Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Mol Cancer ; 22(1): 161, 2023 10 03.
Article in English | MEDLINE | ID: mdl-37789383

ABSTRACT

Fecal microRNAs represent promising molecules with potential clinical interest as non-invasive diagnostic and prognostic biomarkers. Colorectal cancer (CRC) screening based on the fecal immunochemical test (FIT) is an effective tool for prevention of cancer development. However, due to the poor sensitivity of FIT especially for premalignant lesions, there is a need for implementation of complementary tests. Improving the identification of individuals who would benefit from further investigation with colonoscopy using molecular analysis, such as miRNA profiling of FIT samples, would be ideal due to their widespread use. In the present study, we assessed the feasibility of applying small RNA sequencing to measure human miRNAs in FIT leftover buffer in samples from two European screening populations. We showed robust detection of miRNAs with profiles similar to those obtained from specimens sampled using the established protocol of RNA stabilizing buffers, or in long-term archived samples. Detected miRNAs exhibited differential abundances for CRC, advanced adenoma, and control samples that were consistent for FIT and RNA-stabilizing buffers. Interestingly, the sequencing data also allowed for concomitant evaluation of small RNA-based microbial profiles. We demonstrated that it is possible to explore the human miRNome in FIT leftover samples across populations and envision that the analysis of small RNA biomarkers can complement the FIT in large scale screening settings.


Subject(s)
Colorectal Neoplasms , MicroRNAs , Humans , MicroRNAs/genetics , Colorectal Neoplasms/diagnosis , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Feces/chemistry , Early Detection of Cancer/methods , Biomarkers
2.
Br J Nutr ; : 1-11, 2022 Sep 07.
Article in English | MEDLINE | ID: mdl-36069337

ABSTRACT

Limited data exist regarding the role of meat consumption in early-stage colorectal carcinogenesis. We examined associations of red and processed meat intake with screen-detected colorectal lesions in immunochemical fecal occult blood test (FIT)-positive participants, enrolled in the Norwegian CRCbiome study during 2017-2021, aged 55-77 years. Absolute and energy-adjusted intakes of red and processed meat (combined and individually) were assessed using a validated, semi-quantitative FFQ. Associations between meat intake and screen-detected colorectal lesions were examined using multinomial logistic regression analyses with adjustment for key covariates. Of 1162 participants, 319 presented with advanced colorectal lesions at colonoscopy. High v. low energy-adjusted intakes of red and processed meat combined, as well as red meat alone, were borderline to significantly positively associated with advanced colorectal lesions (OR of 1·24 (95 % CI 0·98, 1·57) and 1·34 (95 % CI 1·07, 1·69), respectively). A significant dose-response relationship was also observed for absolute intake levels (OR of 1·32 (95 % CI 1·09, 1·60) per 100 g/d increase in red and processed meat). For processed meat, no association was observed between energy-adjusted intakes and advanced colorectal lesions. A significant positive association was, however, observed for participants with absolute intake levels ≥ 100 v. < 50 g/d (OR of 1·19 (95 % CI 1·09, 1·31)). In summary, high intakes of red and processed meat were associated with presence of advanced colorectal lesions at colonoscopy in FIT-positive participants. The study demonstrates a potential role of dietary data to improve the performance of FIT-based screening.

3.
BMC Cancer ; 21(1): 930, 2021 Aug 18.
Article in English | MEDLINE | ID: mdl-34407780

ABSTRACT

BACKGROUND: Colorectal cancer (CRC) screening reduces CRC incidence and mortality. However, current screening methods are either hampered by invasiveness or suboptimal performance, limiting their effectiveness as primary screening methods. To aid in the development of a non-invasive screening test with improved sensitivity and specificity, we have initiated a prospective biomarker study (CRCbiome), nested within a large randomized CRC screening trial in Norway. We aim to develop a microbiome-based classification algorithm to identify advanced colorectal lesions in screening participants testing positive for an immunochemical fecal occult blood test (FIT). We will also examine interactions with host factors, diet, lifestyle and prescription drugs. The prospective nature of the study also enables the analysis of changes in the gut microbiome following the removal of precancerous lesions. METHODS: The CRCbiome study recruits participants enrolled in the Bowel Cancer Screening in Norway (BCSN) study, a randomized trial initiated in 2012 comparing once-only sigmoidoscopy to repeated biennial FIT, where women and men aged 50-74 years at study entry are invited to participate. Since 2017, participants randomized to FIT screening with a positive test result have been invited to join the CRCbiome study. Self-reported diet, lifestyle and demographic data are collected prior to colonoscopy after the positive FIT-test (baseline). Screening data, including colonoscopy findings are obtained from the BCSN database. Fecal samples for gut microbiome analyses are collected both before and 2 and 12 months after colonoscopy. Samples are analyzed using metagenome sequencing, with taxonomy profiles, and gene and pathway content as primary measures. CRCbiome data will also be linked to national registries to obtain information on prescription histories and cancer relevant outcomes occurring during the 10 year follow-up period. DISCUSSION: The CRCbiome study will increase our understanding of how the gut microbiome, in combination with lifestyle and environmental factors, influences the early stages of colorectal carcinogenesis. This knowledge will be crucial to develop microbiome-based screening tools for CRC. By evaluating biomarker performance in a screening setting, using samples from the target population, the generalizability of the findings to future screening cohorts is likely to be high. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT01538550 .


Subject(s)
Colorectal Neoplasms/diagnosis , Early Detection of Cancer/methods , Gastrointestinal Microbiome , Life Style , Aged , Case-Control Studies , Colonoscopy , Colorectal Neoplasms/epidemiology , Colorectal Neoplasms/microbiology , Female , Follow-Up Studies , Humans , Incidence , Male , Middle Aged , Norway/epidemiology , Occult Blood , Prognosis , Prospective Studies , ROC Curve
4.
Tumour Biol ; 37(8): 10697-702, 2016 Aug.
Article in English | MEDLINE | ID: mdl-26867771

ABSTRACT

The MDM4 protein (also known as MDMX or HDMX) is a negative regulator of p53, not only by direct interaction but also through its interaction with MDM2. Further, MDM4 overexpression and amplification have been observed in several cancer forms. Recently, a single nucleotide polymorphism (SNP) in the 3' untranslated region of the MDM4 gene, SNP34091A > C (rs4245739) was reported to alter MDM4 messenger RNA (mRNA) stability by modulating a microRNA binding site, thereby leading to decreased MDM4 levels. In this case-control study, we aimed to evaluate the possible association between MDM4 SNP34091 status and cancer risk by comparing the genotype frequencies in large hospital-based cohorts of endometrial- (n = 1404) and ovarian (n = 1385) cancer patients with healthy female controls (n = 1870). Genotype frequencies were compared by odds ratio (OR) estimates and Fisher exact tests. We found that individuals harboring the MDM4 SNP34091AC/CC genotypes had a significantly elevated risk for serous ovarian cancer (SOC) in general and high-grade serous ovarian cancer (HGSOC) in particular (SOC: OR = 1.18., 95 % CI = 1.01-1.39; HGSOC: OR = 1.25, CI = 1.02-1.53). No association between SNP34091 genotypes and endometrial cancer risk was observed. Our data indicate the MDM4 SNP34091AC/CC genotypes to be associated with an elevated risk for SOC and in particular the HGSOC type.


Subject(s)
Cystadenocarcinoma, Serous/genetics , Endometrial Neoplasms/genetics , Genes, Neoplasm , Neoplasm Proteins/genetics , Nuclear Proteins/genetics , Ovarian Neoplasms/genetics , Polymorphism, Single Nucleotide , Proto-Oncogene Proteins/genetics , 3' Untranslated Regions/genetics , Adenocarcinoma, Clear Cell/epidemiology , Adenocarcinoma, Clear Cell/genetics , Adenocarcinoma, Mucinous/epidemiology , Adenocarcinoma, Mucinous/genetics , Alleles , Carcinoma, Endometrioid/epidemiology , Carcinoma, Endometrioid/genetics , Case-Control Studies , Cell Cycle Proteins , Cystadenocarcinoma, Serous/epidemiology , Endometrial Neoplasms/epidemiology , Female , Gene Frequency , Genetic Predisposition to Disease , Genotype , Humans , Norway/epidemiology , Odds Ratio , Ovarian Neoplasms/epidemiology
5.
Nat Commun ; 15(1): 1791, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38424056

ABSTRACT

Stool samples for fecal immunochemical tests (FIT) are collected in large numbers worldwide as part of colorectal cancer screening programs. Employing FIT samples from 1034 CRCbiome participants, recruited from a Norwegian colorectal cancer screening study, we identify, annotate and characterize more than 18000 DNA viruses, using shotgun metagenome sequencing. Only six percent of them are assigned to a known taxonomic family, with Microviridae being the most prevalent viral family. Linking individual profiles to comprehensive lifestyle and demographic data shows 17/25 of the variables to be associated with the gut virome. Physical activity, smoking, and dietary fiber consumption exhibit strong and consistent associations with both diversity and relative abundance of individual viruses, as well as with enrichment for auxiliary metabolic genes. We demonstrate the suitability of FIT samples for virome analysis, opening an opportunity for large-scale studies of this enigmatic part of the gut microbiome. The diverse viral populations and their connections to the individual lifestyle uncovered herein paves the way for further exploration of the role of the gut virome in health and disease.


Subject(s)
Colorectal Neoplasms , Viruses , Humans , Virome , DNA Viruses/genetics , Viruses/genetics , DNA , Colorectal Neoplasms/diagnosis , Colorectal Neoplasms/genetics
6.
Front Oncol ; 13: 1183039, 2023.
Article in English | MEDLINE | ID: mdl-37182146

ABSTRACT

Background: The microbiome has been implicated in the initiation and progression of colorectal cancer (CRC) in cross-sectional studies. However, there is a lack of studies using prospectively collected samples. Methods: From the Norwegian Colorectal Cancer Prevention (NORCCAP) trial, we analyzed 144 archived fecal samples from participants who were diagnosed with CRC or high-risk adenoma (HRA) at screening and from participants who remained cancer-free during 17 years of follow-up. We performed 16S rRNA sequencing of all the samples and metagenome sequencing on a subset of 47 samples. Differences in taxonomy and gene content between outcome groups were assessed for alpha and beta diversity and differential abundance. Results: Diversity and composition analyses showed no significant differences between CRC, HRA, and healthy controls. Phascolarctobacterium succinatutens was more abundant in CRC compared with healthy controls in both the 16S and metagenome data. The abundance of Bifidobacterium and Lachnospiraceae spp. was associated with time to CRC diagnosis. Conclusion: Using a longitudinal study design, we identified three taxa as being potentially associated with CRC. These should be the focus of further studies of microbial changes occurring prior to CRC diagnosis.

7.
Transl Oncol ; 12(1): 170-179, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30359947

ABSTRACT

Taxanes are chemotherapeutic agents used in the treatment of solid tumors, particularly of breast, ovarian, and lung origin. However, patients show divergent therapy responses, and the molecular determinants of taxane sensitivity have remained elusive. Especially the signaling pathways that promote death of the taxane-treated cells are poorly characterized. Here we describe a novel part of a signaling route in which c-Myc enhances paclitaxel sensitivity through upregulation of miR-203b-3p and miR-203a-3p; two clustered antiapoptosis protein Bcl-xL controlling microRNAs. In vitro, the miR-203b-3p decreases the expression of Bcl-xL by direct targeting of the gene's mRNA 3'UTR. Notably, overexpression of the miR-203b-3p changed the fate of paclitaxel-treated breast and ovarian cancer cells from mitotic slippage to cell death. In breast tumors, high expression of the miR-203b-3p and MYC was associated with better therapy response and patient survival. Interestingly, in the breast tumors, MYC expression correlated negatively with BCL2L1 expression but positively with miR-203b-3p and miR-203a-3p. Finally, silencing of MYC suppressed the transcription of both miRNAs in breast tumor cells. Pending further validation, these results may assist in patient stratification for taxane therapy.

8.
Cancer Med ; 4(12): 1901-7, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26471763

ABSTRACT

The MDM4 protein plays an important part in the negative regulation of the tumor suppressor p53 through its interaction with MDM2. In line with this, MDM4 amplification has been observed in several tumor forms. A polymorphism (rs4245739 A>C; SNP34091) in the MDM4 3' untranslated region has been reported to create a target site for hsa-miR-191, resulting in decreased MDM4 mRNA levels. In this population-based case-control study, we examined the potential association between MDM4 SNP34091, alone and in combination with the MDM2 SNP309T>G (rs2279744), and the risk of breast-, colon-, lung-, and prostate cancer in Norway. SNP34091 was genotyped in 7,079 cancer patients as well as in 3,747 gender- and age-matched healthy controls. MDM4 SNP34091C was not associated with risk for any of the tumor forms examined, except for a marginally significant association with reduced risk for breast cancer in a recessive model (OR = 0.77: 95% CI = 0.59-0.99). Stratifying according to MDM2 SNP309 status, we observed a reduced risk for breast cancer related to MDM4 SNP34091CC among individuals harboring the MDM2 SNP309GG genotype (OR = 0.41; 95% CI = 0.21-0.82). We conclude, MDM4 SNP34091 status to be associated with reduced risk of breast cancer, in particular in individuals carrying the MDM2 SNP309GG genotype, but not to be associated with either lung-, colon- or prostate cancer.


Subject(s)
Breast Neoplasms/genetics , Colonic Neoplasms/genetics , Genetic Predisposition to Disease , Lung Neoplasms/genetics , Nuclear Proteins/genetics , Polymorphism, Single Nucleotide , Prostatic Neoplasms/genetics , Proto-Oncogene Proteins/genetics , Alleles , Breast Neoplasms/epidemiology , Case-Control Studies , Cell Cycle Proteins , Colonic Neoplasms/epidemiology , Epistasis, Genetic , Female , Genotype , Humans , Lung Neoplasms/epidemiology , Male , Nuclear Proteins/chemistry , Nuclear Proteins/metabolism , Odds Ratio , Promoter Regions, Genetic , Prostatic Neoplasms/epidemiology , Protein Binding , Protein Multimerization , Proto-Oncogene Proteins/chemistry , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins c-mdm2/chemistry , Proto-Oncogene Proteins c-mdm2/genetics , Proto-Oncogene Proteins c-mdm2/metabolism
9.
Clin Exp Metastasis ; 30(7): 867-76, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23673558

ABSTRACT

Metastatic melanoma is characterized by a poor response to chemotherapy. Furthermore, there is a lack of established predictive and prognostic markers. In this single institution study, we correlated mutation status and expression levels of BRAF and NRAS to dacarbazine (DTIC) treatment response as well as progression-free and overall survival in a cohort of 85 patients diagnosed with advanced melanoma. Neither BRAF nor NRAS mutation status correlated to treatment response. However, patients with tumors harboring NRAS mutations had a shorter overall survival (p < 0.001) compared to patients with tumors wild-type for NRAS. Patients having a clinical benefit (objective response or stable disease at 3 months) on DTIC therapy had lower BRAF and NRAS expression levels compared to patients progressing on therapy (p = 0.037 and 0.003, respectively). For BRAF expression, this association was stronger among patients with tumors wild-type for BRAF (p = 0.005). Further, low BRAF as well as NRAS expression levels were associated with a longer progression-free survival in the total population (p = 0.004 and <0.001, respectively). Contrasting low NRAS expression levels, which were associated with improved overall survival in the total population (p = 0.01), low BRAF levels were associated with improved overall survival only among patients with tumors wild-type for BRAF (p = 0.013). These findings indicate that BRAF and NRAS expression levels may influence responses to DTIC as well as prognosis in patients with advanced melanoma.


Subject(s)
Antineoplastic Agents, Alkylating/therapeutic use , Dacarbazine/therapeutic use , GTP Phosphohydrolases/genetics , Melanoma/drug therapy , Membrane Proteins/genetics , Neoplasm Metastasis , Proto-Oncogene Proteins B-raf/genetics , Adult , Aged , Aged, 80 and over , Disease-Free Survival , Female , Humans , Male , Melanoma/genetics , Melanoma/pathology , Middle Aged , Prognosis , RNA, Messenger/genetics
SELECTION OF CITATIONS
SEARCH DETAIL