modify the genetic effects. Congenic, recombinant inbred, advanced intercross, and chromosome substitution strains are needed to map QTLs finely, to identify the genes underlying the traits, and to examine interactions between them.


Subject(s)
Chromosome Mapping/methods , Disease Models, Animal , Obesity/genetics , Age Factors , Animals , Body Weight/genetics , Female , Humans , Male , Mice , Mice, Mutant Strains , Mutation
7.
Genetics ; 172(1): 401-10, 2006 Jan.
Article in English | MEDLINE | ID: mdl-16157676

ABSTRACT

The extreme high-body-weight-selected mouse line DU6i is a polygenic model for growth research, harboring many small-effect QTL. We dissected the genome of this line into 19 autosomes and the Y chromosome by the construction of a new panel of chromosome substitution strains (CSS). The DU6i chromosomes were transferred to a DBA/2 mice genetic background by marker-assisted recurrent backcrossing. Mitochondria and the X chromosome were of DBA/2 origin in the backcross. During the construction of these novel strains, >4000 animals were generated, phenotyped, and genotyped. Using these data, we studied the genetic control of variation in body weight and weight gain at 21, 42, and 63 days. The unique data set facilitated the analysis of chromosomal interaction with sex and parent-of-origin effects. All analyzed chromosomes affected body weight and weight gain either directly or in interaction with sex or parent of origin. The effects were age specific, with some chromosomes showing opposite effects at different stages of development.


Subject(s)
Chromosomes/genetics , Genetic Variation/genetics , Genome , Growth/genetics , Quantitative Trait, Heritable , Weight Gain/genetics , Age Distribution , Animals , Body Weight , Chromosome Mapping , Crosses, Genetic , Female , Genotype , Male , Mice , Mice, Inbred DBA , Mitochondria/genetics , Pedigree , Phenotype , Sex Distribution , X Chromosome/genetics , Y Chromosome/genetics
8.
PLoS One ; 8(11): e79921, 2013.
Article in English | MEDLINE | ID: mdl-24278217

ABSTRACT

Major depressive disorder (MDD) is a psychiatric disorder, characterized by periods of low mood of more than two weeks, loss of interest in normally enjoyable activities and behavioral changes. MDD is a complex disorder and does not have a single genetic cause. In 2009 a genome wide association study (GWAS) was performed on the Dutch GAIN-MDD cohort. Many of the top signals of this GWAS mapped to a region spanning the gene PCLO, and the non-synonymous coding single nucleotide polymorphism (SNP) rs2522833 in the PCLO gene became genome wide significant after post-hoc analysis. We performed resequencing of PCLO, GRM7, and SLC6A4 in 50 control samples from the GAIN-MDD cohort, to detect new genomic variants. Subsequently, we genotyped these variants in the entire GAIN-MDD cohort and performed association analysis to investigate if rs2522833 is the causal variant or simply in linkage disequilibrium with a more associated variant. GRM7 and SLC6A4 are both candidate genes for MDD from literature. We aimed to gather more evidence that rs2522833 is indeed the causal variant in the GAIN-MDD cohort or to find a previously undetected common variant in either PCLO, GRM7, or SLC6A4 with a higher association in this cohort. After next generation sequencing and association analysis we excluded the possibility of an undetected common variant to be more associated. For neither PCLO nor GRM7 we found a more associated variant. For SLC6A4, we found a new SNP that showed a lower P-value (P = 0.07) than in the GAIN-MDD GWAS (P = 0.09). However, no evidence for genome-wide significance was found. Although we did not take into account rare variants, we conclude that our results provide further support for the hypothesis that the non-synonymous coding SNP rs2522833 in the PCLO gene is indeed likely to be the causal variant in the GAIN-MDD cohort.


Subject(s)
Cytoskeletal Proteins/genetics , Depressive Disorder, Major/genetics , Neuropeptides/genetics , Receptors, Metabotropic Glutamate/genetics , Serotonin Plasma Membrane Transport Proteins/genetics , Cohort Studies , Epistasis, Genetic , Genome-Wide Association Study , Haplotypes , Humans , Netherlands , Polymorphism, Single Nucleotide , Promoter Regions, Genetic
9.
PLoS One ; 7(5): e37384, 2012.
Article in English | MEDLINE | ID: mdl-22649524

ABSTRACT

Major depressive disorder (MDD) is a psychiatric disorder that is characterized--amongst others--by persistent depressed mood, loss of interest and pleasure and psychomotor retardation. Environmental circumstances have proven to influence the aetiology of the disease, but MDD also has an estimated 40% heritability, probably with a polygenic background. In 2009, a genome wide association study (GWAS) was performed on the Dutch GAIN-MDD cohort. A non-synonymous coding single nucleotide polymorphism (SNP) rs2522833 in the PCLO gene became only nominally significant after post-hoc analysis with an Australian cohort which used similar ascertainment. The absence of genome-wide significance may be caused by low SNP coverage of genes. To increase SNP coverage to 100% for common variants (m.a.f.>0.1, r(2)>0.8), we selected seven genes from the GAIN-MDD GWAS: PCLO, GZMK, ANPEP, AFAP1L1, ST3GAL6, FGF14 and PTK2B. We genotyped 349 SNPs and obtained the lowest P-value for rs2715147 in PCLO at P = 6.8E-7. We imputed, filling in missing genotypes, after which rs2715147 and rs2715148 showed the lowest P-value at P = 1.2E-6. When we created a haplotype of these SNPs together with the non-synonymous coding SNP rs2522833, the P-value decreased to P = 9.9E-7 but was not genome wide significant. Although our study did not identify a more strongly associated variant, the results for PCLO suggest that the causal variant is in high LD with rs2715147, rs2715148 and rs2522833.


Subject(s)
Cytoskeletal Proteins/genetics , Depressive Disorder, Major/genetics , Genetic Predisposition to Disease/genetics , Neuropeptides/genetics , Polymorphism, Single Nucleotide/genetics , Chromosome Mapping , Cohort Studies , Epistasis, Genetic/genetics , Genome-Wide Association Study , Genotype , Haplotypes/genetics , Humans , Linkage Disequilibrium , Netherlands
10.
Eur J Hum Genet ; 19(6): 682-6, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21326284

ABSTRACT

Celiac disease is an inflammatory enteropathy caused by intolerance to gluten. Previous linkage studies in the Dutch, Finnish and Hungarian populations have revealed a locus on chromosome 6q21-22 conferring susceptibility to celiac disease. This locus has previously been implicated in susceptibility to other autoimmune diseases such as Crohn's disease and type 1 diabetes. We performed fine mapping on 446 independent individuals with celiac disease and 641 controls of Dutch origin, testing 872 tagging SNPs in a 22 Mb region of chromosome 6. The 12 most promising SNPs were followed up in 2071 individuals from 284 Finnish and 357 Hungarian celiac disease families to identify risk variants in this region. Multiple markers in the region were significantly associated with celiac disease in the Dutch material. Two SNPs, rs9391227 and rs4946111, were significantly associated with celiac disease in the Finnish population. The association to rs9391227 represents the strongest association signal found in the Finnish (P = 0.003, OR 0.66) as well as the combined Dutch, Finnish and Hungarian populations (P = 3.6 × 10(-5), OR 0.76). The rs9391227 is situated downstream of the HECT domain and ankyrin repeat containing, E3 ubiquitin protein ligase 1 (HACE1) gene and is contained within a region of strong linkage disequilibrium enclosing HACE1. Two additional, independent, susceptibility variants in the 6q21-22 region were also found in a meta-analysis of the three populations. The 6q21-22 region was confirmed as a celiac disease susceptibility locus and harbors multiple independent associations, some of which may implicate ubiquitin-pathways in celiac disease susceptibility.


Subject(s)
Celiac Disease/genetics , Chromosomes, Human, Pair 6/genetics , Genetic Predisposition to Disease , Ubiquitin-Protein Ligases/genetics , White People/genetics , Celiac Disease/immunology , Chromosomes, Human, Pair 6/chemistry , Cohort Studies , Crohn Disease/genetics , Diabetes Mellitus, Type 1/genetics , Finland , Glutens/immunology , Humans , Hungary , Linkage Disequilibrium , Netherlands , Polymorphism, Single Nucleotide
SELECTION OF CITATIONS
SEARCH DETAIL