Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 140
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Psychol Med ; : 1-9, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38505948

ABSTRACT

BACKGROUND: Epigenetic changes are plausible molecular sources of clinical heterogeneity in schizophrenia. A subgroup of schizophrenia patients with elevated inflammatory or immune-dysregulation has been reported by previous studies. However, little is known about epigenetic changes in genes related to immune activation in never-treated first-episode patients with schizophrenia (FES) and its consistency with that in treated long-term ill (LTS) patients. METHODS: In this study, epigenome-wide profiling with a DNA methylation array was applied using blood samples of both FES and LTS patients, as well as their corresponding healthy controls. Non-negative matrix factorization (NMF) and k -means clustering were performed to parse heterogeneity of schizophrenia, and the consistency of subtyping results from two cohorts. was tested. RESULTS: This study identified a subtype of patients in FES participants (47.5%) that exhibited widespread methylation level alterations of genes enriched in immune cell activity and a significantly higher proportion of neutrophils. This clustering of FES patients was validated in LTS patients, with high correspondence in epigenetic and clinical features across two cohorts. CONCLUSIONS: In summary, this study demonstrated a subtype of schizophrenia patients across both FES and LTS cohorts, defined by widespread alterations in methylation profile of genes related to immune function and distinguishing clinical features. This finding illustrates the promise of novel treatment strategies targeting immune dysregulation for a subpopulation of schizophrenia patients.

2.
Brain Behav Immun ; 115: 557-564, 2024 01.
Article in English | MEDLINE | ID: mdl-37972880

ABSTRACT

BACKGROUND: Accumulating evidence suggests that inflammatory dysregulation both in blood and the brain is implicated in the pathogenesis of schizophrenia. Alterations in peripheral cytokines are not evident in all patients and there may be discrete altered inflammatory subgroups in schizophrenia. Recent studies using a novel and in vivo free-water imaging to detect inflammatory processes, have shown increased free water in white matter in schizophrenia. However, no studies to date have investigated the free water alterations in different inflammatory subgroups in schizophrenia. METHODS: Forty-four patients with schizophrenia and 49 controls were recruited. The serum levels of interleukin-1 beta (IL-1ß), IL-6, IL-10, and IL-12p70 were measured and used for cluster analysis with K-means and hierarchical algorithms. Diffusion tensor imaging (DTI) images were collected for all participants and voxel-wise free water and fractional anisotropy of tissue (FA-t) were compared between groups with Randomise running in FSL. Partial correlation analysis was employed to explore the association of the peripheral cytokine levels with free water. RESULTS: We identified two statistically quantifiable discrete subgroups of patients based on the cluster analysis of cytokine measures. The peripheral levels of IL-1ß (P < 0.001), IL-10 (P = 0.041), and IL-12p70 (P < 0.001) showed significant differences between the two different inflammatory subgroups. In the inflammatory subgroup with a predominantly higher IL-1ß level, increased free water values in white matter were found mainly in the left posterior limb of the internal capsule, posterior corona radiata, and partly in the left sagittal stratum. These affected areas did not overlap with the regions that showed significant free water differences between patients and healthy controls. In the inflammatory subgroup with lower IL-1ß levels, peripheral IL-1ß was significantly associated with free water values in white matter while no such association was detected in the patient group. CONCLUSIONS: Localized free water differences were demonstrated between the two identified inflammatory subgroups in our data, and free water appears to be a feasible in vivo neuroimaging biomarker guiding the target of inflammatory intervention and development of new therapeutic strategies in an individualized manner in schizophrenia.


Subject(s)
Schizophrenia , White Matter , Humans , Schizophrenia/complications , Diffusion Tensor Imaging/methods , Interleukin-10 , Nerve Fibers, Myelinated , Brain/pathology , White Matter/pathology , Cytokines , Interleukin-12 , Water
3.
Cereb Cortex ; 33(10): 5957-5967, 2023 05 09.
Article in English | MEDLINE | ID: mdl-36513368

ABSTRACT

Alterations of radiomic features (RFs) in gray matter are observed in schizophrenia, of which the results may be limited by small study samples and confounding effects of drug therapies. We tested for RFs alterations of gray matter in never-treated first-episode schizophrenia (NT-FES) patients and examined their associations with known gene expression profiles. RFs were examined in the first sample with 197 NT-FES and 178 healthy controls (HCs) and validated in the second independent sample (90 NT-FES and 74 HCs). One-year follow-up data were available from 87 patients to determine whether RFs were associated with treatment outcomes. Associations between identified RFs in NT-FES and gene expression profiles were evaluated. NT-FES exhibited alterations of 30 RFs, with the greatest involvement of microstructural heterogeneity followed by measures of brain region shape. The identified RFs were mainly located in the central executive network, frontal-temporal network, and limbic system. Two baseline RFs with the involvement of microstructural heterogeneity predicted treatment response with moderate accuracy (78% for the first sample, 70% for the second sample). Exploratory analyses indicated that RF alterations were spatially related to the expression of schizophrenia risk genes. In summary, the present findings link brain abnormalities in schizophrenia with molecular features and treatment response.


Subject(s)
Schizophrenia , Humans , Schizophrenia/diagnostic imaging , Schizophrenia/drug therapy , Schizophrenia/complications , Gray Matter/diagnostic imaging , Magnetic Resonance Imaging/methods , Cerebral Cortex , Brain
4.
Annu Rev Pharmacol Toxicol ; 60: 311-331, 2020 01 06.
Article in English | MEDLINE | ID: mdl-31283429

ABSTRACT

Pharmacogenetics is a key component of precision medicine. Genetic variation in drug metabolism enzymes can lead to variable exposure to drugs and metabolites, potentially leading to inefficacy and drug toxicity. Although the evidence for pharmacogenetic associations in children is not as extensive as for adults, there are several drugs across diverse therapeutic areas with robust pediatric data indicating important, and relatively common, drug-gene interactions. Guidelines to assist gene-based dose optimization are available for codeine, thiopurine drugs, selective serotonin reuptake inhibitors, atomoxetine, tacrolimus, and voriconazole. For each of these drugs, there is an opportunity to clinically implement precision medicine approaches with children for whom genetic test results are known or are obtained at the time of prescribing. For many more drugs that are commonly used in pediatric patients, additional investigation is needed to determine the genetic factors influencing appropriate dose.


Subject(s)
Pharmaceutical Preparations/administration & dosage , Pharmacogenetics/methods , Precision Medicine/methods , Child , Dose-Response Relationship, Drug , Drug-Related Side Effects and Adverse Reactions/prevention & control , Humans , Pharmaceutical Preparations/metabolism
5.
Brain Behav Immun ; 114: 3-15, 2023 11.
Article in English | MEDLINE | ID: mdl-37506949

ABSTRACT

INTRODUCTION: High-inflammation subgroups of patients with psychosis demonstrate cognitive deficits and neuroanatomical alterations. Systemic inflammation assessed using IL-6 and C-reactive protein may alter functional connectivity within and between resting-state networks, but the cognitive and clinical implications of these alterations remain unknown. We aim to determine the relationships of elevated peripheral inflammation subgroups with resting-state functional networks and cognition in psychosis spectrum disorders. METHODS: Serum and resting-state fMRI were collected from psychosis probands (schizophrenia, schizoaffective, psychotic bipolar disorder) and healthy controls (HC) from the B-SNIP1 (Chicago site) study who were stratified into inflammatory subgroups based on factor and cluster analyses of 13 cytokines (HC Low n = 32, Proband Low n = 65, Proband High n = 29). Nine resting-state networks derived from independent component analysis were used to assess functional and multilayer connectivity. Inter-network connectivity was measured using Fisher z-transformation of correlation coefficients. Network organization was assessed by investigating networks of positive and negative connections separately, as well as investigating multilayer networks using both positive and negative connections. Cognition was assessed using the Brief Assessment of Cognition in Schizophrenia. Linear regressions, Spearman correlations, permutations tests and multiple comparison corrections were used for analyses in R. RESULTS: Anterior default mode network (DMNa) connectivity was significantly reduced in the Proband High compared to Proband Low (Cohen's d = -0.74, p = 0.002) and HC Low (d = -0.85, p = 0.0008) groups. Inter-network connectivity between the DMNa and the right-frontoparietal networks was lower in Proband High compared to Proband Low (d = -0.66, p = 0.004) group. Compared to Proband Low, the Proband High group had lower negative (d = 0.54, p = 0.021) and positive network (d = 0.49, p = 0.042) clustering coefficient, and lower multiplex network participation coefficient (d = -0.57, p = 0.014). Network findings in high inflammation subgroups correlate with worse verbal fluency, verbal memory, symbol coding, and overall cognition. CONCLUSION: These results expand on our understanding of the potential effects of peripheral inflammatory signatures and/or subgroups on network dysfunction in psychosis and how they relate to worse cognitive performance. Additionally, the novel multiplex approach taken in this study demonstrated how inflammation may disrupt the brain's ability to maintain healthy co-activation patterns between the resting-state networks while inhibiting certain connections between them.


Subject(s)
Psychotic Disorders , Schizophrenia , Humans , Default Mode Network , Psychotic Disorders/psychology , Cognition , Magnetic Resonance Imaging , Inflammation , Brain , Brain Mapping
6.
Brain Behav Immun ; 100: 297-308, 2022 02.
Article in English | MEDLINE | ID: mdl-34875344

ABSTRACT

BACKGROUND: Peripheral inflammation is implicated in schizophrenia, however, not all individuals demonstrate inflammatory alterations. Recent studies identified inflammatory subtypes in chronic psychosis with high inflammation having worse cognitive performance and displaying neuroanatomical enlargement compared to low inflammation subtypes. It is unclear if inflammatory subtypes exist earlier in the disease course, thus, we aim to identify inflammatory subtypes in antipsychotic naïve First-Episode Schizophrenia (FES). METHODS: 12 peripheral inflammatory markers, clinical, cognitive, and neuroanatomical measures were collected from a naturalistic study of antipsychotic-naïve FES patients. A combination of unsupervised principal component analysis and hierarchical clustering was used to categorize inflammatory subtypes from their cytokine data (17 FES High, 30 FES Low, and 33 healthy controls (HCs)). Linear regression analysis was used to assess subtype differences. Neuroanatomical correlations with clinical and cognitive measures were performed using partial Spearman correlations. Graph theoretical analyses were performed to assess global and local network properties across inflammatory subtypes. RESULTS: The FES High group made up 36% of the FES group and demonstrated significantly greater levels of IL1ß, IL6, IL8, and TNFα compared to FES Low, and higher levels of IL1ß and IL8 compared to HCs. FES High had greater right parahippocampal, caudal anterior cingulate, and bank superior sulcus thicknesses compared to FES Low. Compared to HCs, FES Low showed smaller bilateral amygdala volumes and widespread cortical thickness. FES High and FES Low groups demonstrated less efficient topological organization compared to HCs. Individual cytokines and/or inflammatory signatures were positively associated with cognition and symptom measures. CONCLUSIONS: Inflammatory subtypes are present in antipsychotic-naïve FES and are associated with inflammation-mediated cortical expansion. These findings support our previous findings in chronic psychosis and point towards a connection between inflammation and blood-brain barrier disruption. Thus, identifying inflammatory subtypes may provide a novel therapeutic avenue for biomarker-guided treatment involving anti-inflammatory medications.


Subject(s)
Antipsychotic Agents , Psychotic Disorders , Schizophrenia , Antipsychotic Agents/therapeutic use , Gyrus Cinguli , Humans , Magnetic Resonance Imaging , Schizophrenia/drug therapy
7.
Mol Psychiatry ; 26(11): 6926-6936, 2021 11.
Article in English | MEDLINE | ID: mdl-34588622

ABSTRACT

Epigenetic modifications are plausible molecular sources of phenotypic heterogeneity across schizophrenia patients. The current study investigated biological heterogeneity in schizophrenia using peripheral epigenetic profiles to delineate illness subtypes independent of their phenomenological manifestations. We applied epigenome-wide profiling with a DNA methylation array from blood samples of 63 schizophrenia patients and 59 healthy controls. Non-negative matrix factorization (NMF) and k-means clustering were performed to identify DNA methylation-related patient subtypes. The validity of the partition was tested by assessing the profile of the T cell receptor (TCR) repertoires. The uniqueness of the identified subtypes in relation to brain structural and clinical measures were evaluated. Two distinct patterns of DNA methylation profiles were identified in patients. One subtype (60.3% of patients) showed relatively limited changes in methylation levels and cell composition compared to controls, while a second subtype (39.7% of patients) exhibited widespread methylation level alterations among genes enriched in immune cell activity, as well as a higher proportion of neutrophils and lower proportion of lymphocytes. Differentiation of the two patient subtypes was validated by TCR repertoires, which paralleled the partition based on DNA methylation profiles. The subtype with widespread methylation modifications had higher symptom severity, performed worse on cognitive measures, and displayed greater reductions in fractional anisotropy of white matter tracts and evidence of gray matter thickening compared to the other subtype. Identification of a distinct subtype of schizophrenia with unique molecular, cerebral, and clinical features provide a novel parcellation of the schizophrenia syndrome with potential to guide development of individualized therapeutics.


Subject(s)
Schizophrenia , White Matter , DNA Methylation/genetics , Gray Matter , Humans , Immunity , Schizophrenia/genetics
8.
Mol Psychiatry ; 26(7): 3430-3443, 2021 07.
Article in English | MEDLINE | ID: mdl-33060818

ABSTRACT

Elevations in peripheral inflammatory markers have been reported in patients with psychosis. Whether this represents an inflammatory process defined by individual or subgroups of markers is unclear. Further, relationships between peripheral inflammatory marker elevations and brain structure, cognition, and clinical features of psychosis remain unclear. We hypothesized that a pattern of plasma inflammatory markers, and an inflammatory subtype established from this pattern, would be elevated across the psychosis spectrum and associated with cognition and brain structural alterations. Clinically stable psychosis probands (Schizophrenia spectrum, n = 79; Psychotic Bipolar disorder, n = 61) and matched healthy controls (HC, n = 60) were assessed for 15 peripheral inflammatory markers, cortical thickness, subcortical volume, cognition, and symptoms. A combination of unsupervised exploratory factor analysis and hierarchical clustering was used to identify inflammation subtypes. Levels of IL6, TNFα, VEGF, and CRP were significantly higher in psychosis probands compared to HCs, and there were marker-specific differences when comparing diagnostic groups. Individual and/or inflammatory marker patterns were associated with neuroimaging, cognition, and symptom measures. A higher inflammation subgroup was defined by elevations in a group of 7 markers in 36% of Probands and 20% of HCs. Probands in the elevated inflammatory marker group performed significantly worse on cognitive measures of visuo-spatial working memory and response inhibition, displayed elevated hippocampal, amygdala, putamen and thalamus volumes, and evidence of gray matter thickening compared to the proband group with low inflammatory marker levels. These findings specify the nature of peripheral inflammatory marker alterations in psychotic disorders and establish clinical, neurocognitive and neuroanatomic associations with increased inflammatory activation in psychosis. The identification of a specific subgroup of patients with inflammatory alteration provides a potential means for targeting treatment with anti-inflammatory medications.


Subject(s)
Bipolar Disorder , Psychotic Disorders , Schizophrenia , Brain/diagnostic imaging , Cognition , Humans , Magnetic Resonance Imaging
9.
J Biomed Inform ; 131: 104120, 2022 07.
Article in English | MEDLINE | ID: mdl-35709900

ABSTRACT

OBJECTIVE: Develop a novel methodology to create a comprehensive knowledge graph (SuppKG) to represent a domain with limited coverage in the Unified Medical Language System (UMLS), specifically dietary supplement (DS) information for discovering drug-supplement interactions (DSI), by leveraging biomedical natural language processing (NLP) technologies and a DS domain terminology. MATERIALS AND METHODS: We created SemRepDS (an extension of an NLP tool, SemRep), capable of extracting semantic relations from abstracts by leveraging a DS-specific terminology (iDISK) containing 28,884 DS terms not found in the UMLS. PubMed abstracts were processed using SemRepDS to generate semantic relations, which were then filtered using a PubMedBERT model to remove incorrect relations before generating SuppKG. Two discovery pathways were applied to SuppKG to identify potential DSIs, which are then compared with an existing DSI database and also evaluated by medical professionals for mechanistic plausibility. RESULTS: SemRepDS returned 158.5% more DS entities and 206.9% more DS relations than SemRep. The fine-tuned PubMedBERT model (significantly outperformed other machine learning and BERT models) obtained an F1 score of 0.8605 and removed 43.86% of semantic relations, improving the precision of the relations by 26.4% over pre-filtering. SuppKG consists of 56,635 nodes and 595,222 directed edges with 2,928 DS-specific nodes and 164,738 edges. Manual review of findings identified 182 of 250 (72.8%) proposed DS-Gene-Drug and 77 of 100 (77%) proposed DS-Gene1-Function-Gene2-Drug pathways to be mechanistically plausible. DISCUSSION: With added DS terminology to the UMLS, SemRepDS has the capability to find more DS-specific semantic relationships from PubMed than SemRep. The utility of the resulting SuppKG was demonstrated using discovery patterns to find novel DSIs. CONCLUSION: For the domain with limited coverage in the traditional terminology (e.g., UMLS), we demonstrated an approach to leverage domain terminology and improve existing NLP tools to generate a more comprehensive knowledge graph for the downstream task. Even this study focuses on DSI, the method may be adapted to other domains.


Subject(s)
Natural Language Processing , Unified Medical Language System , Dietary Supplements , PubMed , Semantics
10.
Pharmacopsychiatry ; 54(1): 5-17, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33147643

ABSTRACT

The implementation of pharmacogenomic (PGx) testing in psychiatry remains modest, in part due to divergent perceptions of the quality and completeness of the evidence base and diverse perspectives on the clinical utility of PGx testing among psychiatrists and other healthcare providers. Recognizing the current lack of consensus within the field, the International Society of Psychiatric Genetics assembled a group of experts to conduct a narrative synthesis of the PGx literature, prescribing guidelines, and product labels related to psychotropic medications as well as the key considerations and limitations related to the use of PGx testing in psychiatry. The group concluded that to inform medication selection and dosing of several commonly-used antidepressant and antipsychotic medications, current published evidence, prescribing guidelines, and product labels support the use of PGx testing for 2 cytochrome P450 genes (CYP2D6, CYP2C19). In addition, the evidence supports testing for human leukocyte antigen genes when using the mood stabilizers carbamazepine (HLA-A and HLA-B), oxcarbazepine (HLA-B), and phenytoin (CYP2C9, HLA-B). For valproate, screening for variants in certain genes (POLG, OTC, CSP1) is recommended when a mitochondrial disorder or a urea cycle disorder is suspected. Although barriers to implementing PGx testing remain to be fully resolved, the current trajectory of discovery and innovation in the field suggests these barriers will be overcome and testing will become an important tool in psychiatry.


Subject(s)
Antidepressive Agents/therapeutic use , Antipsychotic Agents/therapeutic use , Pharmacogenomic Testing/methods , Psychiatry/methods , Anticonvulsants/therapeutic use , Cytochrome P-450 CYP2C19/genetics , Cytochrome P-450 CYP2D6/genetics , Dose-Response Relationship, Drug , HLA Antigens/genetics , Humans , Pharmacogenomic Testing/standards , Practice Guidelines as Topic , Psychiatry/standards , Urea Cycle Disorders, Inborn/drug therapy , Urea Cycle Disorders, Inborn/genetics
11.
Curr Psychiatry Rep ; 22(5): 26, 2020 05 06.
Article in English | MEDLINE | ID: mdl-32377970

ABSTRACT

PURPOSE OF REVIEW: This paper aims to acquaint child and adolescent psychiatrists with the field of pharmacogenomics (PGX) and review the most up-to-date evidence-based practices to guide the application of this field in clinical care. RECENT FINDINGS: Despite much research being done in this area, the field of PGX continues to yield controversial findings. In the adult world, studies have focused on the impact of combinatorial gene panels that guide medication selection by providing reports that estimate the impact of multiple pharmacodynamic and pharmacokinetic genes, but to date, these have not been directly examined in younger patient populations. Pharmacokinetic genes, CYP2D6 and CYP2C19, and hypersensitivity genes, HLA-A and HLA-B, have the strongest evidence base for application to pharmacotherapy in children. Although the field is evolving, and the evidence is mixed, there may be a role for PGX testing in children to help guide dosing and monitoring strategies. However, evidence-based medicine, rather than PGX testing, continues to play the lead role in guiding medication selection in pediatric psychopharmacology.


Subject(s)
Pharmacogenetics , Psychiatry , Adolescent , Adolescent Psychiatry , Adult , Child , Cytochrome P-450 CYP2D6/genetics , Evidence-Based Medicine , Humans
12.
Genet Med ; 21(10): 2255-2263, 2019 10.
Article in English | MEDLINE | ID: mdl-30894703

ABSTRACT

PURPOSE: A number of institutions have clinically implemented CYP2D6 genotyping to guide drug prescribing. We compared implementation strategies of early adopters of CYP2D6 testing, barriers faced by both early adopters and institutions in the process of implementing CYP2D6 testing, and approaches taken to overcome these barriers. METHODS: We surveyed eight early adopters of CYP2D6 genotyping and eight institutions in the process of adoption. Data were collected on testing approaches, return of results procedures, applications of genotype results, challenges faced, and lessons learned. RESULTS: Among early adopters, CYP2D6 testing was most commonly ordered to assist with opioid and antidepressant prescribing. Key differences among programs included test ordering and genotyping approaches, result reporting, and clinical decision support. However, all sites tested for copy-number variation and nine common variants, and reported results in the medical record. Most sites provided automatic consultation and had designated personnel to assist with genotype-informed therapy recommendations. Primary challenges were related to stakeholder support, CYP2D6 gene complexity, phenotype assignment, and sustainability. CONCLUSION: There are specific challenges unique to CYP2D6 testing given the complexity of the gene and its relevance to multiple medications. Consensus lessons learned may guide those interested in pursuing similar clinical pharmacogenetic programs.


Subject(s)
Cytochrome P-450 CYP2D6/genetics , Genetic Testing/methods , Pharmacogenetics/methods , Cytochrome P-450 CYP2D6/pharmacology , Decision Support Systems, Clinical , Drug Prescriptions/standards , Genotype , Humans , Pharmacogenomic Testing/methods , Pharmacogenomic Testing/trends , Phenotype
13.
J Neurosci Res ; 95(1-2): 576-586, 2017 01 02.
Article in English | MEDLINE | ID: mdl-27870395

ABSTRACT

Oxytocin (OT) and arginine vasopressin (AVP) exert robust and sexually dimorphic influences on cognition and emotion. How these hormones regulate relevant functional brain systems is not well understood. OT and AVP serum concentrations were assayed in 60 healthy individuals (36 women). Brain functional networks assessed with resting-state functional magnetic resonance imaging (rs-fMRI) were constructed with graph theory-based approaches that characterize brain networks as connected nodes. Sex differences were demonstrated in rs-fMRI. Men showed higher nodal degree (connectedness) and efficiency (information propagation capacity) in left inferior frontal gyrus (IFG) and bilateral superior temporal gyrus (STG) and higher nodal degree in left rolandic operculum. Women showed higher nodal betweenness (being part of paths between nodes) in right putamen and left inferior parietal gyrus (IPG). Higher hormone levels were associated with less intrinsic connectivity. In men, higher AVP was associated with lower nodal degree and efficiency in left IFG (pars orbitalis) and left STG and less efficiency in left IFG (pars triangularis). In women, higher AVP was associated with lower betweenness in left IPG, and higher OT was associated with lower nodal degree in left IFG (pars orbitalis). Hormones differentially correlate with brain networks that are important for emotion processing and cognition in men and women. AVP in men and OT in women may regulate orbital frontal cortex connectivity, which is important in emotion processing. Hormone associations with STG and pars triangularis in men and parietal cortex in women may account for well-established sex differences in verbal and visuospatial abilities, respectively. © 2016 Wiley Periodicals, Inc.


Subject(s)
Arginine Vasopressin/blood , Brain/metabolism , Neural Pathways/metabolism , Oxytocin/blood , Sex Characteristics , Adolescent , Adult , Brain/diagnostic imaging , Brain Mapping , Cognition/physiology , Emotions/physiology , Female , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Neural Pathways/diagnostic imaging , Rest , Young Adult
14.
BMC Psychiatry ; 17(1): 238, 2017 07 03.
Article in English | MEDLINE | ID: mdl-28673279

ABSTRACT

BACKGROUND: Given the complex nature of symptom presentation and medication regimens, psychiatric clinics may benefit from additional tools to personalize treatments. Utilizing pharmacogenetic information may be helpful in assessing unique responses to therapy. We report herein a case of wearing-off phenomena during treatment with aripiprazole long-acting injectable (LAI) and a proof of concept strategy of how pharmacogenetic information may be used to assess possible genetic factors and also hypothesize potential mechanisms for further study. CASE PRESENTATION: A 51-year-old African American male with schizoaffective disorder was referred to a psychiatric clinic for medication management. After unsuccessful trials of multiple antipsychotics, oral aripiprazole was initiated (up to 30 mg/day) and transitioned to aripiprazole LAI with symptom improvement. At a high dose of aripiprazole LAI (400 mg Q3wks), the patient experienced breakthrough symptoms approximately 3 days prior to his next injection. Various considerations were examined to explain his atypical dose requirements, including but not limited to pharmacogenetic influences. Pharmacogenetic testing ruled out genetic influences on drug metabolism but noted a -141C Del variant in the dopamine-D2 receptor (DRD2) gene associated in prior studies of poor-response to antipsychotics. At this time, a new formulation, aripiprazole lauroxil, was explored due to its availability in higher dose options. Transition to the new formulation (882 mg Q4wks) greatly improved and stabilized the patient's symptoms with no breakthrough psychosis. Comparable daily dose equivalents were achieved with two different formulations due to the Q3wks vs Q4wks dosing strategies, although the two agents have some differences in pharmacokinetic profiles. CONCLUSIONS: We report a case of a patient experiencing wearing-off symptoms with aripiprazole LAI who benefited from switching to aripiprazole lauroxil. Pharmacogenetic testing revealed normal activity for relevant metabolism pathways but a DRD2 -141C variant that may influence brain D2 expression and antipsychotic responsiveness. The clinical utility of DRD2 information and what to do with genotyping results has not been previously addressed, despite availability on clinical test panels. Our case report suggests further investigations of altered dosing strategies and receptor genotype sensitivities to pharmacokinetic factors may be helpful in understanding symptom re-emergence observed in some patients taking LAI antipsychotics.


Subject(s)
Antipsychotic Agents/administration & dosage , Aripiprazole/administration & dosage , Psychotic Disorders/drug therapy , Schizophrenia/drug therapy , Delayed-Action Preparations , Drug Administration Schedule , Humans , Injections , Male , Middle Aged , Pharmacogenetics
15.
Article in English | MEDLINE | ID: mdl-26745992

ABSTRACT

BACKGROUND: The catechol-O-methyltransferase (COMT) enzyme plays a crucial role in dopamine degradation, and the COMT Val158Met polymorphism (rs4680) is associated with significant differences in enzymatic activity and consequently dopamine concentrations in the prefrontal cortex. Multiple studies have analyzed the COMT Val158Met variant in relation to antipsychotic response. Here, we conducted a meta-analysis examining the relationship between COMT Val158Met and antipsychotic response. METHODS: Searches using PubMed, Web of Science, and PsycInfo databases (03/01/2015) yielded 23 studies investigating COMT Val158Met variation and antipsychotic response in schizophrenia and schizo-affective disorder. Responders/nonresponders were defined using each study's original criteria. If no binary response definition was used, authors were asked to define response according to at least 30% Positive and Negative Syndrome Scale score reduction (or equivalent in other scales). Analysis was conducted under a fixed-effects model. RESULTS: Ten studies met inclusion criteria for the meta-analysis. Five additional antipsychotic-treated samples were analyzed for Val158Met and response and included in the meta-analysis (ntotal=1416). Met/Met individuals were significantly more likely to respond than Val-carriers (P=.039, ORMet/Met=1.37, 95% CI: 1.02-1.85). Met/Met patients also experienced significantly greater improvement in positive symptoms relative to Val-carriers (P=.030, SMD=0.24, 95% CI: 0.024-0.46). Posthoc analyses on patients treated with atypical antipsychotics (n=1207) showed that Met/Met patients were significantly more likely to respond relative to Val-carriers (P=.0098, ORMet/Met=1.54, 95% CI: 1.11-2.14), while no difference was observed for typical-antipsychotic-treated patients (n=155) (P=.65). CONCLUSIONS: Our findings suggest that the COMT Val158Met polymorphism is associated with response to antipsychotics in schizophrenia and schizo-affective disorder patients. This effect may be more pronounced for atypical antipsychotics.


Subject(s)
Antipsychotic Agents/therapeutic use , Catechol O-Methyltransferase/genetics , Pharmacogenomic Variants , Polymorphism, Genetic , Psychotic Disorders/drug therapy , Schizophrenia/drug therapy , Antipsychotic Agents/adverse effects , Humans , Odds Ratio , Pharmacogenetics , Pharmacogenomic Testing , Psychotic Disorders/enzymology , Psychotic Disorders/genetics , Psychotic Disorders/psychology , Remission Induction , Risk Factors , Schizophrenia/enzymology , Schizophrenia/genetics , Schizophrenic Psychology , Treatment Outcome
16.
Pharmacogenet Genomics ; 25(11): 548-54, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26313485

ABSTRACT

BACKGROUND AND AIM: Selective serotonin reuptake inhibitors such as escitalopram are commonly used to treat patients with autism spectrum disorder (ASD), but there are individual differences in treatment response and tolerability. CYP2C19 encodes the primary enzyme responsible for escitalopram metabolism and we investigated whether polymorphisms in CYP2C19 were related to symptoms and dosing in a pharmacogenetic study of ASD. PARTICIPANTS AND METHODS: Participants completed the Aberrant Behavior Checklist--Community Version (ABC-CV) weekly for 6 weeks. Escitalopram was initiated at a dose of 2.5 mg per day, with weekly increases to 20 mg unless intolerable side-effects occurred. Three CYP2C19 metabolizer groups, including ultrarapid, extensive, and reduced metabolizers, were examined in relation to symptom improvement and tolerated dose. RESULTS: ABC-CV scores improved over the course of treatment (P<0.0001). No differences were identified in the rate of improvement across metabolizer groups for the ABC-CV irritability subscale, which was the primary outcome for clinical symptoms. There was a trend for a metabolizer group by time interaction with respect to dose (P=0.10). This interaction was driven by the linear rate of change from week 1 to study endpoint between the reduced metabolizers and ultrarapid metabolizer groups (P=0.05). Post-hoc analyses identified significant differences in the rate of dose escalation between ultrarapid metabolizers and extensive metabolizers and for ultrarapid metabolizers compared with reduced metabolizers (P's<0.04), whereby ultrarapid metabolizers showed a slower rate of change in dose over time. CONCLUSION: CYP2C19 ultrarapid metabolizers were associated with reduced tolerance to a fixed titration schedule of open-label escitalopram in this ASD study sample. Possible explanations may involve the altered kinetics of faster metabolizers or previously unknown activities of escitalopram metabolites.


Subject(s)
Autism Spectrum Disorder/drug therapy , Autism Spectrum Disorder/metabolism , Citalopram/administration & dosage , Citalopram/pharmacokinetics , Cytochrome P-450 CYP2C19/genetics , Cytochrome P-450 CYP2C19/metabolism , Selective Serotonin Reuptake Inhibitors/administration & dosage , Selective Serotonin Reuptake Inhibitors/pharmacokinetics , Adolescent , Adult , Autism Spectrum Disorder/genetics , Child , Child, Preschool , Dose-Response Relationship, Drug , Female , Humans , Male , Treatment Outcome
17.
J Neurovirol ; 21(1): 81-91, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25515329

ABSTRACT

The Val158Met (rs4680) single-nucleotide polymorphism (SNP) of the catechol-O-methyltransferase gene (COMT) influences executive function and prefrontal function through its effect on dopamine (DA) metabolism. Both HIV and the Val allele of the Val158Met SNP are associated with compromised executive function and inefficient prefrontal function. The present study used behavioral and neuroimaging techniques to determine independent and interactive associations between HIV serostatus and COMT genotype on working memory and prefrontal function in women. For the behavioral study, 54 HIV-infected and 33 HIV-uninfected women completed the 0-, 1-, and 2-back conditions of the verbal N-back, a working memory test. For the imaging study, 36 women (23 HIV-infected, 13 HIV-uninfected) underwent functional magnetic resonance imaging (fMRI) assessments while completing the N-back task. HIV-infected women demonstrated significantly worse N-back performance compared with HIV-uninfected women (p < 0.05). A significant serostatus by genotype interaction (p < 0.01) revealed that, among Val/Val, but not Met allele carriers, HIV-infected women performed significantly worse than HIV-uninfected controls across N-back conditions (p < 0.01). Analogous to behavioral findings, a serostatus by genotype interaction revealed that HIV-infected Val/Val carriers showed significantly greater prefrontal activation compared with HIV-uninfected Val/Val carriers (p < 0.01). Conversely, HIV-uninfected Met allele carriers demonstrated significantly greater prefrontal activation compared with HIV-infected Met allele carriers. Findings suggest that the combination of HIV infection and the Val/Val COMT genotype leads to working memory deficits and altered prefrontal function in HIV-infected individuals.


Subject(s)
Catechol O-Methyltransferase/genetics , HIV Infections/genetics , HIV Infections/psychology , Memory, Short-Term , Polymorphism, Single Nucleotide , Prefrontal Cortex/physiopathology , Adult , Alleles , Case-Control Studies , Executive Function , Female , Gene Expression , Genotype , HIV Infections/physiopathology , HIV Infections/virology , Humans , Magnetic Resonance Imaging , Middle Aged , Neuropsychological Tests , Prefrontal Cortex/virology , Serotyping
18.
Cogn Emot ; 29(5): 867-81, 2015.
Article in English | MEDLINE | ID: mdl-25195915

ABSTRACT

The Val(158)Met rs4680 polymorphism in the COMT gene regulates dopamine catabolism in the prefrontal cortex (PFC). Dopamine's involvement in reward experience suggests those with the methionine (Met) variant may exhibit trait-level sensitivity to reward due to more post-synaptic dopamine in the PFC. A physiological mediator of this association may be greater relative left asymmetry in the PFC, a putative biomarker for trait positive emotionality. Electroencephalograms of 120 participants were measured during a task that assesses two aspects of reward processing: pre-reward anticipation and post-reward consummatory affect. Participants provided genetics samples and completed the Temporal Experience of Pleasure Scale (TEPS), which assesses trait-level anticipatory and consummatory positive affect. Met carriers had higher TEPS-Consummatory scores. This effect was mediated by greater relative left activation in the post-reward phase of the task. No effects were observed for the pre-reward phase. Results suggest that frontal asymmetry is an endophenotype between COMT genotype and trait reward responsivity.


Subject(s)
Affect , Catechol O-Methyltransferase/genetics , Functional Laterality/physiology , Prefrontal Cortex/physiology , Reward , Electroencephalography , Endophenotypes , Female , Genotype , Humans , Male , Polymorphism, Single Nucleotide/genetics , Prefrontal Cortex/anatomy & histology , Young Adult
19.
Bipolar Disord ; 16(8): 790-9, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25243493

ABSTRACT

OBJECTIVES: Aberrant DNA methylation and gene expression have been reported in postmortem brain tissues of psychotic patients, but until now there has been no systematic evaluation of synergistic changes in methylation and expression on a genome-wide scale in brain tissue. METHODS: In this study, genome-wide methylation and expression analyses were performed on cerebellum samples from 39 patients with schizophrenia, 36 patients with bipolar disorder, and 43 unaffected controls, to screen for a correlation between gene expression and CpG methylation. RESULTS: Out of 71,753 CpG gene pairs (CGPs) tested across the genome, 204 were found to significantly correlate with gene expression after correction for multiple testing [p < 0.05, false discovery rate (FDR) q < 0.05]. The correlated CGPs were tested for disease-associated expression and methylation by comparing psychotic patients with bipolar disorder and schizophrenia to healthy controls. Four of the identified CGPs were found to significantly correlate with the differential expression and methylation of genes encoding phosphoinositide-3-kinase, regulatory subunit 1 (PIK3R1), butyrophilin, subfamily 3, member A3 (BTN3A3), nescient helix-loop-helix 1 (NHLH1), and solute carrier family 16, member 7 (SLC16A7) in psychotic patients (p < 0.05, FDR q < 0.2). Additional expression and methylation datasets were used to validate the relationship between DNA methylation, gene expression, and neuropsychiatric diseases. CONCLUSIONS: These results suggest that the identified differentially expressed genes with an aberrant methylation pattern may represent novel candidate factors in the etiology and pathology of neuropsychiatric disorders.


Subject(s)
Bipolar Disorder , Cerebellum/physiopathology , DNA Methylation/physiology , Gene Expression/physiology , Schizophrenia , Statistics as Topic , Antigens, CD/genetics , Basic Helix-Loop-Helix Transcription Factors/genetics , Bipolar Disorder/genetics , Bipolar Disorder/pathology , Bipolar Disorder/physiopathology , Butyrophilins , Cerebellum/metabolism , Class Ia Phosphatidylinositol 3-Kinase , CpG Islands/genetics , Female , Gene Expression Profiling , Humans , Male , Membrane Glycoproteins/genetics , Monocarboxylic Acid Transporters/genetics , Oligonucleotide Array Sequence Analysis , Phosphatidylinositol 3-Kinases/genetics , Reproducibility of Results , Schizophrenia/genetics , Schizophrenia/pathology , Schizophrenia/physiopathology
20.
Eur Arch Psychiatry Clin Neurosci ; 264(4): 345-55, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24682224

ABSTRACT

Similar smooth pursuit eye tracking dysfunctions are present across psychotic disorders. They include pursuit initiation and maintenance deficits that implicate different functional brain systems. This candidate gene study examined psychosis-related genotypes regulating dopamine and glutamate neurotransmission in relation to these pursuit deficits. One hundred and thirty-eight untreated first-episode patients with a psychotic disorder were genotyped for four markers in DRD2 and four markers in GRM3. The magnitude of eye movement abnormality in patients was defined in relation to performance of matched healthy controls (N = 130). Eighty three patients were followed after 6 weeks of antipsychotic treatment. At baseline, patients with a -141C deletion in DRD2 rs1799732 had slower initiation eye velocity and longer pursuit latency than CC insertion carriers. Further, GRM3 rs274622_CC carriers had poorer pursuit maintenance than T-carriers. Antipsychotic treatment resulted in prolonged pursuit latency in DRD2 rs1799732_CC insertion carriers and a decline in pursuit maintenance in GRM3 rs6465084_GG carriers. The present study demonstrates for the first time that neurophysiological measures of motor and neurocognitive deficits in patients with psychotic disorders have different associations with genes regulating dopamine and glutamate systems, respectively. Alterations in striatal D2 receptor activity through the -141C Ins/Del polymorphism could contribute to pursuit initiation deficits in psychotic disorders. Alterations in GRM3 coding for the mGluR3 protein may impair pursuit maintenance by compromising higher perceptual and cognitive processes that depend on optimal glutamate signaling in corticocortical circuits. DRD2 and GRM3 genotypes also selectively modulated the severity of adverse motor and neurocognitive changes resulting from antipsychotic treatment.


Subject(s)
Cognition Disorders/etiology , Genetic Variation/genetics , Ocular Motility Disorders/etiology , Psychotic Disorders/complications , Psychotic Disorders/genetics , Receptors, AMPA/genetics , Receptors, Dopamine D2/genetics , Adolescent , Adult , Antipsychotic Agents/therapeutic use , Cognition Disorders/genetics , Female , Gene Frequency , Genetic Association Studies , Genetic Predisposition to Disease , Genotype , Humans , Linkage Disequilibrium , Male , Psychotic Disorders/drug therapy , Receptors, Metabotropic Glutamate/genetics , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL