ABSTRACT
Prostate cancer (PCa) represents the second most common cancer in men and affects millions worldwide. Chemotherapy is a common treatment for PCa but the development of resistance is often a problem during therapy. NRF2 (nuclear factor erythroid 2-related factor 2) is one of the major transcription factors regulating antioxidant enzymes and is also involved with drug efflux and detoxification. Cancer cells submitted to chemotherapy often promote NRF2 activation to benefit themselves with the cytoprotective response. Here, we found that DU145 and PC3 PCa cell lines have different responses regarding NRF2 activation, when subjected to arsenite-induced stress, even in the presence of MG132, a proteasome inhibitor. We also observed that only in PC3 cells treated with arsenite, NRF2 was able to translocate to the nucleus. To better understand the role of NRF2 in promoting chemoresistance, we performed CRISPR knockout of NRF2 (NKO) in DU145 and PC3 cells. The effectiveness of the knockout was confirmed through the downregulation of NRF2 targets (p < 0.0001). PC3 NKO cells exhibited higher levels of reactive oxygen species (ROS) compared to wild-type cells (p < 0.0001), while this alteration was not observed in DU145 NKO cells. Despite no modulation in ROS content, a lower IC50 value (p < 0.05) for cisplatin was observed in DU145 NKO cells, suggesting that the knockout sensitized the cells to the treatment. Besides, the treatment of DU145 NKO with cisplatin led cells to apoptosis as observed by the increased levels of PARP1 cleavage (p < 0.05), possibly triggered by increased DNA damage. Reduced levels of KU70 and phospho-CHK2 (p < 0.05) were also detected. The data presented here support that NRF2 is a mediator of oncogenesis and could be a potential target to sensitize PCa cells to chemotherapy, reinforcing the importance of knowing the specific genetic and biochemical characteristics of the cancer cells for a more effective approach against cancer.
Subject(s)
Arsenites , Prostatic Neoplasms , Male , Humans , Cisplatin/pharmacology , Cisplatin/therapeutic use , Reactive Oxygen Species/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Arsenites/pharmacology , Arsenites/therapeutic use , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Apoptosis , Cell Line, TumorABSTRACT
Here we evaluated the effect of fermented milk supplemented with whey protein (approximately 80 % protein), probiotic (Bifidobacterium animalis subsp. lactis BB12) and pomegranate juice (Punica granatum L.) on the physical performance, intestinal motility and villi structure, inflammatory markers and intestinal microbiota of rats under high-intensity acute exercise. In all, twenty-four Wistar rats were separated into groups: control (Ctrl), supplemented (Supp), exercised (Exe) and exercised and supplemented (Exe+Supp). Rats in the Supp groups received fermented milk during 6 weeks by oral administration. At the end of the supplementation period, the Exe groups were submitted to high-intensity acute exercise on a treadmill. We found that intense acute exercise caused changes in the intestinal villi interspace, changes in the proportion of Lactobacillus species and an increase in Clostridium species, as well as a decrease in intestinal motility. Supplementation increased intestinal motility, and maintained the intestinal villi interspace and the natural microbiota proportions of the exercised rats. Physical performance was not improved by fermented milk supplementation. We conclude that the fermented milk containing whey protein, B. animalis (BB12) and pomegranate juice can re-establish intestinal microbiota and protect the animals from the undesirable effects of intense acute exercise.
Subject(s)
Bifidobacterium animalis , Fruit and Vegetable Juices , Lythraceae , Probiotics , Whey Proteins/administration & dosage , Animals , Cultured Milk Products , Intestines/drug effects , Male , Milk , Physical Conditioning, Animal , Rats , Rats, Wistar , Whey Proteins/pharmacologyABSTRACT
BACKGROUND: Reactive oxygen species (ROS) are formed under natural physiological conditions and are thought to play an important role in many human diseases. A wide range of antioxidants are involved in cellular defense mechanisms against ROS, which can be generated in excess during stressful conditions, these include enzymes and non-enzymatic antioxidants. The aim of this study was to evaluate the antioxidant responses of mice to two diets control, commercial and the purified AIN 93 diet, commonly used in experiments with rodents. RESULTS: Malondialdehyde (MDA) and hydrogen peroxide (H2O2) concentrations and superoxide dismutase (SOD) and glutathione reductase (GR) activities determined in the liver were lower in the group of mice fed with the AIN 93 diet, while catalase (CAT) activity was higher in the same group, when compared to the group fed on the commercial diet. Liver glutathione peroxidase (GSH-Px) activity was similar in the groups fed on either AIN 93 or the commercial diets. Two SOD isoforms, Mn-SODII and a Cu/Zn-SODV, were specifically reduced in the liver of the AIN 93 diet fed animals. CONCLUSIONS: The clear differences in antioxidant responses observed in the livers of mice fed on the two diets suggest that the macro- and micro-nutrient components with antioxidant properties, including vitamin E, can promote changes in the activity of enzymes involved in the removal of the ROS generated by cell metabolism.
Subject(s)
Antioxidants/metabolism , Diet , Liver/metabolism , Animals , Catalase/metabolism , Glutathione Reductase/metabolism , Hydrogen Peroxide/metabolism , Male , Malondialdehyde/metabolism , Mice , Superoxide Dismutase/metabolismABSTRACT
The objective of this work was the development of an on-line extraction/fractionation method based on the coupling of pressurized liquid extraction and solid-phase extraction for the separation of phenolic compounds from apple pomace. Several variables of the process were evaluated, including the amount of water of the first stage (0-120 mL), temperature (60-80 °C), solid-phase extraction adsorbent (Sepra, Isolute, Strata X and Oasis) and activation/elution solvent (methanol and ethanol). The best results were observed with the adsorbent Sepra. The temperature had a small effect on recovery, but significant differences were observed for phlorizin and a quercetin derivative. Results indicate that ethanol can be used to replace methanol as an activation, extraction/elution solvent. While using mostly green solvents (water, ethanol, and a small amount of methanol that could be reused), the developed method produced higher or similar yields of acids (2.85 ± 0.19 mg/g) and flavonoids (0.97 ± 0.11 mg/g) than conventional methods.
Subject(s)
Flavonoids/isolation & purification , Malus/chemistry , Solid Phase Extraction/methods , Chromatography, High Pressure Liquid , Flavonoids/analysis , Gallic Acid/analysis , Gallic Acid/isolation & purification , Malus/metabolism , Phenols/analysis , Phenols/isolation & purification , Phlorhizin/analysis , Phlorhizin/isolation & purification , Plant Extracts/chemistry , Pressure , Quercetin/analysis , Quercetin/isolation & purification , Solvents/chemistry , Tandem Mass Spectrometry , TemperatureABSTRACT
Some flavonoids identified in beet stalks can help the antioxidant endogenous defenses during a chronic inflammation process. The current study investigates the effect of polyphenols present in beet stalks and leaves on liver oxidative damage in mice fed a high-fat diet (HF). The control (CT) or HF diet groups were supplemented with dehydrated beet stalks and leaves (SL) or beet stalk and leaf ethanolic extract (EX). In terms of Vitexin-rhaminoside equivalents (VRE), EX groups received ~5.91 mg of VRE·100 g−1 diet, while the SL groups received ~3.07 mg VRE·100 g−1 diet. After 8 weeks, we evaluated fasting blood glucose; cholesterol, hepatic Malondialdehyde (MDA) levels and hepatic Glutathione (GSH), Glutathione peroxidase (GPx), Glutathione reductase (GR) and Superoxide dismutase (SOD) activity. Dehydrated beet stalks and leaves (HFSL) attenuated the deleterious effects of a HF diet on lipid metabolism, reduced fasting blood glucose levels, ameliorated cholesterol levels and reduced GPx and GR activities (p < 0.05) compared to the HF group. However; the addition of ethanolic extract from beet stalks and leaves was unable (p > 0.05) to prevent the liver damage caused by HF diet in mice. The presence of flavonoids, such as Vitexin derivatives in beet stalks and leaves can help the liver damage induced by HF diet.
Subject(s)
Antioxidants/pharmacology , Beta vulgaris , Diet, High-Fat , Liver Diseases/prevention & control , Liver/drug effects , Obesity/drug therapy , Oxidative Stress/drug effects , Plant Extracts/pharmacology , Plant Leaves , Plant Stems , Animals , Antioxidants/isolation & purification , Apigenin/isolation & purification , Apigenin/pharmacology , Beta vulgaris/chemistry , Biomarkers/blood , Blood Glucose/drug effects , Blood Glucose/metabolism , Cholesterol/blood , Cytoprotection , Disease Models, Animal , Glutathione/metabolism , Glutathione Peroxidase/metabolism , Glutathione Reductase/metabolism , Liver/metabolism , Liver/pathology , Liver Diseases/blood , Liver Diseases/etiology , Liver Diseases/pathology , Male , Malondialdehyde/metabolism , Mice , Obesity/blood , Obesity/etiology , Phytotherapy , Plant Extracts/isolation & purification , Plant Leaves/chemistry , Plant Stems/chemistry , Plants, Medicinal , Superoxide Dismutase/metabolism , Weight Gain/drug effectsABSTRACT
Purification and bioassay-guided fractionation were employed to isolate proanthocyanidins with antioxidant activity from peanut skin (Arachis hypogaea Runner 886). The crude extract was prepared with acetone (60% v/v) and purified using chromatographic methods, including a semipreparative HPLC technique. As a result, two proanthocyanidins were isolated and identified using NMR, epicatechin-(2 ß â O â 7, 4 ß â 8)-catechin (proanthocyanidin A1) and epicatechin-(ß â 2 O â 7, 4 ß â 8)-epicatechin (proanthocyanidin A2). Despite the structural similarity, differences were observed in their antioxidant activity. Proanthocyanidin A1 proved to be more active, with EC50 value for DPPH radical scavenging of 18.25 µg/mL and reduction of Fe(3+)-TPTZ complex of 7.59 mmol/g, higher than that of synthetic antioxidant BHT. This compound evaluated by ABTS(+) was similar to that of natural quercetin. Therefore, peanut skin is an important source of bioactive compounds that may be used as a mild antioxidant for food preservation.
Subject(s)
Antioxidants/analysis , Arachis/chemistry , Food Analysis/methods , Proanthocyanidins/analysis , Seeds/chemistry , Biological Assay , Catechin/analysis , Chromatography, High Pressure Liquid , Plant Extracts/chemistry , Quercetin/analysisABSTRACT
OBJECTIVE: We studied the association between the Gly972Arg polymorphism in insulin receptor substrate-1 (IRS-1) and birth weight in a population-based sample of Brazilian newborns. RESEARCH DESIGN AND METHODS: We studied 194 newborn children with adequate gestational age to identify the association between the Gly972Arg polymorphism and birth weight using PCR-restriction fragment length polymorphism analysis. RESULTS: The data showed that the birth weight was lower in the newborns with the Gly972Arg polymorphism in IRS-1 compared with control subjects (3,141 +/- 31.8 vs. 3,373 +/- 80.3 g, P < 0.008). The results also showed that the frequency of this polymorphism was increased in newborns with a birth weight <3,000 g (P=0.041). CONCLUSIONS: These results suggest that the genotype Gly972Arg may influence birth weight, reinforcing the hypothesis that genetically determined insulin resistance and/or reduced insulin secretion can result in impaired insulin-mediated growth in the fetus.
Subject(s)
Birth Weight , Infant, Newborn/blood , Phosphoproteins/genetics , Polymorphism, Genetic , Amino Acid Substitution , Brazil , Genotype , Gestational Age , Humans , Insulin Receptor Substrate Proteins , Receptor, Insulin/blood , Reference ValuesABSTRACT
Angiotensin II (Ang II) exerts a potent growth stimulus on the heart and vascular wall. Activation of the Janus kinase/signal transducer and activator of transcription (JAK/STAT) intracellular signaling pathway by Ang II mediates at least some of the mitogenic responses to this hormone. In other signaling systems that use the JAK/STAT pathway, proteins of the suppressor of cytokine signaling (SOCS) family participate in signal regulation. In the present study it is demonstrated that SOCS3 is constitutively expressed at a low level in rat heart and neonatal rat ventricular myocytes. Ang II at a physiological concentration enhances the expression of SOCS3 mRNA and protein, mainly via AT1 receptors. After induction, SOCS3 associates with JAK2 and impairs further activation of the JAK2/STAT1 pathway. Pretreatment of rats with a specific phosphorthioate antisense oligonucleotide to SOCS3, reverses the desensitization to angiotensin signaling, as detected by a fall in c-Jun expression after repetitive infusions of the hormone. Thus, SOCS3 is induced by Ang II in rat heart and neonatal rat ventricular myocytes and participates in the modulation of the signal generated by this hormone.
Subject(s)
Angiotensin II/pharmacology , Myocardium/metabolism , Myocytes, Cardiac/metabolism , Proteins/metabolism , Proto-Oncogene Proteins , Repressor Proteins , Transcription Factors , Animals , Heart/drug effects , Janus Kinase 2 , Male , Oligonucleotides, Antisense/pharmacology , Phosphorylation/drug effects , Protein-Tyrosine Kinases/metabolism , Proteins/genetics , Rats , Rats, Wistar , Receptor, Angiotensin, Type 1 , Receptors, Angiotensin/metabolism , Signal Transduction/physiology , Suppressor of Cytokine Signaling 3 Protein , Suppressor of Cytokine Signaling Proteins , Tissue Distribution , Tyrosine/metabolismABSTRACT
Angiotensin II exerts a potent dypsogenic stimulus on the hypothalamus, which contributes to its centrally mediated participation in the control of water balance and blood pressure. Repetitive intracerebroventricular (i.c.v.) injections of angiotensin II lead to a loss of effect characterized as physiological desensitization to the peptide's action. In the present study, we demonstrate that angiotensin II induces the expression of suppressor of cytokine signaling (SOCS)-3 via angiotensin receptor 1 (AT1) and JAK-2, mostly located at the median preoptic lateral and anterodorsal preoptic nuclei. SOCS-3 produces an inhibitory effect upon the signal transduction pathways of several cytokines and hormones that employ members of the JAK/STAT families as intermediaries. The partial inhibition of SOCS-3 translation by antisense oligonucleotide was sufficient to significantly reduce the refractoriness of repetitive i.c.v. angiotensin II injections, as evaluated by water ingestion. Thus, by acting through AT1 on the hypothalamus, angiotensin II induces the expression of SOCS-3 which, in turn, blocks further activation of the pathway and consequently leads to desensitization to angiotensin II stimuli concerning its dypsogenic effect.
Subject(s)
Angiotensin II/pharmacology , Drinking Behavior/drug effects , Hypothalamus/metabolism , Proto-Oncogene Proteins , Repressor Proteins/metabolism , Signal Transduction/drug effects , Transcription Factors/metabolism , Animals , Depression, Chemical , Hypothalamus/chemistry , Hypothalamus/drug effects , Immunohistochemistry , Injections, Intraventricular , Janus Kinase 2 , Male , Oligonucleotides, Antisense/pharmacology , Protein-Tyrosine Kinases/metabolism , RNA, Messenger/analysis , Rats , Rats, Wistar , Receptor, Angiotensin, Type 1/metabolism , Repressor Proteins/genetics , Reverse Transcriptase Polymerase Chain Reaction , Suppressor of Cytokine Signaling 3 Protein , Suppressor of Cytokine Signaling Proteins , Transcription Factors/geneticsABSTRACT
Growth hormone treatment (GH) decreases adipose tissue sensitivity to insulin. However, the exact molecular mechanism(s) involved remains unclear. In the present study, we have evaluated the chronic effects of GH on adipose tissue explants cultured in a defined media. The objective was to determine the effects of GH treatment for 24 and 48 hours on the early steps of the insulin signal transduction, including IRS-3. The 24-hour culture media contained no hormones or 100 ng/ml GH. The 48-hour culture media contained insulin and dexamethasone supplemented with or without 100 ng/ml of GH. Results demonstrated a reduction in the cellular concentration of IRS-1 by around 30% when adipose tissue was chronically treated with growth hormone for either 24 or 48 hours. IRS-3 protein levels were also decreased by 15% after the 24-hour treatment, and by 27% after culture with GH for 48 hours in the presence of insulin and dexamethasone. PI 3-kinase concentrations were also reduced by GH in both experiments by around 25%. At the end of the 24-hour culture with GH adipose explants were stimulated with insulin in a short-term incubation, after which phosphorylation and association of the IRSs with PI 3-kinase were evaluated. After the insulin stimulus, the association of PI 3-kinase with IRS-1 and IRS-3 were decreased in explants chronically cultured with GH by 44 and 28%, respectively. After this short-term insulin stimulus, the IRS-3 phosphorylation was also lowered in GH-treated explants. The results with chronic cultures of adipose presented here are consistent with similar changes in IRS-1 and IRS-2 concentration and phosphorylation observed for liver and muscle after long-term (3-5 days) in vivo treatment with GH. The data suggest that chronic GH treatment alters the early steps of the insulin signal transduction pathway, and may explain the changes in adipose tissue sensitivity to insulin.
Subject(s)
Adipose Tissue/metabolism , Human Growth Hormone/pharmacology , Insulin/metabolism , Signal Transduction/drug effects , Animals , Dexamethasone/pharmacology , Drug Administration Schedule , Glucocorticoids/pharmacology , Human Growth Hormone/administration & dosage , In Vitro Techniques , Insulin/pharmacology , Insulin Receptor Substrate Proteins , Male , Osmolar Concentration , Phosphatidylinositol 3-Kinases/metabolism , Phosphoinositide-3 Kinase Inhibitors , Phosphoproteins/antagonists & inhibitors , Phosphoproteins/metabolism , Phosphorylation/drug effects , Rats , Rats, WistarABSTRACT
Several polymorphisms in the insulin receptor substrate-1 (IRS1) gene have been reported in the last years. The most common IRS1 variant, a Gly --> Arg substitution at codon 972 (Arg972 IRS1), is more prevalent among subjects who have features of insulin resistance syndrome associated, or not, with type 2 diabetes in European populations. To determine whether the absence of IRS1 polymorphism is a more general characteristic of Paleo-Indian-derived populations, we examined the Arg972 IRS1 polymorphism in Parakanã Indians and found a lack of this polymorphism in the Parakanã population.