Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 166(3): 740-754, 2016 Jul 28.
Article in English | MEDLINE | ID: mdl-27397505

ABSTRACT

Systematic studies of cancer genomes have provided unprecedented insights into the molecular nature of cancer. Using this information to guide the development and application of therapies in the clinic is challenging. Here, we report how cancer-driven alterations identified in 11,289 tumors from 29 tissues (integrating somatic mutations, copy number alterations, DNA methylation, and gene expression) can be mapped onto 1,001 molecularly annotated human cancer cell lines and correlated with sensitivity to 265 drugs. We find that cell lines faithfully recapitulate oncogenic alterations identified in tumors, find that many of these associate with drug sensitivity/resistance, and highlight the importance of tissue lineage in mediating drug response. Logic-based modeling uncovers combinations of alterations that sensitize to drugs, while machine learning demonstrates the relative importance of different data types in predicting drug response. Our analysis and datasets are rich resources to link genotypes with cellular phenotypes and to identify therapeutic options for selected cancer sub-populations.


Subject(s)
Antineoplastic Agents/therapeutic use , Neoplasms/drug therapy , Analysis of Variance , Cell Line, Tumor , DNA Methylation , Drug Resistance, Neoplasm/genetics , Gene Dosage , Humans , Models, Genetic , Mutation , Neoplasms/genetics , Oncogenes , Precision Medicine
2.
Cell ; 148(4): 780-91, 2012 Feb 17.
Article in English | MEDLINE | ID: mdl-22341448

ABSTRACT

The Tasmanian devil (Sarcophilus harrisii), the largest marsupial carnivore, is endangered due to a transmissible facial cancer spread by direct transfer of living cancer cells through biting. Here we describe the sequencing, assembly, and annotation of the Tasmanian devil genome and whole-genome sequences for two geographically distant subclones of the cancer. Genomic analysis suggests that the cancer first arose from a female Tasmanian devil and that the clone has subsequently genetically diverged during its spread across Tasmania. The devil cancer genome contains more than 17,000 somatic base substitution mutations and bears the imprint of a distinct mutational process. Genotyping of somatic mutations in 104 geographically and temporally distributed Tasmanian devil tumors reveals the pattern of evolution and spread of this parasitic clonal lineage, with evidence of a selective sweep in one geographical area and persistence of parallel lineages in other populations.


Subject(s)
Facial Neoplasms/veterinary , Genomic Instability , Marsupialia/genetics , Mutation , Animals , Clonal Evolution , Endangered Species , Facial Neoplasms/epidemiology , Facial Neoplasms/genetics , Facial Neoplasms/pathology , Female , Genome-Wide Association Study , Male , Molecular Sequence Data , Tasmania/epidemiology
3.
Cell ; 149(5): 994-1007, 2012 May 25.
Article in English | MEDLINE | ID: mdl-22608083

ABSTRACT

Cancer evolves dynamically as clonal expansions supersede one another driven by shifting selective pressures, mutational processes, and disrupted cancer genes. These processes mark the genome, such that a cancer's life history is encrypted in the somatic mutations present. We developed algorithms to decipher this narrative and applied them to 21 breast cancers. Mutational processes evolve across a cancer's lifespan, with many emerging late but contributing extensive genetic variation. Subclonal diversification is prominent, and most mutations are found in just a fraction of tumor cells. Every tumor has a dominant subclonal lineage, representing more than 50% of tumor cells. Minimal expansion of these subclones occurs until many hundreds to thousands of mutations have accumulated, implying the existence of long-lived, quiescent cell lineages capable of substantial proliferation upon acquisition of enabling genomic changes. Expansion of the dominant subclone to an appreciable mass may therefore represent the final rate-limiting step in a breast cancer's development, triggering diagnosis.


Subject(s)
Breast Neoplasms/genetics , Cell Transformation, Neoplastic , Clonal Evolution , Mutation , Algorithms , Chromosome Aberrations , Female , Humans , Point Mutation
4.
Cell ; 149(5): 979-93, 2012 May 25.
Article in English | MEDLINE | ID: mdl-22608084

ABSTRACT

All cancers carry somatic mutations. The patterns of mutation in cancer genomes reflect the DNA damage and repair processes to which cancer cells and their precursors have been exposed. To explore these mechanisms further, we generated catalogs of somatic mutation from 21 breast cancers and applied mathematical methods to extract mutational signatures of the underlying processes. Multiple distinct single- and double-nucleotide substitution signatures were discernible. Cancers with BRCA1 or BRCA2 mutations exhibited a characteristic combination of substitution mutation signatures and a distinctive profile of deletions. Complex relationships between somatic mutation prevalence and transcription were detected. A remarkable phenomenon of localized hypermutation, termed "kataegis," was observed. Regions of kataegis differed between cancers but usually colocalized with somatic rearrangements. Base substitutions in these regions were almost exclusively of cytosine at TpC dinucleotides. The mechanisms underlying most of these mutational signatures are unknown. However, a role for the APOBEC family of cytidine deaminases is proposed.


Subject(s)
Breast Neoplasms/genetics , DNA Mutational Analysis , Genome-Wide Association Study , Mutation , APOBEC-1 Deaminase , BRCA2 Protein/genetics , Cytidine Deaminase/metabolism , Female , Genes, BRCA1 , High-Throughput Nucleotide Sequencing , Humans
5.
Cell ; 144(1): 27-40, 2011 Jan 07.
Article in English | MEDLINE | ID: mdl-21215367

ABSTRACT

Cancer is driven by somatically acquired point mutations and chromosomal rearrangements, conventionally thought to accumulate gradually over time. Using next-generation sequencing, we characterize a phenomenon, which we term chromothripsis, whereby tens to hundreds of genomic rearrangements occur in a one-off cellular crisis. Rearrangements involving one or a few chromosomes crisscross back and forth across involved regions, generating frequent oscillations between two copy number states. These genomic hallmarks are highly improbable if rearrangements accumulate over time and instead imply that nearly all occur during a single cellular catastrophe. The stamp of chromothripsis can be seen in at least 2%-3% of all cancers, across many subtypes, and is present in ∼25% of bone cancers. We find that one, or indeed more than one, cancer-causing lesion can emerge out of the genomic crisis. This phenomenon has important implications for the origins of genomic remodeling and temporal emergence of cancer.


Subject(s)
Chromosome Aberrations , Neoplasms/genetics , Neoplasms/pathology , Bone Neoplasms/genetics , Cell Line, Tumor , Chromosome Painting , Female , Gene Rearrangement , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Middle Aged
6.
Genome Res ; 27(4): 613-625, 2017 04.
Article in English | MEDLINE | ID: mdl-28179366

ABSTRACT

Drug resistance is an almost inevitable consequence of cancer therapy and ultimately proves fatal for the majority of patients. In many cases, this is the consequence of specific gene mutations that have the potential to be targeted to resensitize the tumor. The ability to uniformly saturate the genome with point mutations without chromosome or nucleotide sequence context bias would open the door to identify all putative drug resistance mutations in cancer models. Here, we describe such a method for elucidating drug resistance mechanisms using genome-wide chemical mutagenesis allied to next-generation sequencing. We show that chemically mutagenizing the genome of cancer cells dramatically increases the number of drug-resistant clones and allows the detection of both known and novel drug resistance mutations. We used an efficient computational process that allows for the rapid identification of involved pathways and druggable targets. Such a priori knowledge would greatly empower serial monitoring strategies for drug resistance in the clinic as well as the development of trials for drug-resistant patients.


Subject(s)
Drug Resistance, Neoplasm/genetics , Genome, Human , Mutation Accumulation , Mutation Rate , Cell Line, Tumor , Humans , Models, Genetic , Point Mutation
7.
Nature ; 500(7463): 415-21, 2013 Aug 22.
Article in English | MEDLINE | ID: mdl-23945592

ABSTRACT

All cancers are caused by somatic mutations; however, understanding of the biological processes generating these mutations is limited. The catalogue of somatic mutations from a cancer genome bears the signatures of the mutational processes that have been operative. Here we analysed 4,938,362 mutations from 7,042 cancers and extracted more than 20 distinct mutational signatures. Some are present in many cancer types, notably a signature attributed to the APOBEC family of cytidine deaminases, whereas others are confined to a single cancer class. Certain signatures are associated with age of the patient at cancer diagnosis, known mutagenic exposures or defects in DNA maintenance, but many are of cryptic origin. In addition to these genome-wide mutational signatures, hypermutation localized to small genomic regions, 'kataegis', is found in many cancer types. The results reveal the diversity of mutational processes underlying the development of cancer, with potential implications for understanding of cancer aetiology, prevention and therapy.


Subject(s)
Cell Transformation, Neoplastic/genetics , Mutagenesis/genetics , Mutation/genetics , Neoplasms/genetics , Aging/genetics , Algorithms , Cell Transformation, Neoplastic/pathology , Cytidine Deaminase/genetics , DNA/genetics , DNA/metabolism , DNA Mutational Analysis , Humans , Models, Genetic , Mutagenesis, Insertional/genetics , Mutagens/pharmacology , Neoplasms/enzymology , Neoplasms/pathology , Organ Specificity , Reproducibility of Results , Sequence Deletion/genetics , Transcription, Genetic/genetics
8.
Nature ; 483(7391): 570-5, 2012 Mar 28.
Article in English | MEDLINE | ID: mdl-22460902

ABSTRACT

Clinical responses to anticancer therapies are often restricted to a subset of patients. In some cases, mutated cancer genes are potent biomarkers for responses to targeted agents. Here, to uncover new biomarkers of sensitivity and resistance to cancer therapeutics, we screened a panel of several hundred cancer cell lines--which represent much of the tissue-type and genetic diversity of human cancers--with 130 drugs under clinical and preclinical investigation. In aggregate, we found that mutated cancer genes were associated with cellular response to most currently available cancer drugs. Classic oncogene addiction paradigms were modified by additional tissue-specific or expression biomarkers, and some frequently mutated genes were associated with sensitivity to a broad range of therapeutic agents. Unexpected relationships were revealed, including the marked sensitivity of Ewing's sarcoma cells harbouring the EWS (also known as EWSR1)-FLI1 gene translocation to poly(ADP-ribose) polymerase (PARP) inhibitors. By linking drug activity to the functional complexity of cancer genomes, systematic pharmacogenomic profiling in cancer cell lines provides a powerful biomarker discovery platform to guide rational cancer therapeutic strategies.


Subject(s)
Drug Resistance, Neoplasm/genetics , Drug Screening Assays, Antitumor , Genes, Neoplasm/genetics , Genetic Markers/genetics , Genome, Human/genetics , Neoplasms/drug therapy , Neoplasms/genetics , Cell Line, Tumor , Cell Survival/drug effects , Drug Resistance, Neoplasm/drug effects , Gene Expression Regulation, Neoplastic/genetics , Genomics , Humans , Indoles/pharmacology , Neoplasms/pathology , Oncogene Proteins, Fusion/genetics , Pharmacogenetics , Phthalazines/pharmacology , Piperazines/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors , Proto-Oncogene Protein c-fli-1/genetics , RNA-Binding Protein EWS/genetics , Sarcoma, Ewing/drug therapy , Sarcoma, Ewing/genetics , Sarcoma, Ewing/pathology
9.
Nature ; 486(7403): 400-4, 2012 May 16.
Article in English | MEDLINE | ID: mdl-22722201

ABSTRACT

All cancers carry somatic mutations in their genomes. A subset, known as driver mutations, confer clonal selective advantage on cancer cells and are causally implicated in oncogenesis, and the remainder are passenger mutations. The driver mutations and mutational processes operative in breast cancer have not yet been comprehensively explored. Here we examine the genomes of 100 tumours for somatic copy number changes and mutations in the coding exons of protein-coding genes. The number of somatic mutations varied markedly between individual tumours. We found strong correlations between mutation number, age at which cancer was diagnosed and cancer histological grade, and observed multiple mutational signatures, including one present in about ten per cent of tumours characterized by numerous mutations of cytosine at TpC dinucleotides. Driver mutations were identified in several new cancer genes including AKT2, ARID1B, CASP8, CDKN1B, MAP3K1, MAP3K13, NCOR1, SMARCD1 and TBX3. Among the 100 tumours, we found driver mutations in at least 40 cancer genes and 73 different combinations of mutated cancer genes. The results highlight the substantial genetic diversity underlying this common disease.


Subject(s)
Breast Neoplasms/genetics , Cell Transformation, Neoplastic/genetics , Mutagenesis/genetics , Mutation/genetics , Oncogenes/genetics , Age Factors , Breast Neoplasms/classification , Breast Neoplasms/pathology , Cytosine/metabolism , DNA Mutational Analysis , Female , Humans , JNK Mitogen-Activated Protein Kinases/metabolism , Neoplasm Grading , Reproducibility of Results , Signal Transduction/genetics
10.
Blood ; 125(3): 499-503, 2015 Jan 15.
Article in English | MEDLINE | ID: mdl-25343957

ABSTRACT

Despite the recent identification of recurrent SETBP1 mutations in atypical chronic myeloid leukemia (aCML), a complete description of the somatic lesions responsible for the onset of this disorder is still lacking. To find additional somatic abnormalities in aCML, we performed whole-exome sequencing on 15 aCML cases. In 2 cases (13.3%), we identified somatic missense mutations in the ETNK1 gene. Targeted resequencing on 515 hematological clonal disorders revealed the presence of ETNK1 variants in 6 (8.8%) of 68 aCML and 2 (2.6%) of 77 chronic myelomonocytic leukemia samples. These mutations clustered in a small region of the kinase domain, encoding for H243Y and N244S (1/8 H243Y; 7/8 N244S). They were all heterozygous and present in the dominant clone. The intracellular phosphoethanolamine/phosphocholine ratio was, on average, 5.2-fold lower in ETNK1-mutated samples (P < .05). Similar results were obtained using myeloid TF1 cells transduced with ETNK1 wild type, ETNK1-N244S, and ETNK1-H243Y, where the intracellular phosphoethanolamine/phosphocholine ratio was significantly lower in ETNK1-N244S (0.76 ± 0.07) and ETNK1-H243Y (0.37 ± 0.02) than in ETNK1-WT (1.37 ± 0.32; P = .01 and P = .0008, respectively), suggesting that ETNK1 mutations may inhibit the catalytic activity of the enzyme. In summary, our study shows for the first time the evidence of recurrent somatic ETNK1 mutations in the context of myeloproliferative/myelodysplastic disorders.


Subject(s)
Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Leukemia, Myelomonocytic, Chronic/genetics , Mutation/genetics , Phosphotransferases (Alcohol Group Acceptor)/genetics , Amino Acid Sequence , Case-Control Studies , Follow-Up Studies , Humans , Molecular Sequence Data , Prognosis , Sequence Homology, Amino Acid
11.
Nature ; 469(7331): 539-42, 2011 Jan 27.
Article in English | MEDLINE | ID: mdl-21248752

ABSTRACT

The genetics of renal cancer is dominated by inactivation of the VHL tumour suppressor gene in clear cell carcinoma (ccRCC), the commonest histological subtype. A recent large-scale screen of ∼3,500 genes by PCR-based exon re-sequencing identified several new cancer genes in ccRCC including UTX (also known as KDM6A), JARID1C (also known as KDM5C) and SETD2 (ref. 2). These genes encode enzymes that demethylate (UTX, JARID1C) or methylate (SETD2) key lysine residues of histone H3. Modification of the methylation state of these lysine residues of histone H3 regulates chromatin structure and is implicated in transcriptional control. However, together these mutations are present in fewer than 15% of ccRCC, suggesting the existence of additional, currently unidentified cancer genes. Here, we have sequenced the protein coding exome in a series of primary ccRCC and report the identification of the SWI/SNF chromatin remodelling complex gene PBRM1 (ref. 4) as a second major ccRCC cancer gene, with truncating mutations in 41% (92/227) of cases. These data further elucidate the somatic genetic architecture of ccRCC and emphasize the marked contribution of aberrant chromatin biology.


Subject(s)
Carcinoma, Renal Cell/genetics , Kidney Neoplasms/genetics , Mutation/genetics , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Animals , Cell Line, Tumor , DNA-Binding Proteins , Disease Models, Animal , Gene Expression Regulation , Gene Knockdown Techniques , Humans , Mice , Pancreatic Neoplasms/genetics
12.
Nature ; 463(7283): 893-8, 2010 Feb 18.
Article in English | MEDLINE | ID: mdl-20164919

ABSTRACT

The cancer genome is moulded by the dual processes of somatic mutation and selection. Homozygous deletions in cancer genomes occur over recessive cancer genes, where they can confer selective growth advantage, and over fragile sites, where they are thought to reflect an increased local rate of DNA breakage. However, most homozygous deletions in cancer genomes are unexplained. Here we identified 2,428 somatic homozygous deletions in 746 cancer cell lines. These overlie 11% of protein-coding genes that, therefore, are not mandatory for survival of human cells. We derived structural signatures that distinguish between homozygous deletions over recessive cancer genes and fragile sites. Application to clusters of unexplained homozygous deletions suggests that many are in regions of inherent fragility, whereas a small subset overlies recessive cancer genes. The results illustrate how structural signatures can be used to distinguish between the influences of mutation and selection in cancer genomes. The extensive copy number, genotyping, sequence and expression data available for this large series of publicly available cancer cell lines renders them informative reagents for future studies of cancer biology and drug discovery.


Subject(s)
Chromosome Fragile Sites/genetics , Gene Deletion , Genes, Neoplasm/genetics , Genes, Recessive/genetics , Genome, Human/genetics , Homozygote , Neoplasms/genetics , Selection, Genetic/genetics , Cell Line, Tumor , Chromosomes, Human/genetics , DNA Copy Number Variations/genetics , DNA Mutational Analysis , Gene Dosage/genetics , Humans , Models, Genetic , Oligonucleotide Array Sequence Analysis , Physical Chromosome Mapping , Reproducibility of Results
13.
Nature ; 463(7279): 360-3, 2010 Jan 21.
Article in English | MEDLINE | ID: mdl-20054297

ABSTRACT

Clear cell renal cell carcinoma (ccRCC) is the most common form of adult kidney cancer, characterized by the presence of inactivating mutations in the VHL gene in most cases, and by infrequent somatic mutations in known cancer genes. To determine further the genetics of ccRCC, we have sequenced 101 cases through 3,544 protein-coding genes. Here we report the identification of inactivating mutations in two genes encoding enzymes involved in histone modification-SETD2, a histone H3 lysine 36 methyltransferase, and JARID1C (also known as KDM5C), a histone H3 lysine 4 demethylase-as well as mutations in the histone H3 lysine 27 demethylase, UTX (KMD6A), that we recently reported. The results highlight the role of mutations in components of the chromatin modification machinery in human cancer. Furthermore, NF2 mutations were found in non-VHL mutated ccRCC, and several other probable cancer genes were identified. These results indicate that substantial genetic heterogeneity exists in a cancer type dominated by mutations in a single gene, and that systematic screens will be key to fully determining the somatic genetic architecture of cancer.


Subject(s)
Carcinoma, Renal Cell/genetics , Genes, Neurofibromatosis 2 , Histone-Lysine N-Methyltransferase/genetics , Histones/metabolism , Kidney Neoplasms/genetics , Nuclear Proteins/genetics , Oxidoreductases, N-Demethylating/genetics , Carcinoma, Renal Cell/pathology , Cell Hypoxia/genetics , Chromatin/metabolism , Gene Expression Regulation, Neoplastic , Histone Demethylases , Humans , Kidney Neoplasms/pathology , Mutation/genetics , Sequence Analysis, DNA
14.
Nature ; 463(7278): 191-6, 2010 Jan 14.
Article in English | MEDLINE | ID: mdl-20016485

ABSTRACT

All cancers carry somatic mutations. A subset of these somatic alterations, termed driver mutations, confer selective growth advantage and are implicated in cancer development, whereas the remainder are passengers. Here we have sequenced the genomes of a malignant melanoma and a lymphoblastoid cell line from the same person, providing the first comprehensive catalogue of somatic mutations from an individual cancer. The catalogue provides remarkable insights into the forces that have shaped this cancer genome. The dominant mutational signature reflects DNA damage due to ultraviolet light exposure, a known risk factor for malignant melanoma, whereas the uneven distribution of mutations across the genome, with a lower prevalence in gene footprints, indicates that DNA repair has been preferentially deployed towards transcribed regions. The results illustrate the power of a cancer genome sequence to reveal traces of the DNA damage, repair, mutation and selection processes that were operative years before the cancer became symptomatic.


Subject(s)
Genes, Neoplasm/genetics , Genome, Human/genetics , Mutation/genetics , Neoplasms/genetics , Adult , Cell Line, Tumor , DNA Damage/genetics , DNA Mutational Analysis , DNA Repair/genetics , Gene Dosage/genetics , Humans , Loss of Heterozygosity/genetics , Male , Melanoma/etiology , Melanoma/genetics , MicroRNAs/genetics , Mutagenesis, Insertional/genetics , Neoplasms/etiology , Polymorphism, Single Nucleotide/genetics , Precision Medicine , Sequence Deletion/genetics , Ultraviolet Rays
15.
Nucleic Acids Res ; 41(12): 6119-38, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23630320

ABSTRACT

The nature and pace of genome mutation is largely unknown. Because standard methods sequence DNA from populations of cells, the genetic composition of individual cells is lost, de novo mutations in cells are concealed within the bulk signal and per cell cycle mutation rates and mechanisms remain elusive. Although single-cell genome analyses could resolve these problems, such analyses are error-prone because of whole-genome amplification (WGA) artefacts and are limited in the types of DNA mutation that can be discerned. We developed methods for paired-end sequence analysis of single-cell WGA products that enable (i) detecting multiple classes of DNA mutation, (ii) distinguishing DNA copy number changes from allelic WGA-amplification artefacts by the discovery of matching aberrantly mapping read pairs among the surfeit of paired-end WGA and mapping artefacts and (iii) delineating the break points and architecture of structural variants. By applying the methods, we capture DNA copy number changes acquired over one cell cycle in breast cancer cells and in blastomeres derived from a human zygote after in vitro fertilization. Furthermore, we were able to discover and fine-map a heritable inter-chromosomal rearrangement t(1;16)(p36;p12) by sequencing a single blastomere. The methods will expedite applications in basic genome research and provide a stepping stone to novel approaches for clinical genetic diagnosis.


Subject(s)
Cell Cycle/genetics , DNA Copy Number Variations , Blastomeres/chemistry , Cell Line, Tumor , Chromosome Aberrations , Genome, Human , Genomics/methods , Genotyping Techniques , Humans , Mutation , Nucleic Acid Amplification Techniques , Polymerase Chain Reaction , Polymorphism, Single Nucleotide , Sequence Analysis, DNA , Single-Cell Analysis
16.
Genome Res ; 21(4): 525-34, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21252201

ABSTRACT

Reciprocal chromosome translocations are often not exactly reciprocal. Most familiar are deletions at the breakpoints, up to megabases in extent. We describe here the opposite phenomenon-duplication of tens or hundreds of kilobases at the breakpoint junction, so that the same sequence is present on both products of a translocation. When the products of the translocation are mapped on the genome, they overlap. We report several of these "overlapping-breakpoint" duplications in breast cancer cell lines HCC1187, HCC1806, and DU4475. These lines also had deletions and essentially balanced translocations. In HCC1187 and HCC1806, we identified five cases of duplication ranging between 46 kb and 200 kb, with the partner chromosome showing deletions between 29 bp and 31 Mb. DU4475 had a duplication of at least 200 kb. Breakpoints were mapped using array painting, i.e., hybridization of chromosomes isolated by flow cytometry to custom oligonucleotide microarrays. Duplications were verified by fluorescent in situ hybridization (FISH), PCR on isolated chromosomes, and cloning of breakpoints. We propose that these duplications are the counterpart of deletions and that they are produced at a replication bubble, comprising two replication forks with the duplicated sequence in between. Both copies of the duplicated sequence would go to one daughter cell, on different products of the translocation, while the other daughter cell would show deletion. These duplications may have been overlooked because they may be missed by FISH and array-CGH and may be interpreted as insertions by paired-end sequencing. Such duplications may therefore be quite frequent.


Subject(s)
Chromosome Breakage , DNA Replication/genetics , Gene Deletion , Translocation, Genetic , Base Sequence , Cell Line, Tumor , Chromosomes, Human/genetics , Humans , Models, Genetic , Molecular Sequence Data , Sequence Alignment
18.
Nature ; 446(7132): 153-8, 2007 Mar 08.
Article in English | MEDLINE | ID: mdl-17344846

ABSTRACT

Cancers arise owing to mutations in a subset of genes that confer growth advantage. The availability of the human genome sequence led us to propose that systematic resequencing of cancer genomes for mutations would lead to the discovery of many additional cancer genes. Here we report more than 1,000 somatic mutations found in 274 megabases (Mb) of DNA corresponding to the coding exons of 518 protein kinase genes in 210 diverse human cancers. There was substantial variation in the number and pattern of mutations in individual cancers reflecting different exposures, DNA repair defects and cellular origins. Most somatic mutations are likely to be 'passengers' that do not contribute to oncogenesis. However, there was evidence for 'driver' mutations contributing to the development of the cancers studied in approximately 120 genes. Systematic sequencing of cancer genomes therefore reveals the evolutionary diversity of cancers and implicates a larger repertoire of cancer genes than previously anticipated.


Subject(s)
Genes, Neoplasm/genetics , Genome, Human/genetics , Genomics , Mutation/genetics , Neoplasms/genetics , Amino Acid Sequence , DNA Mutational Analysis , Humans , Molecular Sequence Data , Neoplasm Proteins/chemistry , Neoplasm Proteins/genetics , Protein Kinases/chemistry , Protein Kinases/genetics
19.
Biostatistics ; 11(1): 164-75, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19837654

ABSTRACT

High-throughput oligonucleotide microarrays are commonly employed to investigate genetic disease, including cancer. The algorithms employed to extract genotypes and copy number variation function optimally for diploid genomes usually associated with inherited disease. However, cancer genomes are aneuploid in nature leading to systematic errors when using these techniques. We introduce a preprocessing transformation and hidden Markov model algorithm bespoke to cancer. This produces genotype classification, specification of regions of loss of heterozygosity, and absolute allelic copy number segmentation. Accurate prediction is demonstrated with a combination of independent experimental techniques. These methods are exemplified with affymetrix genome-wide SNP6.0 data from 755 cancer cell lines, enabling inference upon a number of features of biological interest. These data and the coded algorithm are freely available for download.


Subject(s)
Algorithms , Alleles , DNA Copy Number Variations/genetics , Genetic Testing , Models, Statistical , Neoplasms/genetics , Oligonucleotide Array Sequence Analysis/methods , Aneuploidy , Bayes Theorem , Bias , Cell Line, Tumor , Genes, Tumor Suppressor , Genotype , Humans , Internet , Loss of Heterozygosity/genetics , Markov Chains , Neoplasms/diagnosis , Polymorphism, Single Nucleotide/genetics , Polyploidy , Reproducibility of Results , Sensitivity and Specificity , Software
20.
Genes Chromosomes Cancer ; 49(8): 711-25, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20544845

ABSTRACT

To identify a novel amplified cancer gene a systematic screen of 975 human cancer DNA samples, 750 cell lines and 225 primary tumors, using the Affymetrix 10K SNP microarray was undertaken. The screen identified 193 amplicons. A previously uncharacterized amplicon located on 6p21.2 whose 1 Mb minimal common amplified region contained eight genes (GLO1, DNAH8, GLP1R, C6orf64, KCNK5, KCNK17, KCNK16, and C6orf102) was further investigated to determine which gene(s) are the biological targets of this amplicon. Real time quantitative PCR (qPCR) analysis of all amplicon 6p21.2 genes in 618 human cancer cell lines identified GLO1, encoding glyoxalase 1, to be the most frequently amplified gene [twofold or greater amplification in 8.4% (49/536) of cancers]. Also the association between amplification and overexpression was greatest for GLO1. RNAi knockdown of GLO1 had the greatest and most consistent impact on cell accumulation and apoptosis. Cell lines with GLO1 amplification were more sensitive to inhibition of GLO1 by bromobenzylglutathione cyclopentyl diester (BBGC). Subsequent qPCR of 520 primary tumor samples identified twofold and greater amplification of GLO1 in 8/37 (22%) of breast, 12/71 (17%) of sarcomas, 6/53 (11.3%) of nonsmall cell lung, 2/23 (8.7%) of bladder, 6/93 (6.5%) of renal and 5/83 (6%) of gastric cancers. Amplification of GLO1 was rare in colon cancer (1/35) and glioma (1/94). Collectively the results indicate that GLO1 is at least one of the targets of gene amplification on 6p21.2 and may represent a useful target for therapy in cancers with GLO1 amplification.


Subject(s)
Biomarkers, Tumor/genetics , Gene Amplification , Lactoylglutathione Lyase/genetics , Neoplasms/genetics , Polymorphism, Single Nucleotide/genetics , Apoptosis , Biomarkers, Tumor/metabolism , Cell Proliferation , Chromosomes, Human, Pair 6/genetics , Gene Expression Profiling , Humans , Neoplasms/enzymology , Neoplasms/pathology , Oligonucleotide Array Sequence Analysis , RNA, Messenger/genetics , Reverse Transcriptase Polymerase Chain Reaction , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL