Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Neurol Sci ; 43(8): 5133-5141, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35648267

ABSTRACT

PURPOSE: To establish whether a slow or a rapid withdrawal of antiepileptic monotherapy influences relapse rate in seizure-free adults with epilepsy and calculates compliance and differences in the severity of relapses, based on the occurrence of status epilepticus, seizure-related injuries, and death. METHODS: This is a multicentre, prospective, randomized, open label, non-inferiority trial in people aged 16 + years who were seizure-free for more than 2 years. Patients were randomized to slow withdrawal (160 days) or rapid withdrawal (60 days) and were followed for 12 months. The primary outcome was the probability of a first seizure relapse within the 12-months follow-up. The secondary outcomes included the cumulative probability of relapse at 3, 6, 9, and 12 months. A non-inferiority analysis was performed with non-inferiority margin of - 0.15 for the difference between the probabilities of seizure recurrence in slow versus rapid withdrawal. RESULTS: The sample comprised 48 patients, 25 randomized to slow withdrawal and 23 to rapid withdrawal. Median follow-up was 11.9 months. In the intention-to-treat population, 3 patients in the slow-withdrawal group and 1 in the rapid withdrawal group experienced seizure relapses. The corresponding probabilities of seizure recurrence were 0.12 for slow withdrawal and 0.04 for rapid withdrawal, giving a difference of 0.08 (95% CI - 0.12; 0.27), which is entirely above the non-inferiority margin. No patients developed status epilepticus and seizure-related injuries or died. Risks were similar in the Per-Protocol population. CONCLUSIONS: Seizure-relapse rate after drug discontinuation is lower than in other reports, without complications and unrelated to the duration of tapering.


Subject(s)
Epilepsy , Status Epilepticus , Adult , Anticonvulsants/therapeutic use , Epilepsy/drug therapy , Humans , Neoplasm Recurrence, Local/drug therapy , Prospective Studies , Recurrence , Seizures/drug therapy , Status Epilepticus/drug therapy
2.
Neurol Sci ; 41(11): 3075-3084, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32524324

ABSTRACT

BACKGROUND: Vagal nerve stimulation (VNS) is an effective palliative therapy in drug-resistant epileptic patients and is also approved as a therapy for treatment-resistant depression. Depression is a frequent comorbidity in epilepsy and it affects the quality of life of patients more than the seizure frequency itself. The aim of this systematic review is to analyze the available literature about the VNS effect on depressive symptoms in epileptic patients. MATERIAL AND METHODS: A comprehensive search of PubMed, Medline, Scopus, and Google Scholar was performed, and results were included up to January 2020. All studies concerning depressive symptom assessment in epileptic patients treated with VNS were included. RESULTS: Nine studies were included because they fulfilled inclusion criteria. Six out of nine papers reported a positive effect of VNS on depressive symptoms. Eight out of nine studies did not find any correlation between seizure reduction and depressive symptom amelioration, as induced by VNS. Clinical scales for depression, drug regimens, and age of patients were broadly different among the examined studies. CONCLUSIONS: Reviewed studies strongly suggest that VNS ameliorates depressive symptoms in drug-resistant epileptic patients and that the VNS effect on depression is uncorrelated to seizure response. However, more rigorous studies addressing this issue are encouraged.


Subject(s)
Epilepsy , Vagus Nerve Stimulation , Antidepressive Agents , Epilepsy/therapy , Humans , Quality of Life , Treatment Outcome
3.
Epilepsia ; 60(5): e31-e36, 2019 05.
Article in English | MEDLINE | ID: mdl-30719712

ABSTRACT

Juvenile myoclonic epilepsy (JME) is a common syndrome of genetic generalized epilepsies (GGEs). Linkage and association studies suggest that the gene encoding the bromodomain-containing protein 2 (BRD2) may increase risk of JME. The present methylation and association study followed up a recent report highlighting that the BRD2 promoter CpG island (CpG76) is differentially hypermethylated in lymphoblastoid cells from Caucasian patients with JME compared to patients with other GGE subtypes and unaffected relatives. In contrast, we found a uniform low average percentage of methylation (<4.5%) for 13 CpG76-CpGs in whole blood cells from 782 unrelated European Caucasians, including 116 JME patients, 196 patients with genetic absence epilepsies, and 470 control subjects. We also failed to confirm an allelic association of the BRD2 promoter single nucleotide polymorphism (SNP) rs3918149 with JME (Armitage trend test, P = 0.98), and we did not detect a substantial impact of SNP rs3918149 on CpG76 methylation in either 116 JME patients (methylation quantitative trait loci [meQTL], P = 0.29) or 470 German control subjects (meQTL, P = 0.55). Our results do not support the previous observation that a high DNA methylation level of the BRD2 promoter CpG76 island is a prevalent epigenetic motif associated with JME in Caucasians.


Subject(s)
CpG Islands/genetics , DNA Methylation , Myoclonic Epilepsy, Juvenile/genetics , Promoter Regions, Genetic/genetics , Transcription Factors/genetics , Epilepsy, Absence/epidemiology , Epilepsy, Absence/genetics , Europe , Female , Humans , Leukocytes/chemistry , Male , Myoclonic Epilepsy, Juvenile/blood , Myoclonic Epilepsy, Juvenile/epidemiology , Polymorphism, Single Nucleotide
4.
Neurol Sci ; 40(9): 1775-1783, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31055731

ABSTRACT

BACKGROUND: Epilepsy and hypertension are common chronic conditions, both showing high prevalence in older age groups. This review outlines current experimental and clinical evidence on both direct and indirect role of hypertension in epileptogenesis and discusses the principles of drug treatment in patients with hypertension and epilepsy. METHODS: We selected English-written articles on epilepsy, hypertension, stroke, and cerebrovascular disease until December, 2018. RESULTS: Renin-angiotensin system might play a central role in the direct interaction between hypertension and epilepsy, but other mechanisms may be contemplated. Large-artery stroke, small vessel disease and posterior reversible leukoencephalopathy syndrome are hypertension-related brain lesions able to determine epilepsy by indirect mechanisms. The role of hypertension as an independent risk factor for post-stroke epilepsy has not been demonstrated. The role of hypertension-related small vessel disease in adult-onset epilepsy has been demonstrated. Posterior reversible encephalopathy syndrome is an acute condition, often caused by a hypertensive crisis, associated with the occurrence of acute symptomatic seizures. Chronic antiepileptic treatment should consider the risk of drug-drug interactions with antihypertensives. CONCLUSIONS: Current evidence from preclinical and clinical studies supports the vision that hypertension may be a cause of seizures and epilepsy through direct or indirect mechanisms. In both post-stroke epilepsy and small vessel disease-associated epilepsy, chronic antiepileptic treatment is recommended. In posterior reversible encephalopathy syndrome blood pressure must be rapidly lowered and prompt antiepileptic treatment should be initiated.


Subject(s)
Cerebral Small Vessel Diseases/complications , Epilepsy/etiology , Hypertension/complications , Seizures/etiology , Stroke/complications , Humans
5.
Neurol Sci ; 38(4): 563-570, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28130605

ABSTRACT

POLG gene encodes the catalytic subunit of DNA polymerase gamma, essential for mitochondrial DNA (mtDNA) replication and repair. Mutations in POLG have been linked to a spectrum of clinical phenotypes, resulting in autosomal recessive or dominant mitochondrial diseases. These mutations have been associated with heterogeneous phenotypes, presenting with varying severity and at different ages of onset, ranging from the neonatal period to late adult life. We screened 13 patients for POLG mutations. All patients underwent a complete neurological examination, and in most of cases, muscle biopsy was performed. We detected 15 different variations in 13 unrelated Italian patients. Two mutations were novel and mapped in the pol domain (p.Thr989dup and p.Ala847Thr) of the enzyme. We also report new cases carrying controversial variations previously described as incompletely penetrant or a variant of unknown significance. Our study increases the range of clinical presentations associated with mutations in POLG gene, underlining some peculiar clinical features, such as PEO associated with corneal edema, and epilepsy, severe neuropathy with achalasia. The addition of two new substitutions, including the second report of an in-frame duplication, to the growing list of defects increases the value of POLG genetic diagnosis in a range of neurological presentations.


Subject(s)
DNA-Directed DNA Polymerase/genetics , Mitochondrial Diseases/genetics , Mutation , Phenotype , Adolescent , Adult , Aged , DNA Mutational Analysis , DNA Polymerase gamma , Female , Humans , Italy , Male , Middle Aged , Mitochondrial Diseases/pathology , Mitochondrial Diseases/physiopathology , Muscle, Skeletal/pathology , Neurologic Examination , White People/genetics , Young Adult
6.
Epilepsia ; 56(4): e40-3, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25752200

ABSTRACT

Genetic factors play a major role in the etiology of juvenile myoclonic epilepsy (JME), a common form of idiopathic generalized epilepsy, but so far, genes related to JME remain largely unknown. JME shares electroclinical features with Unverricht-Lundborg disease (progressive myoclonic epilepsy type 1; EPM1), a form of progressive myoclonus epilepsy characterized by myoclonus, epilepsy, and gradual neurologic deterioration. EPM1 is caused by mutations in the gene that codes for cystatin B (CSTB), an inhibitor of cysteine protease. In the present study, we wished to investigate the role of the CSTB gene in patients with JME. Fifty-seven unrelated patients (35 women; mean age ± standard deviation [SD], 24.1 ± 7.7; mean age ± SD at onset, 15.3 ± 2.4) with JME were enrolled. Twenty-three of 57 patients were the probands of families with JME. The molecular diagnosis was carried out to identify the common dodecamer repeat expansion mutation or other disease-causing mutations in the CSTB gene. The molecular analysis did not depict mutations in any of the 57 patients with JME. Our study did not support a role for the CSTB gene in patients with familial or sporadic JME.


Subject(s)
Cystatin B/genetics , Myoclonic Epilepsy, Juvenile/diagnosis , Myoclonic Epilepsy, Juvenile/genetics , Adolescent , Adult , Female , Humans , Male , Mutation/genetics , Young Adult
7.
Int J Legal Med ; 129(3): 495-504, 2015 May.
Article in English | MEDLINE | ID: mdl-25119684

ABSTRACT

Epilepsy affects approximately 3% of the world's population, and sudden death is a significant cause of death in this population. Sudden unexpected death in epilepsy (SUDEP) accounts for up to 17% of all these cases, which increases the rate of sudden death by 24-fold as compared to the general population. The underlying mechanisms are still not elucidated, but recent studies suggest the possibility that a common genetic channelopathy might contribute to both epilepsy and cardiac disease to increase the incidence of death via a lethal cardiac arrhythmia. We performed genetic testing in a large cohort of individuals with epilepsy and cardiac conduction disorders in order to identify genetic mutations that could play a role in the mechanism of sudden death. Putative pathogenic disease-causing mutations in genes encoding cardiac ion channel were detected in 24% of unrelated individuals with epilepsy. Segregation analysis through genetic screening of the available family members and functional studies are crucial tasks to understand and to prove the possible pathogenicity of the variant, but in our cohort, only two families were available. Despite further research should be performed to clarify the mechanism of coexistence of both clinical conditions, genetic analysis, applied also in post-mortem setting, could be very useful to identify genetic factors that predispose epileptic patients to sudden death, helping to prevent sudden death in patients with epilepsy.


Subject(s)
Arrhythmias, Cardiac/genetics , Arrhythmias, Cardiac/mortality , Death, Sudden/epidemiology , Death, Sudden/etiology , Epilepsy/genetics , Epilepsy/mortality , Forensic Genetics , Alleles , Brugada Syndrome/genetics , Brugada Syndrome/mortality , Channelopathies/genetics , Channelopathies/mortality , Codon, Nonsense/genetics , Cohort Studies , Cross-Sectional Studies , DNA Mutational Analysis , Genetic Carrier Screening , Genetic Testing , Genetic Variation/genetics , Humans , Incidence , Long QT Syndrome/genetics , Long QT Syndrome/mortality , Mutation, Missense/genetics , Sequence Analysis, DNA
8.
Hum Mol Genet ; 21(24): 5359-72, 2012 Dec 15.
Article in English | MEDLINE | ID: mdl-22949513

ABSTRACT

Genetic generalized epilepsies (GGEs) have a lifetime prevalence of 0.3% and account for 20-30% of all epilepsies. Despite their high heritability of 80%, the genetic factors predisposing to GGEs remain elusive. To identify susceptibility variants shared across common GGE syndromes, we carried out a two-stage genome-wide association study (GWAS) including 3020 patients with GGEs and 3954 controls of European ancestry. To dissect out syndrome-related variants, we also explored two distinct GGE subgroups comprising 1434 patients with genetic absence epilepsies (GAEs) and 1134 patients with juvenile myoclonic epilepsy (JME). Joint Stage-1 and 2 analyses revealed genome-wide significant associations for GGEs at 2p16.1 (rs13026414, P(meta) = 2.5 × 10(-9), OR[T] = 0.81) and 17q21.32 (rs72823592, P(meta) = 9.3 × 10(-9), OR[A] = 0.77). The search for syndrome-related susceptibility alleles identified significant associations for GAEs at 2q22.3 (rs10496964, P(meta) = 9.1 × 10(-9), OR[T] = 0.68) and at 1q43 for JME (rs12059546, P(meta) = 4.1 × 10(-8), OR[G] = 1.42). Suggestive evidence for an association with GGEs was found in the region 2q24.3 (rs11890028, P(meta) = 4.0 × 10(-6)) nearby the SCN1A gene, which is currently the gene with the largest number of known epilepsy-related mutations. The associated regions harbor high-ranking candidate genes: CHRM3 at 1q43, VRK2 at 2p16.1, ZEB2 at 2q22.3, SCN1A at 2q24.3 and PNPO at 17q21.32. Further replication efforts are necessary to elucidate whether these positional candidate genes contribute to the heritability of the common GGE syndromes.


Subject(s)
Epilepsy, Generalized/genetics , Genome-Wide Association Study , Alleles , Epilepsy, Absence/genetics , Genetic Predisposition to Disease/genetics , Homeodomain Proteins/genetics , Humans , Myoclonic Epilepsy, Juvenile/genetics , NAV1.1 Voltage-Gated Sodium Channel/genetics , Protein Serine-Threonine Kinases/genetics , Receptor, Muscarinic M3/genetics , Repressor Proteins/genetics , Zinc Finger E-box Binding Homeobox 2
9.
Epilepsia ; 54(3): 425-36, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23360469

ABSTRACT

PURPOSE: To dissect the genetics of benign familial epilepsies of the first year of life and to assess the extent of the genetic overlap between benign familial neonatal seizures (BFNS), benign familial neonatal-infantile seizures (BFNIS), and benign familial infantile seizures (BFIS). METHODS: Families with at least two first-degree relatives affected by focal seizures starting within the first year of life and normal development before seizure onset were included. Families were classified as BFNS when all family members experienced neonatal seizures, BFNIS when the onset of seizures in family members was between 1 and 4 months of age or showed both neonatal and infantile seizures, and BFIS when the onset of seizures was after 4 months of age in all family members. SCN2A, KCNQ2, KCNQ3, PPRT2 point mutations were analyzed by direct sequencing of amplified genomic DNA. Genomic deletions involving KCNQ2 and KCNQ3 were analyzed by multiple-dependent probe amplification method. KEY FINDINGS: A total of 46 families including 165 affected members were collected. Eight families were classified as BFNS, 9 as BFNIS, and 29 as BFIS. Genetic analysis led to the identification of 41 mutations, 14 affecting KCNQ2, 1 affecting KCNQ3, 5 affecting SCN2A, and 21 affecting PRRT2. The detection rate of mutations in the entire cohort was 89%. In BFNS, mutations specifically involve KCNQ2. In BFNIS two genes are involved (KCNQ2, six families; SCN2A, two families). BFIS families are the most genetically heterogeneous, with all four genes involved, although about 70% of them carry a PRRT2 mutation. SIGNIFICANCE: Our data highlight the important role of KCNQ2 in the entire spectrum of disorders, although progressively decreasing as the age of onset advances. The occurrence of afebrile seizures during follow-up is associated with KCNQ2 mutations and may represent a predictive factor. In addition, we showed that KCNQ3 mutations might be also involved in families with infantile seizures. Taken together our data indicate an important role of K-channel genes beyond the typical neonatal epilepsies. The identification of a novel SCN2A mutation in a family with infantile seizures with onset between 6 and 8 months provides further confirmation that this gene is not specifically associated with BFNIS and is also involved in families with a delayed age of onset. Our data indicate that PRRT2 mutations are clustered in families with BFIS. Paroxysmal kinesigenic dyskinesia emerges as a distinctive feature of PRRT2 families, although uncommon in our series. We showed that the age of onset of seizures is significantly correlated with underlying genetics, as about 90% of the typical BFNS families are linked to KCNQ2 compared to only 3% of the BFIS families, for which PRRT2 represents the major gene.


Subject(s)
Epilepsy, Benign Neonatal/diagnosis , Epilepsy, Benign Neonatal/genetics , Genetic Testing , KCNQ2 Potassium Channel/genetics , KCNQ3 Potassium Channel/genetics , Membrane Proteins/genetics , NAV1.2 Voltage-Gated Sodium Channel/genetics , Nerve Tissue Proteins/genetics , Adolescent , Adult , Age of Onset , Aged , Aged, 80 and over , Child , Child, Preschool , Cohort Studies , Female , Genetic Testing/methods , Humans , Infant , Male , Middle Aged , Multigene Family/genetics , Mutation/genetics , Predictive Value of Tests , Young Adult
10.
Hum Mutat ; 33(10): 1439-43, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22623405

ABSTRACT

Mutations in PRRT2 have been described in paroxysmal kinesigenic dyskinesia (PKD) and infantile convulsions with choreoathetosis (PKD with infantile seizures), and recently also in some families with benign familial infantile seizures (BFIS) alone. We analyzed PRRT2 in 49 families and three sporadic cases with BFIS only of Italian, German, Turkish, and Japanese origin and identified the previously described mutation c.649dupC in an unstable series of nine cytosines to occur in 39 of our families and one sporadic case (77% of index cases). Furthermore, three novel mutations were found in three other families, whereas 17% of our index cases did not show PRRT2 mutations, including a large family with late-onset BFIS and febrile seizures. Our study further establishes PRRT2 as the major gene for BFIS alone.


Subject(s)
Membrane Proteins/genetics , Nerve Tissue Proteins/genetics , Spasms, Infantile/genetics , Adolescent , Adult , Aged , Child , Child, Preschool , Humans , Infant , Male , Middle Aged , Mutation , Pedigree , Seizures, Febrile/genetics
11.
Epilepsia ; 53(2): 308-18, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22242659

ABSTRACT

PURPOSE: Genetic generalized epilepsies (GGEs) have a lifetime prevalence of 0.3% with heritability estimates of 80%. A considerable proportion of families with siblings affected by GGEs presumably display an oligogenic inheritance. The present genome-wide linkage meta-analysis aimed to map: (1) susceptibility loci shared by a broad spectrum of GGEs, and (2) seizure type-related genetic factors preferentially predisposing to either typical absence or myoclonic seizures, respectively. METHODS: Meta-analysis of three genome-wide linkage datasets was carried out in 379 GGE-multiplex families of European ancestry including 982 relatives with GGEs. To dissect out seizure type-related susceptibility genes, two family subgroups were stratified comprising 235 families with predominantly genetic absence epilepsies (GAEs) and 118 families with an aggregation of juvenile myoclonic epilepsy (JME). To map shared and seizure type-related susceptibility loci, both nonparametric loci (NPL) and parametric linkage analyses were performed for a broad trait model (GGEs) in the entire set of GGE-multiplex families and a narrow trait model (typical absence or myoclonic seizures) in the subgroups of JME and GAE families. KEY FINDINGS: For the entire set of 379 GGE-multiplex families, linkage analysis revealed six loci achieving suggestive evidence for linkage at 1p36.22, 3p14.2, 5q34, 13q12.12, 13q31.3, and 19q13.42. The linkage finding at 5q34 was consistently supported by both NPL and parametric linkage results across all three family groups. A genome-wide significant nonparametric logarithm of odds score of 3.43 was obtained at 2q34 in 118 JME families. Significant parametric linkage to 13q31.3 was found in 235 GAE families assuming recessive inheritance (heterogeneity logarithm of odds = 5.02). SIGNIFICANCE: Our linkage results support an oligogenic predisposition of familial GGE syndromes. The genetic risk factor at 5q34 confers risk to a broad spectrum of familial GGE syndromes, whereas susceptibility loci at 2q34 and 13q31.3 preferentially predispose to myoclonic seizures or absence seizures, respectively. Phenotype- genotype strategies applying narrow trait definitions in phenotypic homogeneous subgroups of families improve the prospects of disentangling the genetic basis of common familial GGE syndromes.


Subject(s)
Chromosomes, Human, Pair 13/genetics , Chromosomes, Human, Pair 2/genetics , Epilepsy, Generalized/genetics , Genetic Predisposition to Disease/genetics , Chromosome Mapping , Family , Female , Genetic Linkage , Genetic Loci , Genome-Wide Association Study , Genotype , Humans , Male , Pedigree , Phenotype
12.
Epilepsia ; 52(5): e40-4, 2011 May.
Article in English | MEDLINE | ID: mdl-21561445

ABSTRACT

A splice site variation (c.603-91G>A or rs3812718) in the SCN1A gene has been claimed to influence efficacy and dose requirements of carbamazepine and phenytoin. We investigated the relationship between c.603-91G>A polymorphism and response to antiepileptic drugs (AEDs) in 482 patients with drug-resistant and 401 patients with drug-responsive focal epilepsy. Most commonly used AEDs were carbamazepine and oxcarbazepine. The distribution of c.603-91G>A genotypes was similar among drug-resistant and drug-responsive subjects, both in the entire population and in the groups treated with carbamazepine or oxcarbazepine. There was no association between the c.603-91G>A genotype and dosages of carbamazepine or oxcarbazepine. These findings rule out a major role of the SCN1A polymorphism as a determinant of AED response.


Subject(s)
Anticonvulsants/therapeutic use , Epilepsies, Partial/drug therapy , Nerve Tissue Proteins/genetics , Polymorphism, Genetic , Sodium Channels/genetics , Adult , Anticonvulsants/pharmacology , Carbamazepine/analogs & derivatives , Carbamazepine/pharmacology , Carbamazepine/therapeutic use , Drug Resistance , Epilepsies, Partial/genetics , Female , Genotype , Humans , Italy/ethnology , Male , NAV1.1 Voltage-Gated Sodium Channel , Oxcarbazepine , Pharmacogenetics , White People/genetics
13.
J Neurol Sci ; 424: 117409, 2021 May 15.
Article in English | MEDLINE | ID: mdl-33773408

ABSTRACT

BACKGROUND: Lafora disease (LD) is characterized by progressive myoclonus, refractory epilepsy, and cognitive deterioration. This complex neurodegenerative condition is caused by pathogenic variants in EPM2A/EPM2B genes, encoding two essential glycogen metabolism enzymes known as laforin and malin. Long-term follow-up data are lacking. We describe the clinical features and genetic findings of a cohort of 26 Italian patients with a long clinical follow-up. METHODS: Patients with EPM2A/EPM2B pathogenic variants were identified by direct gene sequencing or gene panels with targeted re-sequencing. Disease progression, motor functions, and mental performance were assessed by a simplified disability scale. Spontaneous/action myoclonus severity was scored by the Magaudda Scale. RESULTS: Age range was 12.2-46.2 years (mean:25.53 ± 9.14). Age at disease onset ranged from 10 to 22 years (mean:14.04 ± 2.62). The mean follow-up period was 11.48 ± 7.8 years. Twelve out of the 26 (46%) patients preserved walking ability and 13 (50%) maintained speech. A slower disease progression with preserved ambulation and speech after ≥4 years of follow-up was observed in 1 (11%) out of the 9 (35%) EPM2A patients and in 6 (35%) out of the 17 (65%) EPM2B patients. Follow-up was >10 years in 7 (41.2%) EPM2B individuals, including two harbouring the homozygous p.(D146N) pathogenic variant. CONCLUSIONS: This study supports an overall worse disease outcome with severe deterioration of ambulation and speech in patients carrying EPM2A mutations. However, the delayed onset of disabling symptoms observed in the EPM2B subjects harbouring the p.(D146N) pathogenic variant suggests that the underlying causative variant may still influence LD severity.


Subject(s)
Lafora Disease , Adolescent , Adult , Child , Genetic Association Studies , Humans , Italy , Lafora Disease/genetics , Middle Aged , Mutation/genetics , Protein Tyrosine Phosphatases, Non-Receptor/genetics , Ubiquitin-Protein Ligases/genetics , Young Adult
14.
Expert Rev Neurother ; 20(3): 251-269, 2020 03.
Article in English | MEDLINE | ID: mdl-31941393

ABSTRACT

Introduction: Epileptic disorders are a heterogeneous group of medical conditions with epilepsy as the common denominator. Genetic causes, electro-clinical features, and management significantly vary according to the specific condition.Areas covered: Relevant diagnostic advances have been achieved thanks to the advent of Next Generation Sequencing (NGS)-based molecular techniques. These revolutionary tools allow to sequence all coding (whole exome sequencing, WES) and non-coding (whole genome sequencing, WGS) regions of human genome, with a potentially huge impact on patient care and scientific research.Expert opinion: The application of these tests in children and adults with epilepsy has led to the identification of new causative genes, widening the knowledge on the pathophysiology of epilepsy and resulting in therapeutic implications. This review will explore the most recent advancements in genetic testing and provide up-to-date approaches for the choice of the correct test in patients with epilepsy.


Subject(s)
Epilepsy/diagnosis , Epilepsy/genetics , Genetic Testing , Adult , Child , Epilepsy/therapy , Genetic Testing/trends , Humans
15.
Epilepsia ; 50 Suppl 5: 11-4, 2009 May.
Article in English | MEDLINE | ID: mdl-19469839

ABSTRACT

Recent progress in the genetics of epilepsies may potentially provide important insights into biologic processes underlying epileptogenesis. However, the genetic etiology underlying epilepsy remains largely unknown, and the impact of available genetic data on the nosology of epilepsy is still limited. Therefore, at present, classification of epileptic disorders should be mainly based on electroclinical features. In the future, it is likely that the investigation of familial traits will lead to the definition of novel syndromes and that genotype-phenotype correlations in inherited conditions will shed light on the variable expressivity of epileptic disorders. Moreover, the discovery of new epilepsy genes may allow assessment of whether different phenotypes are etiologically linked.


Subject(s)
Epilepsy/classification , Epilepsy/genetics , Genotype , Phenotype , Gene Expression , Humans , Syndrome
16.
Neurosci Lett ; 436(1): 23-6, 2008 May 02.
Article in English | MEDLINE | ID: mdl-18355961

ABSTRACT

Autosomal dominant lateral temporal epilepsy (ADTLE) is a genetically transmitted epileptic syndrome characterized by focal seizures with predominant auditory symptoms likely originating from the lateral region of the temporal lobe. Mutations in coding region or exon splice sites of the leucine-rich, glioma-inactivated 1 (LGI1) gene account for about 50% of ADLTE families. De novo LGI1 mutations of the same kind have also been found in about 2.5% of non-familial cases with idiopathic partial epilepsy with auditory features (IPEAF). In both conditions, mutations in the LGI1 promoter region have not been reported. We sequenced the minimal promoter region of LGI1 in the probands of 16 ADLTE families and in 104 sporadic IPEAF patients and no mutations clearly linked to the disease were found. However, two polymorphisms, -500G>A and -507G>A, with potential functional implications were identified and analysed in the cohort of sporadic IPEAF patients but their frequencies did not differ from those found in a control population of similar age, gender and geographic origin. We also analysed in our study population the GABA(B) receptor 1 c.1465G>A and the prodynorphin promoter 68-bp repeat polymorphisms, previously associated with temporal lobe epilepsy. None of these polymorphisms showed a significant association with IPEAF, whereas a tendency towards association with the prodynorphin low expression (L) alleles was found in the small group of ADLTE index cases, in agreement with previous studies suggesting that this polymorphism is a susceptibility factor in familial forms of temporal lobe epilepsy.


Subject(s)
Enkephalins/genetics , Epilepsy, Temporal Lobe/genetics , Genetic Predisposition to Disease , Polymorphism, Single Nucleotide , Protein Precursors/genetics , Proteins/genetics , Receptors, GABA-B/genetics , Base Sequence , Humans , Intracellular Signaling Peptides and Proteins , Mutation , Polymerase Chain Reaction , Promoter Regions, Genetic
17.
Epilepsy Res ; 80(1): 1-8, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18440780

ABSTRACT

Mutations in the LGI1 gene are linked to autosomal dominant lateral temporal epilepsy (ADTLE) in about half of the families tested, suggesting that ADLTE is genetically heterogeneous. Recently, the Lgi1 protein has been found associated with different protein complexes and two distinct molecular mechanisms possibly underlying ADLTE have been hypothesized: the one recognizes Lgi1 as a novel subunit of the presynaptic Kv1 potassium channel implicated in the regulation of channel inactivation, the other suggests that Lgi1 acts as a ligand that selectively binds to the postsynaptic receptor ADAM22, thereby regulating the glutamate-AMPA neurotransmission. Both mechanisms imply that LGI1 mutations result in alteration of synaptic currents, though of different types. Since their protein products have been found associated with Lgi1, the Kv1 channel subunit genes KCNA1, KCNA4, and KCNAB1 and ADAM22 can be considered strong candidates for ADLTE. We sequenced their coding exons and flanking splice sites in the probands of 9 carefully ascertained ADLTE families negative for LGI1 mutations. We failed to detect any mutation segregating with the disease, but identified several previously unreported polymorphisms. An association study of four non-synonymous variants (three found in ADAM22, one in KCNA4) in a population of 104 non-familial lateral temporal epilepsy cases did not show any modification of susceptibility to this disorder. Altogether, our results suggest that neither ADAM22 nor any of the three Kv1 channel genes are major causative genes for ADLTE.


Subject(s)
ADAM Proteins/genetics , Epilepsy, Temporal Lobe/genetics , Nerve Tissue Proteins/genetics , Polymorphism, Restriction Fragment Length , Shaker Superfamily of Potassium Channels/genetics , DNA Mutational Analysis/methods , Family Health , Female , Genetic Testing/methods , Humans , Intracellular Signaling Peptides and Proteins , Male , Middle Aged , Proteins/genetics
18.
Neurology ; 89(16): 1691-1697, 2017 Oct 17.
Article in English | MEDLINE | ID: mdl-28931642

ABSTRACT

OBJECTIVE: To explore the course of Unverricht-Lundborg disease (EPM1) and identify the risk factors for severity, we investigated the time course of symptoms and prognostic factors already detectable near to disease onset. METHODS: We retrospectively evaluated the features of 59 Italian patients carrying the CSTB expansion mutation, and coded the information every 5 years after the disease onset in order to describe the cumulative time-dependent probability of reaching disabling myoclonus, relevant cognitive impairment, and inability to work, and evaluated the influence of early factors using the log-rank test. The risk factors were included in a Cox multivariate proportional hazards regression model. RESULTS: Disabling myoclonus occurred an average of 32 years after disease onset, whereas cognitive impairment occurred a little later. An age at onset of less than 12 years, the severity of myoclonus at the time of first assessment, and seizure persistence more than 10 years after onset affected the timing of disabling myoclonus and cognitive decline. Most patients became unable to work years before the appearance of disabling myoclonus or cognitive decline. CONCLUSIONS: A younger age at onset, early severe myoclonus, and seizure persistence are predictors of a more severe outcome. All of these factors may be genetically determined, but the greater hyperexcitability underlying more severe seizures and myoclonus at onset may also play a role by increasing cell damage due to reduced cystatin B activity.


Subject(s)
Unverricht-Lundborg Syndrome/diagnosis , Unverricht-Lundborg Syndrome/physiopathology , Adolescent , Adult , Age of Onset , Analysis of Variance , Anticonvulsants/therapeutic use , Cathepsin B/genetics , Electroencephalography , Evoked Potentials, Somatosensory/drug effects , Female , Humans , Italy , Male , Middle Aged , Phenytoin/therapeutic use , Prognosis , Retrospective Studies , Unverricht-Lundborg Syndrome/drug therapy , Unverricht-Lundborg Syndrome/genetics , Valproic Acid/therapeutic use , Young Adult
20.
Neuroradiol J ; 29(5): 396-9, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27540012

ABSTRACT

Bickerstaff brainstem encephalitis (BBE) is a rare neurological disease that generally has a good prognosis. We describe an atypical case of a patient with severe BBE; the presentation was uncommon because of the lack of ophthalmoplegia and because of evidence of both peripheral neuropathy and brainstem encephalitis. The article reports clinical and biochemical evaluation and focuses on magnetic resonance imaging (MRI) findings in diagnosis and management of the patient. Notably, we found a previously unreported dramatic spinal cord involvement on MRI. We believe these findings could add to diagnostic tools, and that this case may represent a new variant of BBE with more aggressive behavior.


Subject(s)
Ataxia/etiology , Brain Stem/pathology , Encephalitis/complications , Encephalitis/pathology , Aged , Antigens, CD1/metabolism , Ataxia/diagnostic imaging , Autoantibodies/metabolism , Brain Stem/diagnostic imaging , Encephalitis/diagnostic imaging , Female , Gangliosides/immunology , Humans , Image Processing, Computer-Assisted , Magnetic Resonance Imaging
SELECTION OF CITATIONS
SEARCH DETAIL