Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 185
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Nature ; 623(7985): 157-166, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37853118

ABSTRACT

Immunotherapy failures can result from the highly suppressive tumour microenvironment that characterizes aggressive forms of cancer such as recurrent glioblastoma (rGBM)1,2. Here we report the results of a first-in-human phase I trial in 41 patients with rGBM who were injected with CAN-3110-an oncolytic herpes virus (oHSV)3. In contrast to other clinical oHSVs, CAN-3110 retains the viral neurovirulence ICP34.5 gene transcribed by a nestin promoter; nestin is overexpressed in GBM and other invasive tumours, but not in the adult brain or healthy differentiated tissue4. These modifications confer CAN-3110 with preferential tumour replication. No dose-limiting toxicities were encountered. Positive HSV1 serology was significantly associated with both improved survival and clearance of CAN-3110 from injected tumours. Survival after treatment, particularly in individuals seropositive for HSV1, was significantly associated with (1) changes in tumour/PBMC T cell counts and clonal diversity, (2) peripheral expansion/contraction of specific T cell clonotypes; and (3) tumour transcriptomic signatures of immune activation. These results provide human validation that intralesional oHSV treatment enhances anticancer immune responses even in immunosuppressive tumour microenvironments, particularly in individuals with cognate serology to the injected virus. This provides a biological rationale for use of this oncolytic modality in cancers that are otherwise unresponsive to immunotherapy (ClinicalTrials.gov: NCT03152318 ).


Subject(s)
Brain Neoplasms , Glioblastoma , Herpesvirus 1, Human , Oncolytic Virotherapy , Oncolytic Viruses , Humans , Brain Neoplasms/immunology , Brain Neoplasms/pathology , Glioblastoma/immunology , Glioblastoma/pathology , Nestin/genetics , Oncolytic Virotherapy/adverse effects , Oncolytic Viruses/genetics , Oncolytic Viruses/immunology , Oncolytic Viruses/physiology , Reproducibility of Results , Survival Analysis , T-Lymphocytes/cytology , T-Lymphocytes/immunology , Treatment Outcome , Tumor Microenvironment/immunology , Herpesvirus 1, Human/genetics , Herpesvirus 1, Human/immunology , Herpesvirus 1, Human/physiology
2.
CA Cancer J Clin ; 69(2): 127-157, 2019 03.
Article in English | MEDLINE | ID: mdl-30720861

ABSTRACT

Judgement, as one of the core tenets of medicine, relies upon the integration of multilayered data with nuanced decision making. Cancer offers a unique context for medical decisions given not only its variegated forms with evolution of disease but also the need to take into account the individual condition of patients, their ability to receive treatment, and their responses to treatment. Challenges remain in the accurate detection, characterization, and monitoring of cancers despite improved technologies. Radiographic assessment of disease most commonly relies upon visual evaluations, the interpretations of which may be augmented by advanced computational analyses. In particular, artificial intelligence (AI) promises to make great strides in the qualitative interpretation of cancer imaging by expert clinicians, including volumetric delineation of tumors over time, extrapolation of the tumor genotype and biological course from its radiographic phenotype, prediction of clinical outcome, and assessment of the impact of disease and treatment on adjacent organs. AI may automate processes in the initial interpretation of images and shift the clinical workflow of radiographic detection, management decisions on whether or not to administer an intervention, and subsequent observation to a yet to be envisioned paradigm. Here, the authors review the current state of AI as applied to medical imaging of cancer and describe advances in 4 tumor types (lung, brain, breast, and prostate) to illustrate how common clinical problems are being addressed. Although most studies evaluating AI applications in oncology to date have not been vigorously validated for reproducibility and generalizability, the results do highlight increasingly concerted efforts in pushing AI technology to clinical use and to impact future directions in cancer care.


Subject(s)
Artificial Intelligence , Diagnostic Imaging/methods , Neoplasms/diagnostic imaging , Humans
3.
Cancer ; 2024 May 16.
Article in English | MEDLINE | ID: mdl-38753473

ABSTRACT

Meningioma is the most common type of primary brain tumor. Surgical resection followed by surveillance is the first-line treatment for the majority of symptomatic meningiomas; however, recent advances in molecular sequencing, DNA methylation, proteomics, and single-cell sequencing provide insights into further characterizing this heterogeneous group of tumors with a wide range of prognoses. A subset of these tumors are highly aggressive and cause severe morbidity and mortality. Therefore, identifying those individuals with a poor prognosis and intervening are critical. This review aims to help readers interpret the molecular profiling of meningiomas to identify patients with worse prognoses and guide the management and strategy for surveillance.

4.
Oncologist ; 29(1): e47-e58, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-37619245

ABSTRACT

The authors present a cohort of 661 young adult glioblastomas diagnosed using 2016 WHO World Health Organization Classification of Tumors of the Central Nervous System, utilizing comprehensive genomic profiling (CGP) to explore their genomic landscape and assess their relationship to currently defined disease entities. This analysis explored variants with evidence of pathogenic function, common copy number variants (CNVs), and several novel fusion events not described in literature. Tumor mutational burden (TMB) mutational signatures, anatomic location, and tumor recurrence are further explored. Using data collected from CGP, unsupervised machine-learning techniques were leveraged to identify 10 genomic classes in previously assigned young adult glioblastomas. The authors relate these molecular classes to current World Health Organization guidelines and reference current literature to give therapeutic and prognostic descriptions where possible.


Subject(s)
Central Nervous System Neoplasms , Glioblastoma , Humans , Young Adult , Glioblastoma/diagnosis , Glioblastoma/genetics , Retrospective Studies , Mutation , Neoplasm Recurrence, Local , Genomics/methods
6.
Neurosurg Focus ; 56(4): E9, 2024 04.
Article in English | MEDLINE | ID: mdl-38560937

ABSTRACT

OBJECTIVE: This study describes an innovative optic nerve MRI protocol for better delineating optic nerve anatomy from neighboring pathology. METHODS: Twenty-two patients undergoing MRI examination of the optic nerve with the dedicated protocol were identified and included for analysis of imaging, surgical strategy, and outcomes. T2-weighted and fat-suppressed T1-weighted gadolinium-enhanced images were acquired perpendicular and parallel to the long axis of the optic nerve to achieve en face and in-line views along the course of the nerve. RESULTS: Dedicated optic nerve MRI sequences provided enhanced visualization of the nerve, CSF within the nerve sheath, and local pathology. Optic nerve sequences leveraged the "CSF ring" within the optic nerve sheath to create contrast between pathology and normal tissue, highlighting areas of compression. Tumor was readily tracked along the longitudinal axis of the nerve by images obtained parallel to the nerve. The findings augmented treatment planning. CONCLUSIONS: The authors present a dedicated optic nerve MRI protocol that is simple to use and affords improved cross-sectional and longitudinal visualization of the nerve, surrounding CSF, and pathology. This improved visualization enhances radiological evaluation and treatment planning for optic nerve lesions.


Subject(s)
Magnetic Resonance Imaging , Optic Nerve , Humans , Cross-Sectional Studies , Optic Nerve/diagnostic imaging , Optic Nerve/surgery , Magnetic Resonance Imaging/methods
7.
Nature ; 545(7655): 446-451, 2017 04 26.
Article in English | MEDLINE | ID: mdl-28445469

ABSTRACT

The early detection of relapse following primary surgery for non-small-cell lung cancer and the characterization of emerging subclones, which seed metastatic sites, might offer new therapeutic approaches for limiting tumour recurrence. The ability to track the evolutionary dynamics of early-stage lung cancer non-invasively in circulating tumour DNA (ctDNA) has not yet been demonstrated. Here we use a tumour-specific phylogenetic approach to profile the ctDNA of the first 100 TRACERx (Tracking Non-Small-Cell Lung Cancer Evolution Through Therapy (Rx)) study participants, including one patient who was also recruited to the PEACE (Posthumous Evaluation of Advanced Cancer Environment) post-mortem study. We identify independent predictors of ctDNA release and analyse the tumour-volume detection limit. Through blinded profiling of postoperative plasma, we observe evidence of adjuvant chemotherapy resistance and identify patients who are very likely to experience recurrence of their lung cancer. Finally, we show that phylogenetic ctDNA profiling tracks the subclonal nature of lung cancer relapse and metastasis, providing a new approach for ctDNA-driven therapeutic studies.


Subject(s)
Carcinoma, Non-Small-Cell Lung/genetics , Cell Lineage/genetics , DNA, Neoplasm/blood , DNA, Neoplasm/genetics , Evolution, Molecular , Lung Neoplasms/genetics , Neoplasm Metastasis/diagnosis , Neoplasm Recurrence, Local/diagnosis , Biopsy/methods , Carcinoma, Non-Small-Cell Lung/blood , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/surgery , Cell Tracking , Clone Cells/metabolism , Clone Cells/pathology , DNA Mutational Analysis , Disease Progression , Drug Resistance, Neoplasm/genetics , Early Detection of Cancer/methods , Humans , Limit of Detection , Lung Neoplasms/blood , Lung Neoplasms/pathology , Lung Neoplasms/surgery , Multiplex Polymerase Chain Reaction , Neoplasm Metastasis/genetics , Neoplasm Metastasis/pathology , Neoplasm Recurrence, Local/genetics , Neoplasm Recurrence, Local/pathology , Postoperative Care/methods , Reproducibility of Results , Tumor Burden
8.
Acta Neurochir (Wien) ; 165(12): 3565-3572, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37945995

ABSTRACT

BACKGROUND: A cornerstone of surgical residency training is an educational program that produces highly skilled and effective surgeons. Training structures are constantly being revised due to evolving program structures, shifting workforces, and variability in the clinical environment. This has resulted in significant heterogeneity in all surgical resident education, training tools utilized, and measures of training efficacy. METHODS: We systematically reviewed educational interventions for technical skills in neurosurgery published across PubMed, Embase, and Web of Science over four decades. We extracted general characteristics of each surgical training tool while categorizing educational interventions by modality and neurosurgical application. RESULTS: We identified 626 studies which developed surgical training tools across eight different training modalities: textbooks and literature (11), online resources (53), didactic teaching and one-on-one instruction (7), laboratory courses (50), cadaveric models (63), animal models (47), mixed reality (166), and physical models (229). While publication volume has grown exponentially, a majority of studies were cited with relatively low frequency. Most training programs were published in the development and validation phase with only 2.1% of tools implemented long-term. Each training modality expressed unique strengths and limitations, with limited data reported on the educational impact connected to each training tool. CONCLUSIONS: Numerous surgical training tools have been developed and implemented across residency training programs. Though many creative and cutting-edge tools have been devised, evidence supporting educational efficacy and long-term application is lacking. Increased utilization of novel surgical training tools will require validation of metrics used to assess the training outcomes and optimized integration with clinical practice.


Subject(s)
Internship and Residency , Neurosurgery , Humans , Curriculum , Neurosurgical Procedures , Neurosurgery/education , Clinical Competence
9.
Neurosurg Focus ; 53(3): E19, 2022 09.
Article in English | MEDLINE | ID: mdl-36052627

ABSTRACT

Dr. Arnold Max Meirowsky (1910-1984) was enormously influential to military neurosurgery during the Korean War, introducing to the American military the concept of the mobile neurosurgical unit. After implementation of the neurosurgical detachment, meningocerebral infections saw a decrease from 41% to less than 1%, with similar improvements in mortality and complication rates. Additionally, Meirowsky developed many techniques and improvements in neurosurgery, specifically in the field of neurosurgical trauma, which he dedicated himself to even after reentering civilian practice. Furthermore, his mentorship of Korean surgeons and the influence of his mobile neurosurgical unit were major influences cited to be pivotal to the founding of neurosurgery as a specialty in South Korea. As he is underrecognized for these accomplishments in the neurosurgical literature, the authors seek to review his wartime and career contributions. They also specifically present details of his standardization of the mobile neurosurgical unit and showcase several of his other advancements in the treatment of neurosurgical trauma.


Subject(s)
Military Personnel , Neurosurgery , History, 20th Century , Humans , Korean War , Neurosurgical Procedures , United States
10.
J Neurooncol ; 151(2): 313-324, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33394265

ABSTRACT

PURPOSE: Acromegaly is a rare neuroendocrine condition that can lead to significant morbidity. Despite China's vast population size, studies on acromegaly remain sparse. This study aimed to investigate the clinical characteristics and predictors of biochemical remission after surgery for acromegaly using the China Acromegaly Patient Association (CAPA) database. METHODS: A retrospective nationwide study was conducted using patient-reported data from CAPA database between 1998 and 2018. The principal component analysis (PCA) and logistic regression analysis were employed to determine independent predictors of biochemical remission at 3 months in patients after surgery. RESULTS: Of the 546 surgical cases (mean age: 36.8 years; 59.5% females), macroadenomas and invasive tumors (Knosp score 3-4) were 83.9% and 64.1%, respectively. Ninety-five percent of patients were treated with endonasal surgery and 36.8% exhibited biochemical remission at 3-months postoperatively. The following independent predictors of biochemical remission were identified: preoperative growth hormone (GH) levels between 12 and 28 µg/L [odds ratio (OR) = 0.58; 95% confidence interval (CI), 0.37-0.92; p = 0.021], preoperative GH levels > 28 µg/L (OR = 0.55; 95% CI, 0.34-0.88; p = 0.013), macroadenoma (OR = 0.56; 95% CI, 0.32-0.96; p = 0.034), giant adenomas (OR = 0.14; 95% CI, 0.05-0.38; p < 0.001), Knosp score 3-4 (OR = 0.37; 95% CI, 0.24-0.57; p < 0.001), and preoperative medication usage (OR = 2.32; 95% CI, 1.46-3.70; p < 0.001). CONCLUSIONS: In this nationwide study spanning over two decades, we highlight that higher preoperative GH levels, large tumor size, and greater extent of tumor invasiveness are associated with a lower likelihood of biochemical remission at 3-months after surgery, while preoperative medical therapy increases the chance of remission.


Subject(s)
Acromegaly/surgery , Neurosurgical Procedures/methods , Acromegaly/pathology , Adult , Female , Follow-Up Studies , Humans , Male , Postoperative Period , Prognosis , Remission Induction , Retrospective Studies
11.
Pituitary ; 24(3): 359-373, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33492612

ABSTRACT

PURPOSE: Pituitary tumors are the second most common primary brain tumors. Functional tumors demonstrate increased PD-L1 expression, but expression of other checkpoint regulators has not been characterized. We sought to characterize the immune microenvironment of human pituitary tumors to identify new treatment opportunities. METHODS: 72 pituitary tumors were evaluated for expression of the immune regulatory markers programmed death ligand 1 (PD-L1), programmed death ligand 2 (PD-L2), V-domain Ig suppressor of T cell activation (VISTA), lymphocyte activation gene 3 (LAG3) and tumor necrosis factor receptor superfamily member 4 (OX40) by immunohistochemistry (IHC). Lymphocyte infiltration, macrophage infiltration, and angiogenesis were analyzed using IHC. Expression of pituitary tumor initiating cell marker CD15 and mismatch repair proteins MutS protein homolog 2 (MSH2) and MutS protein homolog 6 (MSH6) was also assessed. RESULTS: Pituitary tumors were infiltrated by macrophages and T cells, and they expressed varying levels of PD-L1, PD-L2, VISTA, LAG3, and OX40. Functional tumors and tumors with high expression of tumor stem cell markers had higher immune cell infiltration and greater expression of immunosuppressive checkpoint regulators. Increased PD-L1 and LAG3 and reduced VISTA were observed in primary tumors compared to recurrent tumors. CONCLUSION: Immune cell infiltration and checkpoint regulator expression vary depending on functional status and presence of pituitary tumor initiating cells. Functional tumors may have a particularly immunosuppressive microenvironment. Further studies of immune checkpoint blockade of pituitary tumors, particularly functional tumors, are warranted, though combination therapy may be required.


Subject(s)
B7-H1 Antigen , Pituitary Neoplasms , Humans , Immunohistochemistry , MutS Proteins , Neoplasm Recurrence, Local , Pituitary Neoplasms/genetics , Tumor Microenvironment
12.
Mod Pathol ; 33(8): 1475-1481, 2020 08.
Article in English | MEDLINE | ID: mdl-32203094

ABSTRACT

Telomeres are nucleoprotein complexes located at the termini of eukaryotic chromosomes that prevent exonucleolytic degradation and end-to-end chromosomal fusions. Cancers often have critically shortened, dysfunctional telomeres contributing to genomic instability. Telomere shortening has been reported in a wide range of precancerous lesions and invasive carcinomas. However, the role of telomere alterations, including the presence of alternative lengthening of telomeres (ALT), has not been studied in pituitary adenomas. Telomere length and the presence of ALT were assessed directly at the single cell level using a telomere-specific fluorescence in situ hybridization assay in tissue microarrays. Tumors were characterized as either ALT-positive or having short, normal, or long telomere lengths and then these categories were compared with clinicopathological characteristics. ATRX and DAXX expression was studied through immunohistochemistry. We characterized a discovery set of 106 pituitary adenomas including both functional and nonfunctional subsets (88 primary, 18 recurrent). Telomere lengths were estimated and we observed 64 (59.4%) cases with short, 39 (36.8%) cases with normal, and 0 (0%) cases with long telomeres. We did not observe significant differences in the clinicopathological characteristics of the group with abnormally shortened telomeres compared to the group with normal telomeres. However, three pituitary adenomas were identified as ALT-positive of which two were recurrent tumors. Two of these three ALT-positive cases had alterations in either of the chromatin remodeling proteins, ATRX and DAXX, which are routinely altered in other ALT-positive tumor subtypes. In a second cohort of 32 recurrent pituitary adenomas from 22 patients, we found that the tumors from 36% of patients (n = 8) were ALT-positive. This study demonstrates that short telomere lengths are prevalent in pituitary adenomas and that ALT-positive pituitary adenomas are enriched in recurrent disease.


Subject(s)
Adenoma/genetics , Co-Repressor Proteins/biosynthesis , Molecular Chaperones/biosynthesis , Pituitary Neoplasms/genetics , Telomere/metabolism , X-linked Nuclear Protein/biosynthesis , Adenoma/pathology , Adolescent , Adult , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Pituitary Neoplasms/pathology , Telomere Homeostasis/physiology , Young Adult
13.
J Neurooncol ; 149(1): 131-140, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32654076

ABSTRACT

INTRODUCTION: Surgical outcomes and healthcare utilization have been shown to vary based on patient insurance status. We analyzed whether patients' insurance affects case urgency for and readmission after craniotomy for meningioma resection, using benign meningioma as a model system to minimize confounding from the disease-related characteristics of other neurosurgical pathologies. METHODS: We analyzed 90-day readmission for patients who underwent resection of a benign meningioma in the Nationwide Readmission Database from 2014-2015. RESULTS: A total of 9783 meningioma patients with private insurance (46%), Medicare (39%), Medicaid (10%), self-pay (2%), or another scheme (3%) were analyzed. 72% of all cases were elective; with 78% of cases in privately insured patients being elective compared to 71% of Medicare (p > 0.05), 59% of Medicaid patients (OR 2.3, p < 0.001), and 49% of self-pay patients (OR 3.4, p < 0.001). Medicare (OR 1.5, p = 0.002) and Medicaid (OR 1.4, p = 0.035) were both associated with higher likelihood of 90-day readmission compared to private insurance. In comparison, 30-day analyses did not unveil this discrepancy between Medicaid and privately insured, highlighting the merit for longer-term outcomes analyses in value-based care. Patients readmitted within 30 days versus those with later readmissions possessed different characteristics. CONCLUSIONS: Compared to patients with private insurance coverage, Medicaid and self-pay patients were significantly more likely to undergo non-elective resection of benign meningioma. Medicaid and Medicare insurance were associated with a higher likelihood of 90-day readmission; only Medicare was significant at 30 days. Both 30 and 90-day outcomes merit consideration given differences in readmitted populations.


Subject(s)
Craniotomy/economics , Hospitals/statistics & numerical data , Insurance Coverage , Insurance, Health , Meningioma/economics , Patient Readmission/economics , Patient Readmission/statistics & numerical data , Aged , Craniotomy/methods , Female , Follow-Up Studies , Humans , Male , Medicaid , Meningeal Neoplasms/economics , Meningeal Neoplasms/pathology , Meningeal Neoplasms/surgery , Meningioma/pathology , Meningioma/surgery , Middle Aged , Prognosis , Retrospective Studies , United States
14.
J Neurooncol ; 146(1): 111-120, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31745706

ABSTRACT

PURPOSE: To evaluate surgical resection with brachytherapy placement as a salvage treatment in patients with recurrent high-grade meningioma who exhausted prior external beam treatment options. METHODS: Single-center retrospective review of our institutional experience of brachytherapy implantation from 2012 to 2018. The primary outcome of the study was progression free survival (PFS). Secondary outcomes included overall survival (OS) and complications. A matched cohort of patients not treated with brachytherapy over the same time period was evaluated as a control group. All patients had received prior radiation treatment and underwent planned gross total resection (GTR) surgery. RESULTS: A total of 27 cases were evaluated. Compared with prior treatment, brachytherapy implantation demonstrated a statistically significant improvement in tumor control [HR 0.316 (0.101 - 0.991), p = 0.034]. PFS-6 and PFS-12 were 92.3% and 84.6%, respectively. Compared with the matched control cohort, brachytherapy treatment demonstrated improved PFS [HR 0.310 (0.103 - 0.933), p = 0.030]. Overall survival was not statistically significantly different between groups [HR 0.381 (0.073 - 1.982), p = 0.227]. Overall postoperative complications were comparable between groups, although there was a higher incidence of radiation necrosis in the brachytherapy cohort. CONCLUSION: Brachytherapy with planned GTR improved PFS in recurrent high-grade meningioma patients who exhausted prior external beam radiation treatment options. Future improvement of brachytherapy dose delivery methods and techniques may continue to prolong control rates and improve outcomes for this challenging group of patients.


Subject(s)
Brachytherapy/mortality , Meningeal Neoplasms/mortality , Meningioma/mortality , Neoplasm Recurrence, Local/mortality , Neurosurgery/methods , Salvage Therapy , Adult , Aged , Aged, 80 and over , Combined Modality Therapy , Female , Follow-Up Studies , Humans , Male , Meningeal Neoplasms/pathology , Meningeal Neoplasms/radiotherapy , Meningeal Neoplasms/surgery , Meningioma/pathology , Meningioma/radiotherapy , Meningioma/surgery , Middle Aged , Neoplasm Grading , Neoplasm Recurrence, Local/pathology , Neoplasm Recurrence, Local/radiotherapy , Neoplasm Recurrence, Local/surgery , Retrospective Studies , Survival Rate
15.
J Neurooncol ; 142(2): 299-307, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30661193

ABSTRACT

PURPOSE: Isocitrate dehydrogenase (IDH) and 1p19q codeletion status are importantin providing prognostic information as well as prediction of treatment response in gliomas. Accurate determination of the IDH mutation status and 1p19q co-deletion prior to surgery may complement invasive tissue sampling and guide treatment decisions. METHODS: Preoperative MRIs of 538 glioma patients from three institutions were used as a training cohort. Histogram, shape, and texture features were extracted from preoperative MRIs of T1 contrast enhanced and T2-FLAIR sequences. The extracted features were then integrated with age using a random forest algorithm to generate a model predictive of IDH mutation status and 1p19q codeletion. The model was then validated using MRIs from glioma patients in the Cancer Imaging Archive. RESULTS: Our model predictive of IDH achieved an area under the receiver operating characteristic curve (AUC) of 0.921 in the training cohort and 0.919 in the validation cohort. Age offered the highest predictive value, followed by shape features. Based on the top 15 features, the AUC was 0.917 and 0.916 for the training and validation cohort, respectively. The overall accuracy for 3 group prediction (IDH-wild type, IDH-mutant and 1p19q co-deletion, IDH-mutant and 1p19q non-codeletion) was 78.2% (155 correctly predicted out of 198). CONCLUSION: Using machine-learning algorithms, high accuracy was achieved in the prediction of IDH genotype in gliomas and moderate accuracy in a three-group prediction including IDH genotype and 1p19q codeletion.


Subject(s)
Brain Neoplasms/diagnostic imaging , Brain Neoplasms/genetics , Glioma/diagnostic imaging , Glioma/genetics , Image Interpretation, Computer-Assisted/methods , Magnetic Resonance Imaging , Adolescent , Adult , Aged , Aged, 80 and over , Biomarkers, Tumor/genetics , Brain Neoplasms/pathology , Chromosomes, Human, Pair 1 , Chromosomes, Human, Pair 19 , Cohort Studies , Female , Glioma/pathology , Humans , Isocitrate Dehydrogenase/genetics , Machine Learning , Magnetic Resonance Imaging/methods , Male , Middle Aged , Multimodal Imaging/methods , Mutation , Neoplasm Grading , Young Adult
16.
Curr Neurol Neurosci Rep ; 18(1): 4, 2018 02 02.
Article in English | MEDLINE | ID: mdl-29396598

ABSTRACT

PURPOSE OF REVIEW: Pituitary tumors are undergoing a transformation in histopathologic and molecular classification, coincident with the continued refinement of increasingly powerful methods of genomic annotation and discovery. We highlight novel genomic alterations identified in pituitary adenomas and craniopharyngiomas and discuss their clinical implications. RECENT FINDINGS: Sporadic pituitary adenomas are associated with relatively few recurrent somatic mutations. Recurrent mutations occur largely in subsets of hormone-producing tumors, including GNAS and GPR101 in somatotroph adenomas and USP8 in corticotroph adenomas. Additionally, they manifest with a dichotomous signature of copy number alterations, ranging from almost none to widespread genome instability, while microduplication of chromosome Xq26.3, containing the GNAS gene, defines X-linked acrogigantism. Papillary craniopharyngiomas are defined by BRAF V600E mutations while ß-catenin alterations characterize adamantinomatous craniopharyngiomas. Genomic annotation of pituitary tumors is defining increasing subsets of neuroendocrine adenohypophyseal tumors and craniopharyngiomas, offering rationale-based pharmacologic targets and potential biomarkers for clinical outcome.


Subject(s)
Adenoma/genetics , Pituitary Neoplasms/genetics , Craniopharyngioma/genetics , Endopeptidases/genetics , Endosomal Sorting Complexes Required for Transport/genetics , Genome, Human , Humans , Mutation , Ubiquitin Thiolesterase/genetics , beta Catenin/genetics
17.
Neurosurg Focus ; 44(4): E3, 2018 04.
Article in English | MEDLINE | ID: mdl-29606052

ABSTRACT

Surgery is curative for most meningiomas, but a minority of these tumors recur and progress after resection. Initial trials of medical therapies for meningioma utilized nonspecific cytotoxic chemotherapies. The presence of hormone receptors on meningioma ushered in trials of hormone-mimicking agents. While these trials expanded clinical understanding of meningioma, they ultimately had limited efficacy in managing aggressive lesions. Subsequent detection of misregulated proteins and genomic aberrancies motivated the study of therapies targeting specific biological disturbances observed in meningioma. These advances led to trials of targeted kinase inhibitors and immunotherapies, as well as combinations of these agents together with chemotherapies. Prospective trials currently recruiting participants are testing a diverse range of medical therapies for meningioma, and some studies now require the presence of a specific protein alteration or genetic mutation as an inclusion criterion. Increasing understanding of the unique and heterogeneous nature of meningiomas will continue to spur the development of novel medical therapies for the arsenal against aggressive tumors.


Subject(s)
Meningioma/genetics , Meningioma/therapy , Neoplasm Recurrence, Local/therapy , Precision Medicine , Humans , Meningeal Neoplasms/genetics , Meningeal Neoplasms/therapy , Mutation/genetics , Neoplasm Recurrence, Local/genetics , Prospective Studies
18.
Neurosurg Focus ; 44(4): E2, 2018 04.
Article in English | MEDLINE | ID: mdl-29606053

ABSTRACT

The epochal developments in the treatment of meningioma-microsurgery, skull base techniques, and radiation therapy-will be appended to include the rational application of targeted and immune therapeutics, previously ill-fitting concepts for a tumor that has traditionally been a regarded as a surgical disease. The genomic and immunological architecture of these tumors continues to be defined in ever-greater detail. Grade I meningiomas are driven by NF2 alterations or mutations in AKT1, SMO, TRAF7, PIK3CA, KLF4, POLR2A, SUFU, and SMARCB1. Higher-grade tumors, however, are driven nearly exclusively by NF2/chr22 loss and are marked by infrequent targetable mutations, although they may harbor a greater mutation burden overall. TERT mutations may be more common in tumors that progress in histological grade; SMARCE1 alteration has become a signature of the clear cell subtype; and BAP1 in rhabdoid variants may confer sensitivity to pharmacological inhibition. Compared with grade I meningiomas, the most prominent alteration in grade II and III meningiomas is a significant increase in chromosomal gains and losses, or copy number alterations, which may have behavioral implications. Furthermore, integrated genomic analyses suggest phenotypic subgrouping by methylation profile and a specific role for PRC2 complex activation. Lastly, there exists a complex phylogenetic relationship among recurrent high-grade tumors, which continues to underscore a role for the most traditional therapy in our arsenal: surgery.


Subject(s)
Brain Neoplasms/surgery , Meningeal Neoplasms/surgery , Meningioma/genetics , Meningioma/surgery , Brain Neoplasms/genetics , Chromosomal Proteins, Non-Histone/genetics , DNA-Binding Proteins/genetics , Genomics , Humans , Kruppel-Like Factor 4 , Meningeal Neoplasms/genetics , Mutation/genetics , Neoplasm Grading , Skull Base/surgery , Tumor Suppressor Proteins/genetics
19.
Neurosurg Focus ; 44(6): E12, 2018 06.
Article in English | MEDLINE | ID: mdl-29852761

ABSTRACT

OBJECTIVE Craniopharyngiomas are among the most challenging of intracranial tumors to manage because of their pattern of growth, associated morbidities, and high recurrence rate. Complete resection on initial encounter can be curative, but it may be impeded by the risks posed by the involved neurovascular structures. Recurrent craniopharyngiomas, in turn, are frequently refractory to additional surgery and adjuvant radiation or chemotherapy. METHODS The authors conducted a review of primary literature. RESULTS Recent advances in the understanding of craniopharyngioma biology have illuminated potential oncogenic targets for pharmacotherapy. Specifically, distinct molecular profiles define two histological subtypes of craniopharyngioma: adamantinomatous and papillary. The discovery of overactive B-Raf signaling in the adult papillary subtype has led to reports of targeted inhibitors, with a growing acceptance for refractory cases. An expanding knowledge of the biological underpinnings of craniopharyngioma will continue to drive development of targeted therapies and immunotherapies that are personalized to the molecular signature of each individual tumor. CONCLUSIONS The rapid translation of genomic findings to medical therapies for recurrent craniopharyngiomas serves as a roadmap for other challenging neurooncological diseases.


Subject(s)
Craniopharyngioma/genetics , Pituitary Neoplasms/genetics , Translational Research, Biomedical/methods , Craniopharyngioma/diagnosis , Craniopharyngioma/therapy , Humans , Immunotherapy/methods , Pituitary Neoplasms/diagnosis , Pituitary Neoplasms/therapy , Proto-Oncogene Proteins B-raf/genetics , Translational Research, Biomedical/trends
20.
Acta Neurochir (Wien) ; 160(4): 675-680, 2018 04.
Article in English | MEDLINE | ID: mdl-29353408

ABSTRACT

BACKGROUND: Dynamic CT angiography (dCTA) augments traditional CTA with temporal resolution and has been demonstrated to influence operative planning in skull base surgery. METHODS: Three hundred twenty-five dynamic CTA cases from a single institution were reviewed for indication of study, findings, and comparison to other modalities of imaging. RESULTS: The most frequent application of dCTA was pre-operative surgical planning (59.4%); resection of skull base tumors represented the majority of these pre-operative studies (93.3%). It was also used to evaluate new neurological symptoms (20.9%). Of these, the most common symptoms prompting a dCTA study included headache (22.1%) and visual field deficit (11.8%). The most commonly visualized vascular lesions were partial (22.9%) and complete vascular occlusions (9.0%). Dynamic CTA has also been useful in post-operative imaging for vascular malformations (9.5%) and tumors (2.5%). Finally, dCTA was employed to evaluate ambiguous abnormal findings observed on other imaging modalities (7.7%). Cerebral dCTA ruled out inconclusive abnormal vascular findings visualized on other imaging modalities (64.0%) more frequently than it confirmed them (32.0%), and was inconclusive in a singular case (4.0%). CONCLUSIONS: Cerebral dCTA is an evolving new technology with a diverse spectrum of potential applications. In addition to its role in guiding pre-operative planning for skull base surgical cases, dynamic CTA offers excellent spatial and temporal resolution for assessment of vascular lesions.


Subject(s)
Brain Diseases/diagnostic imaging , Brain/diagnostic imaging , Cerebral Angiography/methods , Computed Tomography Angiography/methods , Adolescent , Adult , Aged , Aged, 80 and over , Brain Neoplasms/diagnostic imaging , Cerebrovascular Disorders/diagnostic imaging , Female , Humans , Image Processing, Computer-Assisted , Male , Middle Aged , Nervous System Diseases/diagnostic imaging , Patient Care Planning , Preoperative Period , Retrospective Studies , Skull Base/diagnostic imaging , Skull Base/surgery , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL