Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Clin Exp Immunol ; 217(3): 263-278, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-38695079

ABSTRACT

Neonate responses to pathogen-associated molecular patterns (PAMPS) differ from adults; such understanding is poor in Indian neonates, despite recognized significant infectious risk. Immune profiling analysis was undertaken of 10 secreted mediators contextualized with cellular source induced by six PAMPs in umbilical cord (CB; n = 21) and adult-blood (PBMC; n = 14) from a tertiary care hospital in South India. Differential cytokine expression analysis (minimum log2-fold difference; adj P-value < 0.05) identified bacterial PAMPs induced higher concentrations of IL-1ß, IL-10, TNF-α in adults versus IL-8, GM-CSF, IFN-γ, and IL-2 in CB. CB responded to poly I:C and SARS-CoV-2 lysate with a dominant IL-8 response, whereas in PBMC, CXCL-10 dominated poly I:C, but not SARS-CoV-2, responses, highlighting potential IL-8 importance, in the absence of Type I Interferons, in antiviral CB immunity. Candida albicans was the only PAMP to uniformly induce higher secretion of effectors in CB. The predominant source of IL-8/IL-6/TNF-α/IL-1ß in both CB and PBMC was polyfunctional monocytes and IFN-γ/IL-2/IL-17 from innate lymphocytes. Correlation matrix analyses revealed IL-8 to be the most differentially regulated, correlating positively in CB versus negatively in PBMC with IL-6, GM-CSF, IFN-γ, IL-2, consistent with more negatively regulated cytokine modules in adults, potentially linked to higher anti-inflammatory IL-10. Cord and adult blood from India respond robustly to PAMPs with unique effector combinations. These data provide a strong foundation to monitor, explore, mechanisms that regulate such immunity during the life course, an area of significant global health importance given infection-related infant mortality incidence.


Subject(s)
COVID-19 , Chemokine CXCL10 , Fetal Blood , Interleukin-8 , Leukocytes, Mononuclear , Monocytes , SARS-CoV-2 , Humans , India , Adult , Fetal Blood/immunology , Leukocytes, Mononuclear/immunology , SARS-CoV-2/immunology , COVID-19/immunology , Monocytes/immunology , Interleukin-8/immunology , Chemokine CXCL10/immunology , Female , Male , Infant, Newborn , Poly I-C/immunology , Interleukin-10 , Candida albicans/immunology , Cytokines/metabolism
2.
EBioMedicine ; 70: 103525, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34392148

ABSTRACT

BACKGROUND: While our battle with the COVID-19 pandemic continues, a multitude of Omics data have been generated from patient samples in various studies. Translation of these data into clinical interventions against COVID-19 remains to be accomplished. Exploring host response to COVID-19 in the upper respiratory tract can unveil prognostic markers and therapeutic targets. METHODS: We conducted a meta-analysis of published transcriptome and proteome profiles of respiratory samples of COVID-19 patients to shortlist high confidence upregulated host factors. Subsequently, mRNA overexpression of selected genes was validated in nasal swabs from a cohort of COVID-19 positive/negative, symptomatic/asymptomatic individuals. Guided by this analysis, we sought to check for potential drug targets. An FDA-approved drug, Auranofin, was tested against SARS-CoV-2 replication in cell culture and Syrian hamster challenge model. FINDINGS: The meta-analysis and validation in the COVID-19 cohort revealed S100 family genes (S100A6, S100A8, S100A9, and S100P) as prognostic markers of severe COVID-19. Furthermore, Thioredoxin (TXN) was found to be consistently upregulated. Auranofin, which targets Thioredoxin reductase, was found to mitigate SARS-CoV-2 replication in vitro. Furthermore, oral administration of Auranofin in Syrian hamsters in therapeutic as well as prophylactic regimen reduced viral replication, IL-6 production, and inflammation in the lungs. INTERPRETATION: Elevated mRNA level of S100s in the nasal swabs indicate severe COVID-19 disease, and FDA-approved drug Auranofin mitigated SARS-CoV-2 replication in preclinical hamster model. FUNDING: This study was supported by the DBT-IISc partnership program (DBT (IED/4/2020-MED/DBT)), the Infosys Young Investigator award (YI/2019/1106), DBT-BIRAC grant (BT/CS0007/CS/02/20) and the DBT-Wellcome Trust India Alliance Intermediate Fellowship (IA/I/18/1/503613) to ST lab.


Subject(s)
COVID-19/genetics , Nasopharynx/virology , Proteome/genetics , Transcriptome/genetics , Adult , Animals , Biomarkers/metabolism , COVID-19/pathology , COVID-19/virology , Cell Line , Chlorocebus aethiops , Cohort Studies , Female , HEK293 Cells , Humans , Inflammation/genetics , Inflammation/virology , Interleukin-6/genetics , Male , Mesocricetus , Middle Aged , Nasopharynx/pathology , Pandemics , Prognosis , RNA, Messenger/genetics , SARS-CoV-2/pathogenicity , Up-Regulation/genetics , Vero Cells , Virus Replication/genetics
SELECTION OF CITATIONS
SEARCH DETAIL