Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Nano Lett ; 23(22): 10342-10349, 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37922394

ABSTRACT

Exfoliated magnetic 2D materials enable versatile tuning of magnetization, e.g., by gating or providing proximity-induced exchange interaction. However, their electronic band structure after exfoliation has not been probed, presumably due to their photochemical sensitivity. Here, we provide micrometer-scale angle-resolved photoelectron spectroscopy of the exfoliated intralayer antiferromagnet MnPS3 above and below the Néel temperature down to one monolayer. Favorable comparison with density functional theory calculations enables identifying the orbital character of the observed bands. Consistently, we find pronounced changes across the Néel temperature for bands consisting of Mn 3d and 3p levels of adjacent S atoms. The deduced orbital mixture indicates that the superexchange is relevant for the magnetic interaction. There are only minor changes between monolayer and thicker films, demonstrating the predominant 2D character of MnPS3. The novel access is transferable to other MPX3 materials (M: transition metal, P: phosphorus, X: chalcogenide), providing several antiferromagnetic arrangements.

2.
Nanotechnology ; 30(19): 195201, 2019 May 10.
Article in English | MEDLINE | ID: mdl-30699401

ABSTRACT

The encapsulation of two-dimensional layered materials such as black phosphorus is of paramount importance for their stability in air. However, the encapsulation poses several questions, namely, how it affects, via the weak van der Waals forces, the properties of the black phosphorus and whether these properties can be tuned on demand. Prompted by these questions, we have investigated the impact of hexagonal boron nitride encapsulation on the structural and vibrational properties of few layer black phosphorus, using a first-principles method in the framework of density functional theory. We demonstrate that the encapsulation with hexagonal boron nitride imposes biaxial strain on the black phosphorus material, flattening its puckered structure, by decreasing the thickness of the layers via the increase of the puckered angle and the intra-layer P-P bonds. This work exemplifies the evolution of structural parameters in layered materials after the encapsulation process. We find that after encapsulation, phosphorene (single layer black phosphorous) contracts by 1.1% in the armchair direction and stretches by 1.3% in the zigzag direction, whereas few layer black phosphorus mainly expands by up to 3% in the armchair direction. However, these relatively small strains induced by the hexagonal BN, lead to significant changes in the vibrational properties of black phosphorus, with the redshifts of up to 10 cm-1 of the high frequency optical mode A g 1. In general, structural changes induced by the encapsulation process open the door to substrate controlled strain engineering in two-dimensional crystals.

3.
Adv Mater ; 35(42): e2301850, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37715336

ABSTRACT

The vertical integration of distinct 2D materials in van der Waals (vdW) heterostructures provides the opportunity for interface engineering and modulation of electronic as well as optical properties. However, scarce experimental studies reveal many challenges for vdW heterostructures, hampering the fine-tuning of their electronic and optical functionalities. Optically active MXenes, the most recent member of the 2D family, with excellent hydrophilicity, rich surface chemistry, and intriguing optical properties, are a novel 2D platform for optoelectronics applications. Coupling MXenes with various 2D materials into vdW heterostructures can open new avenues for the exploration of physical phenomena of novel quantum-confined nanostructures and devices. Therefore, the fundamental basis and recent findings in vertical vdW heterostructures composed of MXenes as a primary component and other 2D materials as secondary components are examined. Their robust designs and synthesis approaches that can push the boundaries of light-harvesting, transition, and utilization are discussed, since MXenes provide a unique playground for pursuing an extraordinary optical response or unusual light conversion features/functionalities. The recent findings are finally summarized, and a perspective for the future development of next-generation vdW multifunctional materials enriched by MXenes is provided.

4.
Adv Mater ; 34(23): e2108840, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35506196

ABSTRACT

2D MBenes, early transition metal borides, are a very recent derivative of ternary or quaternary transition metal boride (MAB) phases and represent a new member in the flatland. Although holding great potential toward various applications, mainly theoretical knowledge about their potential properties is available. Theoretical calculations and preliminary experimental attempts demonstrate their rich chemistry, excellent reactivity, mechanical strength/stability, electrical conductivity, transition properties, and energy harvesting possibility. Compared to MXenes, MBenes' structure appears to be more complex due to multiple crystallographic arrangements, polymorphism, and structural transformations. This makes their synthesis and subsequent delamination into single flakes challenging. Overcoming this bottleneck will enable a rational control over MBenes' material-structure-property relationship. Innovations in MBenes' postprocessing approaches will allow for the design of new functional systems and devices with multipurpose functionalities thus opening a promising paradigm for the conscious design of high-performance 2D materials.

5.
Nanomaterials (Basel) ; 12(19)2022 Sep 30.
Article in English | MEDLINE | ID: mdl-36234562

ABSTRACT

Optical measurements under externally applied stresses allow us to study the materials' electronic structure by comparing the pressure evolution of optical peaks obtained from experiments and theoretical calculations. We examine the stress-induced changes in electronic structure for the thermodynamically stable 1T polytype of selected MX2 compounds (M=Hf, Zr, Sn; X=S, Se), using the density functional theory. We demonstrate that considered 1T-MX2 materials are semiconducting with indirect character of the band gap, irrespective to the employed pressure as predicted using modified Becke-Johnson potential. We determine energies of direct interband transitions between bands extrema and in band-nesting regions close to Fermi level. Generally, the studied transitions are optically active, exhibiting in-plane polarization of light. Finally, we quantify their energy trends under external hydrostatic, uniaxial, and biaxial stresses by determining the linear pressure coefficients. Generally, negative pressure coefficients are obtained implying the narrowing of the band gap. The semiconducting-to-metal transition are predicted under hydrostatic pressure. We discuss these trends in terms of orbital composition of involved electronic bands. In addition, we demonstrate that the measured pressure coefficients of HfS2 and HfSe2 absorption edges are in perfect agreement with our predictions. Comprehensive and easy-to-interpret tables containing the optical features are provided to form the basis for assignation of optical peaks in future measurements.

6.
J Phys Chem C Nanomater Interfaces ; 126(15): 6791-6802, 2022 Apr 21.
Article in English | MEDLINE | ID: mdl-35493696

ABSTRACT

We present a systematic study of the electronic and magnetic properties of two-dimensional ordered alloys, consisting of two representative hosts (MnPS3 and NiPS3) of transition metal phosphorus trichalcogenides doped with 3d elements. For both hosts, our DFT + U calculations are able to qualitatively reproduce the ratios and signs of all experimentally observed magnetic couplings. The relative strength of all antiferromagnetic exchange couplings, both in MnPS3 and in NiPS3, can successfully be explained using an effective direct exchange model: it reveals that the third-neighbor exchange dominates in NiPS3 due to the filling of the t2g subshell, whereas for MnPS3, the first-neighbor exchange prevails, owing to the presence of the t2g magnetism. On the other hand, the nearest neighbor ferromagnetic coupling in NiPS3 can only be explained using a more complex superexchange model and is (also) largely triggered by the absence of the t2g magnetism. For the doped systems, the DFT + U calculations revealed that magnetic impurities do not affect the magnetic ordering observed in the pure phases, and thus, in general in these systems, ferromagnetism may not be easily induced by such a kind of elemental doping. However, unlike for the hosts, the first and second (dopant-host) exchange couplings are of similar order of magnitude. This leads to frustration in the case of antiferromagnetic coupling and may be one of the reasons of the observed lower magnetic ordering temperature of the doped systems.

7.
Materials (Basel) ; 13(14)2020 Jul 10.
Article in English | MEDLINE | ID: mdl-32664304

ABSTRACT

To speed up the implementation of the two-dimensional materials in the development of potential biomedical applications, the toxicological aspects toward human health need to be addressed. Due to time-consuming and expensive analysis, only part of the continuously expanding family of 2D materials can be tested in vitro. The machine learning methods can be used-by extracting new insights from available biological data sets, and provide further guidance for experimental studies. This study identifies the most relevant highly surface-specific features that might be responsible for cytotoxic behavior of 2D materials, especially MXenes. In particular, two factors, namely, the presence of transition metal oxides and lithium atoms on the surface, are identified as cytotoxicity-generating features. The developed machine learning model succeeds in predicting toxicity for other 2D MXenes, previously not tested in vitro, and hence, is able to complement the existing knowledge coming from in vitro studies. Thus, we claim that it might be one of the solutions for reducing the number of toxicological studies needed, and allows for minimizing failures in future biological applications.

SELECTION OF CITATIONS
SEARCH DETAIL