Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Exp Brain Res ; 233(12): 3553-64, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26319547

ABSTRACT

To successfully perform daily activities such as maintaining posture or running, humans need to be sensitive to self-motion over a large range of motion intensities. Recent studies have shown that the human ability to discriminate self-motion in the presence of either inertial-only motion cues or visual-only motion cues is not constant but rather decreases with motion intensity. However, these results do not yet allow for a quantitative description of how self-motion is discriminated in the presence of combined visual and inertial cues, since little is known about visual-inertial perceptual integration and the resulting self-motion perception over a wide range of motion intensity. Here we investigate these two questions for head-centred yaw rotations (0.5 Hz) presented either in darkness or combined with visual cues (optical flow with limited lifetime dots). Participants discriminated a reference motion, repeated unchanged for every trial, from a comparison motion, iteratively adjusted in peak velocity so as to measure the participants' differential threshold, i.e. the smallest perceivable change in stimulus intensity. A total of six participants were tested at four reference velocities (15, 30, 45 and 60 °/s). Results are combined for further analysis with previously published differential thresholds measured for visual-only yaw rotation cues using the same participants and procedure. Overall, differential thresholds increase with stimulus intensity following a trend described well by three power functions with exponents of 0.36, 0.62 and 0.49 for inertial, visual and visual-inertial stimuli, respectively. Despite the different exponents, differential thresholds do not depend on the type of sensory input significantly, suggesting that combining visual and inertial stimuli does not lead to improved discrimination performance over the investigated range of yaw rotations.


Subject(s)
Discrimination, Psychological/physiology , Motion Perception/physiology , Proprioception/physiology , Adult , Female , Humans , Male , Middle Aged , Rotation
2.
Exp Brain Res ; 233(3): 861-9, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25511163

ABSTRACT

While moving through the environment, humans use vision to discriminate different self-motion intensities and to control their actions (e.g. maintaining balance or controlling a vehicle). How the intensity of visual stimuli affects self-motion perception is an open, yet important, question. In this study, we investigate the human ability to discriminate perceived velocities of visually induced illusory self-motion (vection) around the vertical (yaw) axis. Stimuli, generated using a projection screen (70 × 90 deg field of view), consist of a natural virtual environment (360 deg panoramic colour picture of a forest) rotating at constant velocity. Participants control stimulus duration to allow for a complete vection illusion to occur in every single trial. In a two-interval forced-choice task, participants discriminate a reference motion from a comparison motion, adjusted after every presentation, by indicating which rotation feels stronger. Motion sensitivity is measured as the smallest perceivable change in stimulus intensity (differential threshold) for eight participants at five rotation velocities (5, 15, 30, 45 and 60 deg/s). Differential thresholds for circular vection increase with stimulus velocity, following a trend well described by a power law with an exponent of 0.64. The time necessary for complete vection to arise is slightly but significantly longer for the first stimulus presentation (average 11.56 s) than for the second (9.13 s) and does not depend on stimulus velocity. Results suggest that lower differential thresholds (higher sensitivity) are associated with smaller rotations, because they occur more frequently during everyday experience. Moreover, results also suggest that vection is facilitated by a recent exposure, possibly related to visual motion after-effect.


Subject(s)
Illusions/physiology , Motion Perception/physiology , Adult , Female , Humans , Male , Middle Aged , Motion , Photic Stimulation , Rotation , Self Concept
3.
PLoS One ; 15(12): e0243752, 2020.
Article in English | MEDLINE | ID: mdl-33315913

ABSTRACT

In a prior publication, we described a previously unknown eye movement phenomenon during the execution of actively performed multiaxial rotations in high level gymnasts. This phenomenon was consistently observed during the phase of fast free flight rotations and was marked by a prolonged and complete suppression of nystagmus and gaze stabilizing "environment referenced eye movements" (EREM; such as the vestibulo-ocular reflex, optokinetic reflex, smooth pursuit and others). Instead, these eye movements were coupled with intersegmental body movements. We have therefore called it "spinal motor-coupled eye movements" (SCEM) and have interpreted the phenomenon to likely be caused by anti-compensatory functions of more proprioceptive mediated reflexes and perhaps other mechanisms (e.g., top-down regulation as part of a motor plan) to effectively cope with a new-orientation in space, undisturbed by EREM functions. In the phase before landing, the phenomenon was replaced again by the known gaze-stabilizing EREM functions. The present study specifically evaluated long-term measures of vestibulo-ocular reflex functions (VOR) in high level gymnasts and controls during both passively driven monoaxial rotations and context-specific multiaxial somersault simulations in a vestibular lab. This approach provided further insights into the possible roles of adaptive or mental influences concerning the VOR function and how they are associated with the described phenomenon of SCEM. Results showed high inter-individual variability of VOR function in both gymnasts and controls, but no systematic adaptation of the VOR in gymnasts, neither compared to controls nor over a period of three years. This might generally support the hypothesis that the phenomenon of SCEM might indeed be driven more by proprioceptively mediated and situationally dominant eye movement functions than by adaptative processes of the VOR.


Subject(s)
Eye Movements/physiology , Reflex, Vestibulo-Ocular/physiology , Accelerometry/instrumentation , Accelerometry/methods , Adolescent , Athletes , Child , Cross-Sectional Studies , Humans , Longitudinal Studies , Male , Rotation
4.
PLoS One ; 9(4): e94570, 2014.
Article in English | MEDLINE | ID: mdl-24755871

ABSTRACT

Motion simulators are widely employed in basic and applied research to study the neural mechanisms of perception and action during inertial stimulation. In these studies, uncontrolled simulator-introduced noise inevitably leads to a disparity between the reproduced motion and the trajectories meticulously designed by the experimenter, possibly resulting in undesired motion cues to the investigated system. Understanding actual simulator responses to different motion commands is therefore a crucial yet often underestimated step towards the interpretation of experimental results. In this work, we developed analysis methods based on signal processing techniques to quantify the noise in the actual motion, and its deterministic and stochastic components. Our methods allow comparisons between commanded and actual motion as well as between different actual motion profiles. A specific practical example from one of our studies is used to illustrate the methodologies and their relevance, but this does not detract from its general applicability. Analyses of the simulator's inertial recordings show direction-dependent noise and nonlinearity related to the command amplitude. The Signal-to-Noise Ratio is one order of magnitude higher for the larger motion amplitudes we tested, compared to the smaller motion amplitudes. Simulator-introduced noise is found to be primarily of deterministic nature, particularly for the stronger motion intensities. The effect of simulator noise on quantification of animal/human motion sensitivity is discussed. We conclude that accurate recording and characterization of executed simulator motion are a crucial prerequisite for the investigation of uncertainty in self-motion perception.


Subject(s)
Motion Perception , Motion , Signal-To-Noise Ratio , Environment , Humans , Physical Stimulation , Statistics as Topic , Stochastic Processes
5.
PLoS One ; 9(4): e95450, 2014.
Article in English | MEDLINE | ID: mdl-24763143

ABSTRACT

Using state-of-the-art technology, interactions of eye, head and intersegmental body movements were analyzed for the first time during multiple twisting somersaults of high-level gymnasts. With this aim, we used a unique combination of a 16-channel infrared kinemetric system; a three-dimensional video kinemetric system; wireless electromyography; and a specialized wireless sport-video-oculography system, which was able to capture and calculate precise oculomotor data under conditions of rapid multiaxial acceleration. All data were synchronized and integrated in a multimodal software tool for three-dimensional analysis. During specific phases of the recorded movements, a previously unknown eye-head-body interaction was observed. The phenomenon was marked by a prolonged and complete suppression of gaze-stabilizing eye movements, in favor of a tight coupling with the head, spine and joint movements of the gymnasts. Potential reasons for these observations are discussed with regard to earlier findings and integrated within a functional model.


Subject(s)
Eye Movements/physiology , Adolescent , Adult , Biomechanical Phenomena , Fixation, Ocular , Head Movements , Humans , Male , Photic Stimulation , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL