Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Nat Methods ; 21(3): 531-540, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38279009

ABSTRACT

Analysis across a growing number of single-cell perturbation datasets is hampered by poor data interoperability. To facilitate development and benchmarking of computational methods, we collect a set of 44 publicly available single-cell perturbation-response datasets with molecular readouts, including transcriptomics, proteomics and epigenomics. We apply uniform quality control pipelines and harmonize feature annotations. The resulting information resource, scPerturb, enables development and testing of computational methods, and facilitates comparison and integration across datasets. We describe energy statistics (E-statistics) for quantification of perturbation effects and significance testing, and demonstrate E-distance as a general distance measure between sets of single-cell expression profiles. We illustrate the application of E-statistics for quantifying similarity and efficacy of perturbations. The perturbation-response datasets and E-statistics computation software are publicly available at scperturb.org. This work provides an information resource for researchers working with single-cell perturbation data and recommendations for experimental design, including optimal cell counts and read depth.


Subject(s)
Proteomics , Software , Gene Expression Profiling/methods , Epigenomics , Single-Cell Analysis
2.
J Biol Chem ; 300(5): 107220, 2024 May.
Article in English | MEDLINE | ID: mdl-38522517

ABSTRACT

Circadian rhythms are generated by complex interactions among genes and proteins. Self-sustained ∼24 h oscillations require negative feedback loops and sufficiently strong nonlinearities that are the product of molecular and network switches. Here, we review common mechanisms to obtain switch-like behavior, including cooperativity, antagonistic enzymes, multisite phosphorylation, positive feedback, and sequestration. We discuss how network switches play a crucial role as essential components in cellular circadian clocks, serving as integral parts of transcription-translation feedback loops that form the basis of circadian rhythm generation. The design principles of network switches and circadian clocks are illustrated by representative mathematical models that include bistable systems and negative feedback loops combined with Hill functions. This work underscores the importance of negative feedback loops and network switches as essential design principles for biological oscillations, emphasizing how an understanding of theoretical concepts can provide insights into the mechanisms generating biological rhythms.


Subject(s)
Circadian Clocks , Feedback, Physiological , Animals , Humans , Circadian Clocks/physiology , Circadian Rhythm/physiology , Models, Biological , Phosphorylation , Protein Modification, Translational
3.
Int J Cancer ; 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39031967

ABSTRACT

Single-cell analyses can be confounded by assigning unrelated groups of cells to common developmental trajectories. For instance, cancer cells and admixed normal epithelial cells could adopt similar cell states thus complicating analyses of their developmental potential. Here, we develop and benchmark CCISM (for Cancer Cell Identification using Somatic Mutations) to exploit genomic single nucleotide variants for the disambiguation of cancer cells from genomically normal non-cancer cells in single-cell data. We find that our method and others based on gene expression or allelic imbalances identify overlapping sets of colorectal cancer versus normal colon epithelial cells, depending on molecular characteristics of individual cancers. Further, we define consensus cell identities of normal and cancer epithelial cells with higher transcriptome cluster homogeneity than those derived using existing tools. Using the consensus identities, we identify significant shifts of cell state distributions in genomically normal epithelial cells developing in the cancer microenvironment, with immature states increased at the expense of terminal differentiation throughout the colon, and a novel stem-like cell state arising in the left colon. Trajectory analyses show that the new cell state extends the pseudo-time range of normal colon stem-like cells in a cancer context. We identify cancer-associated fibroblasts as sources of WNT and BMP ligands potentially contributing to increased plasticity of stem cells in the cancer microenvironment. Our analyses advocate careful interpretation of cell heterogeneity and plasticity in the cancer context and the consideration of genomic information in addition to gene expression data when possible.

4.
J Theor Biol ; 579: 111716, 2024 02 21.
Article in English | MEDLINE | ID: mdl-38135033

ABSTRACT

Drug resistance is a major challenge for curative cancer treatment, representing the main reason of death in patients. Evolutionary biology suggests pauses between treatment rounds as a way to delay or even avoid resistance emergence. Indeed, this approach has already shown promising preclinical and early clinical results, and stimulated the development of mathematical models for finding optimal treatment protocols. Due to their complexity, however, these models do not lend themself to a rigorous mathematical analysis, hence so far clinical recommendations generally relied on numerical simulations and ad-hoc heuristics. Here, we derive two mathematical models describing tumour growth under genetic and epigenetic treatment resistance, respectively, which are simple enough for a complete analytical investigation. First, we find key differences in response to treatment protocols between the two modes of resistance. Second, we identify the optimal treatment protocol which leads to the largest possible tumour shrinkage rate. Third, we fit the "epigenetic model" to previously published xenograft experiment data, finding excellent agreement, underscoring the biological validity of our approach. Finally, we use the fitted model to calculate the optimal treatment protocol for this specific experiment, which we demonstrate to cause curative treatment, making it superior to previous approaches which generally aimed at stabilising tumour burden. Overall, our approach underscores the usefulness of simple mathematical models and their analytical examination, and we anticipate our findings to guide future preclinical and, ultimately, clinical research in optimising treatment regimes.


Subject(s)
Drug Resistance, Neoplasm , Neoplasms , Humans , Biological Evolution , Models, Theoretical , Neoplasms/drug therapy , Animals
5.
Cell Rep ; 43(6): 114328, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38861386

ABSTRACT

A key issue for research on COVID-19 pathogenesis is the lack of biopsies from patients and of samples at the onset of infection. To overcome these hurdles, hamsters were shown to be useful models for studying this disease. Here, we further leverage the model to molecularly survey the disease progression from time-resolved single-cell RNA sequencing data collected from healthy and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected Syrian and Roborovski hamster lungs. We compare our data to human COVID-19 studies, including bronchoalveolar lavage, nasal swab, and postmortem lung tissue, and identify a shared axis of inflammation dominated by macrophages, neutrophils, and endothelial cells, which we show to be transient in Syrian and terminal in Roborovski hamsters. Our data suggest that, following SARS-CoV-2 infection, commitment to a type 1- or type 3-biased immunity determines moderate versus severe COVID-19 outcomes, respectively.


Subject(s)
COVID-19 , Endothelial Cells , Lung , Neutrophils , SARS-CoV-2 , Single-Cell Analysis , COVID-19/immunology , COVID-19/virology , COVID-19/pathology , Animals , Humans , Neutrophils/immunology , SARS-CoV-2/immunology , Lung/pathology , Lung/virology , Lung/immunology , Cricetinae , Endothelial Cells/virology , Endothelial Cells/pathology , Inflammation/pathology , Mesocricetus , Disease Models, Animal , Male , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL