Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Publication year range
1.
Nature ; 529(7584): 54-8, 2016 Jan 07.
Article in English | MEDLINE | ID: mdl-26738590

ABSTRACT

How black holes accrete surrounding matter is a fundamental yet unsolved question in astrophysics. It is generally believed that matter is absorbed into black holes via accretion disks, the state of which depends primarily on the mass-accretion rate. When this rate approaches the critical rate (the Eddington limit), thermal instability is supposed to occur in the inner disk, causing repetitive patterns of large-amplitude X-ray variability (oscillations) on timescales of minutes to hours. In fact, such oscillations have been observed only in sources with a high mass-accretion rate, such as GRS 1915+105 (refs 2, 3). These large-amplitude, relatively slow timescale, phenomena are thought to have physical origins distinct from those of X-ray or optical variations with small amplitudes and fast timescales (less than about 10 seconds) often observed in other black-hole binaries-for example, XTE J1118+480 (ref. 4) and GX 339-4 (ref. 5). Here we report an extensive multi-colour optical photometric data set of V404 Cygni, an X-ray transient source containing a black hole of nine solar masses (and a companion star) at a distance of 2.4 kiloparsecs (ref. 8). Our data show that optical oscillations on timescales of 100 seconds to 2.5 hours can occur at mass-accretion rates more than ten times lower than previously thought. This suggests that the accretion rate is not the critical parameter for inducing inner-disk instabilities. Instead, we propose that a long orbital period is a key condition for these large-amplitude oscillations, because the outer part of the large disk in binaries with long orbital periods will have surface densities too low to maintain sustained mass accretion to the inner part of the disk. The lack of sustained accretion--not the actual rate--would then be the critical factor causing large-amplitude oscillations in long-period systems.

2.
Nature ; 480(7377): 344-7, 2011 Dec 14.
Article in English | MEDLINE | ID: mdl-22170680

ABSTRACT

Type Ia supernovae have been used empirically as 'standard candles' to demonstrate the acceleration of the expansion of the Universe even though fundamental details, such as the nature of their progenitor systems and how the stars explode, remain a mystery. There is consensus that a white dwarf star explodes after accreting matter in a binary system, but the secondary body could be anything from a main-sequence star to a red giant, or even another white dwarf. This uncertainty stems from the fact that no recent type Ia supernova has been discovered close enough to Earth to detect the stars before explosion. Here we report early observations of supernova SN 2011fe in the galaxy M101 at a distance from Earth of 6.4 megaparsecs. We find that the exploding star was probably a carbon-oxygen white dwarf, and from the lack of an early shock we conclude that the companion was probably a main-sequence star. Early spectroscopy shows high-velocity oxygen that slows rapidly, on a timescale of hours, and extensive mixing of newly synthesized intermediate-mass elements in the outermost layers of the supernova. A companion paper uses pre-explosion images to rule out luminous red giants and most helium stars as companions to the progenitor.

3.
J Clin Transl Res ; 7(3): 377-385, 2021 Jun 26.
Article in English | MEDLINE | ID: mdl-34239994

ABSTRACT

BACKGROUND AND AIM: This study aims to determine COVID-19 patient demographics and comorbidities associated with their hospital length of stay (LOS). METHODS: Design: Single-site, retrospective study. Setting: A suburban 700-bed community hospital in Newark, Delaware, USA. Patients: Patients admitted to the hospital from March 11, 2020, to August 11, 2020, with a positive COVID-19 status. We followed a time-to-event analysis approach and used Kaplan-Meir curves and log-rank tests for bivariate analyses, and an accelerated failure time model for a multivariable model of hospital LOS. RESULTS: Six hundred and eighty-seven patients discharged alive (mean [SD] age, 60.94 [18.10] years; 339 men [49.34%]; 307 Black/African-American [44.69%]; and 267 White [38.86%]) were included in the investigation. Bivariate analysis using Kaplan-Meir curves showed that patients' age, sex, ethnicity, insurance type, comorbidity of fluid and electrolyte disorder, hypertension, renal failure, diabetes, coagulopathy, congestive heart failure, peripheral vascular disease, neurological disorder, coronary artery disease, and cardiac arrhythmias to be significantly associated with LOS (P<0.05). In the multivariable analysis, patients' age, sex, ethnicity, number of Elixhauser comorbidities, and number of weeks since onset of the pandemic was significantly associated with LOS (P<0.05). Fluid and electrolyte disorder is the only comorbidity independently associated with LOS after adjusting for patients' age, sex, race, ethnicity, number of Elixhauser comorbidities, and weeks since onset of pandemic. CONCLUSION: COVID-19 patients LOS vary based on multiple factors. Understanding these factors are crucial to improving the prediction accuracy of COVID-19 patient census in hospitals for resource planning and care delivery. RELEVANCE FOR PATIENTS: Understanding of the factors associated with LOS of the COVID-19 patients may help the care providers and the patients to better anticipate the LOS, optimize the resources and processes, and prevent protracted stays.

SELECTION OF CITATIONS
SEARCH DETAIL