Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
J Invertebr Pathol ; 202: 108039, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38097037

ABSTRACT

The microbiome influences a variety of host-environment interactions, and there is mounting evidence of its significant role in biological invasions. During invasion, shifts in microbial diversity and function can occur due to both changing characteristics of the novel environment and physiological condition of the host. The signal crayfish (Pacifastacus leniusculus) is one of the most successful crayfish invaders in Europe. During range expansion, its populations often exhibit differences in many traits along the invasion range, including sex-composition, size-structure and aggressiveness, but to date it was not studied whether crayfish traits can also drive changes in the host microbiome. Thus, we used 16S rRNA gene amplicon sequencing to examine the effects of host-related traits, namely total length (TL), body condition index (FCF), hepatosomatic index (HSI) and sex on the microbial diversity of the signal crayfish. We examined both external (exoskeletal) and internal (intestinal, hepatopancreatic, hemolymph) microbiomes of 110 signal crayfish individuals from four sites along its invasion range in the Korana River, Croatia. While sex did not exhibit a significant effect on the microbial diversity in any of the examined tissues, exoskeletal, intestinal and hemolymph microbial diversity significantly decreased with increasing crayfish size. Additionally, significant effects of signal crayfish condition (FCF, HSI) on microbial diversity were recorded in the hepatopancreas, a main energy storage organ in crayfish that supports reproduction and growth and also regulates immune response. Our findings provide a baseline for evaluating the contribution of microbiome to an invader's overall health, fitness and subsequent invasion success.


Subject(s)
Astacoidea , Humans , Animals , RNA, Ribosomal, 16S/genetics , Europe , Croatia
2.
Int J Mol Sci ; 25(1)2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38203766

ABSTRACT

Streptomyces rimosus extracellular lipase (SrL) is a multifunctional hydrolase belonging to the SGNH family. Here site-directed mutagenesis (SDM) was used for the first time to investigate the functional significance of the conserved amino acid residues Ser10, Gly54, Asn82, Asn213, and His216 in the active site of SrL. The hydrolytic activity of SrL variants was determined using para-nitrophenyl (pNP) esters with C4, C8, and C16 fatty acid chains. Mutation of Ser10, Asn82, or His216, but not Gly54, to Ala abolished lipase activity for all substrates. In contrast, the Asn213Ala variant showed increased enzymatic activity for C8 and C16 pNP esters. Molecular dynamics (MD) simulations showed that the interactions between the long alkyl chain substrate (C16) and Ser10 and Asn82 were strongest in Asn213Ala SrL. In addition to Asn82, Gly54, and Ser10, several new constituents of the substrate binding site were recognized (Lys28, Ser53, Thr89, and Glu212), as well as strong electrostatic interactions between Lys28 and Glu212. In addition to the H bonds Ser10-His216 and His216-Ser214, Tyr11 interacted strongly with Ser10 and His216 in all complexes with an active enzyme form. A previously unknown strong H bond between the catalytically important Asn82 and Gly54 was uncovered, which stabilizes the substrate in an orientation suitable for the enzyme reaction.


Subject(s)
Lipase , Nitrophenols , Streptomyces rimosus , Lipase/genetics , Hydrolysis , Esters , Mutagenesis, Site-Directed , Structure-Activity Relationship
3.
Environ Sci Pollut Res Int ; 31(14): 21752-21764, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38393570

ABSTRACT

Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) is routinely used as a rapid and cost-effective method for pathogen identification in clinical settings. In comparison, its performance in other microbiological fields, such as environmental microbiology, is still being tested, although isolates of environmental microbes are essential for in-depth in vivo studies of their biology, including biotechnological applications. We investigated the applicability of MALDI-TOF MS for the identification of bacterial isolates from a highly oligotrophic environment - Dinaric Karst caves, which likely harbor specific microorganisms. We cultured bacteria from the shell surface of the endemic mussel Congeria jalzici, one of the three known cave mussels in the world that lives in the Dinaric karst underground. The bacterial isolates were obtained by swabbing the shell surface of mussels living in microhabitats with different amounts of water: 10 air-exposed mussels, 10 submerged mussels, and 10 mussels in the hygropetric zone. A collection of 87 pure culture isolates was obtained, mostly belonging to the phylum Bacillota (72%), followed by Pseudomonadota (16%), Actinomycetota (11%), and Bacteroidota (1%). We compared the results of MALDI-TOF MS identification (Bruker databases DB-5989 and version 11, v11) with the results of 16S rDNA-based phylogenetic analysis, a standard procedure for bacterial identification. Identification to the genus level based on 16S rDNA was possible for all isolates and clearly outperformed the results from MALDI-TOF MS, although the updated MALDI-TOF MS database v11 gave better results than the DB-5989 version (85% versus 62%). However, identification to the species-level by 16S rDNA sequencing was achieved for only 17% of isolates, compared with 14% and 40% for the MALDI-TOF MS databases DB-5989 and v11 database, respectively. In conclusion, our results suggest that continued enrichment of MALDI-TOF MS libraries will result with this method soon becoming a rapid, accurate, and efficient tool for assessing the diversity of culturable bacteria from different environmental niches.


Subject(s)
Bivalvia , Caves , Animals , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Phylogeny , Bacteria/genetics , DNA, Ribosomal
SELECTION OF CITATIONS
SEARCH DETAIL