Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 200
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Immunity ; 54(2): 340-354.e6, 2021 02 09.
Article in English | MEDLINE | ID: mdl-33567252

ABSTRACT

Cellular and humoral immunity to SARS-CoV-2 is critical to control primary infection and correlates with severity of disease. The role of SARS-CoV-2-specific T cell immunity, its relationship to antibodies, and pre-existing immunity against endemic coronaviruses (huCoV), which has been hypothesized to be protective, were investigated in 82 healthy donors (HDs), 204 recovered (RCs), and 92 active COVID-19 patients (ACs). ACs had high amounts of anti-SARS-CoV-2 nucleocapsid and spike IgG but lymphopenia and overall reduced antiviral T cell responses due to the inflammatory milieu, expression of inhibitory molecules (PD-1, Tim-3) as well as effector caspase-3, -7, and -8 activity in T cells. SARS-CoV-2-specific T cell immunity conferred by polyfunctional, mainly interferon-γ-secreting CD4+ T cells remained stable throughout convalescence, whereas humoral responses declined. Immune responses toward huCoV in RCs with mild disease and strong cellular SARS-CoV-2 T cell reactivity imply a protective role of pre-existing immunity against huCoV.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , COVID-19/immunology , Immunity, Cellular/immunology , Adult , Aged , Aged, 80 and over , Antibodies, Viral/blood , Antibodies, Viral/immunology , Female , Humans , Immunity, Humoral/immunology , Male , Middle Aged , SARS-CoV-2/immunology , Young Adult
2.
Transpl Int ; 37: 12720, 2024.
Article in English | MEDLINE | ID: mdl-38655204

ABSTRACT

Infectious complications, including widespread human cytomegalovirus (CMV) disease, frequently occur after hematopoietic stem cell and solid organ transplantation due to immunosuppressive treatment causing impairment of T-cell immunity. Therefore, in-depth analysis of the impact of immunosuppressants on antiviral T cells is needed. We analyzed the impact of mTOR inhibitors sirolimus (SIR/S) and everolimus (EVR/E), calcineurin inhibitor tacrolimus (TAC/T), purine synthesis inhibitor mycophenolic acid (MPA/M), glucocorticoid prednisolone (PRE/P) and common double (T+S/E/M/P) and triple (T+S/E/M+P) combinations on antiviral T-cell functionality. T-cell activation and effector molecule production upon antigenic stimulation was impaired in presence of T+P and triple combinations. SIR, EVR and MPA exclusively inhibited T-cell proliferation, TAC inhibited activation and cytokine production and PRE inhibited various aspects of T-cell functionality including cytotoxicity. This was reflected in an in vitro infection model, where elimination of CMV-infected human fibroblasts by CMV-specific T cells was reduced in presence of PRE and all triple combinations. CMV-specific memory T cells were inhibited by TAC and PRE, which was also reflected with double (T+P) and triple combinations. EBV- and SARS-CoV-2-specific T cells were similarly affected. These results highlight the need to optimize immune monitoring to identify patients who may benefit from individually tailored immunosuppression.


Subject(s)
Cytomegalovirus Infections , Cytomegalovirus , Everolimus , Immunosuppressive Agents , Mycophenolic Acid , Sirolimus , T-Lymphocytes , Tacrolimus , Humans , Cytomegalovirus Infections/immunology , T-Lymphocytes/immunology , T-Lymphocytes/drug effects , Cytomegalovirus/immunology , Sirolimus/pharmacology , Sirolimus/therapeutic use , Lymphocyte Activation/drug effects , Prednisolone/therapeutic use , Organ Transplantation , Cell Proliferation/drug effects
3.
Artif Organs ; 47(7): 1151-1162, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36740583

ABSTRACT

BACKGROUND: Immune cell dysfunction is a central part of immune paralysis in sepsis. Granulocyte concentrate (GC) transfusions can induce tissue damage via local effects of neutrophils. The hypothesis of an extracorporeal plasma treatment with granulocytes is to show beneficial effects with fewer side effects. Clinical trials with standard GC have supported this approach. This ex vivo study investigated the functional properties of purified granulocyte preparations during the extracorporeal plasma treatment. METHODS: Purified GC were stored for up to 3 days and compared with standard GC in an immune cell perfusion therapy model. The therapy consists of a plasma separation device and an extracorporeal circuit. Plasma is perfused through the tubing system with donor immune cells of the GC, and only the treated plasma is filtered for re-transfusion. The donor immune cells are retained in the extracorporeal system and discarded after treatment. Efficacy of granulocytes regarding phagocytosis, oxidative burst as well as cell viability and metabolic parameters were assessed. RESULTS: In pGC, the metabolic surrogate parameters of cell functionality showed comparable courses even after a storage period of 72 h. In particular, glucose and oxygen consumption were lower after extended storage. The course of lactate dehydrogenase concentration yields no indication of cell impairment in the extracorporeal circulation. The cells were viable throughout the entire study period and exhibited preserved phagocytosis and oxidative burst functionality. CONCLUSION: The granulocytes demonstrated full functionality in the 6 h extracorporeal circuits after 3 days storage and in septic shock plasma. This is demonstrating the functionality of the system and encourages further clinical studies.


Subject(s)
Sepsis , Shock, Septic , Humans , Granulocytes/metabolism , Neutrophils , Sepsis/therapy , Blood Transfusion , Extracorporeal Circulation
4.
Int J Mol Sci ; 24(16)2023 Aug 12.
Article in English | MEDLINE | ID: mdl-37628892

ABSTRACT

Xenotransplantation reemerged as a promising alternative to conventional transplantation enlarging the available organ pool. However, success of xenotransplantation depends on the design and selection of specific genetic modifications and on the development of robust assays allowing for a precise assessment of tissue-specific immune responses. Nevertheless, cell-based assays are often compromised by low proliferative capacity of primary cells. Proximal tubular epithelial cells (PTECs) play a crucial role in kidney function. Here, we generated immortalized PTECs (imPTECs) by overexpression of simian virus 40 T large antigen. ImPTECs not only showed typical morphology and phenotype, but, in contrast to primary PTECs, they maintained steady cell cycling rates and functionality. Furthermore, swine leukocyte antigen (SLA) class I and class II transcript levels were reduced by up to 85% after transduction with lentiviral vectors encoding for short hairpin RNAs targeting ß2-microglobulin and the class II transactivator. This contributed to reducing xenogeneic T-cell cytotoxicity (p < 0.01) and decreasing secretion of pro-inflammatory cytokines such as IL-6 and IFN-γ. This study showed the feasibility of generating highly proliferative PTECs and the development of tissue-specific immunomonitoring assays. Silencing SLA expression on PTECs was demonstrated to be an effective strategy to prevent xenogeneic cellular immune responses and may strongly support graft survival after xenotransplantation.


Subject(s)
Biological Assay , Epithelial Cells , Animals , Swine , Down-Regulation , Immunity
5.
Am J Transplant ; 22(8): 2064-2076, 2022 08.
Article in English | MEDLINE | ID: mdl-35426974

ABSTRACT

Heart transplantation across preformed donor-specific HLA-antibody barriers is associated with impaired short- and long-term survival. Therefore, in recipients with preformed anti-HLA antibodies, waiting for crossmatch-negative donors is standard practice. As an alternative strategy, recipients with preformed anti-HLA donor specific antibodies have been managed at our institutions with a perioperative desensitization regimen. A retrospective analysis was performed comparing heart transplant recipients with preformed donor-specific HLA-antibodies to recipients without donor-specific antibodies. Recipients with a positive virtual crossmatch received a perioperative desensitization protocol including tocilizumab intraoperatively, plasma exchange and rituximab followed by a six-month course of IgGAM. Among the 117 heart-transplanted patients, 19 (16%) patients underwent perioperative desensitization, and the remaining 98 (84%) patients did not. Cold ischemic time, posttransplant extracorporeal life support for primary graft dysfunction, and intensive care unit stay time did not differ between groups. At 1-year follow-up, freedom from pulsed steroid therapy for presumed rejection and biopsy-confirmed acute cellular or humoral rejection did not differ between groups. One-year survival amounted to 94.7% in the treated patients and 81.4% in the control group. Therefore, heart transplantation in sensitized recipients undergoing a perioperative desensitization appears safe with comparable postoperative outcomes as patients with a negative crossmatch.


Subject(s)
Heart Transplantation , Kidney Transplantation , Antibodies , Antilymphocyte Serum , Desensitization, Immunologic/methods , Graft Rejection/etiology , Graft Rejection/prevention & control , Graft Survival , HLA Antigens , Histocompatibility Testing/methods , Humans , Kidney Transplantation/adverse effects , Retrospective Studies
6.
J Clin Immunol ; 42(3): 546-558, 2022 04.
Article in English | MEDLINE | ID: mdl-34989946

ABSTRACT

Viral infections and reactivations are major causes of morbidity and mortality after hematopoietic stem cell (HSCT) and solid organ transplantation (SOT) as well as in patients with immunodeficiencies. Latent herpesviruses (e.g., cytomegalovirus, Epstein-Barr virus, and human herpesvirus 6), lytic viruses (e.g., adenovirus), and polyomaviruses (e.g., BK virus, JC virus) can cause severe complications. Antiviral drugs form the mainstay of treatment for viral infections and reactivations after transplantation, but they have side effects and cannot achieve complete viral clearance without prior reconstitution of functional antiviral T-cell immunity. The aim of this study was to establish normal ranges for virus-specific T-cell (VST) frequencies in healthy donors. Such data are needed for better interpretation of VST frequencies observed in immunocompromised patients. Therefore, we measured the frequencies of VSTs against 23 viral protein-derived peptide pools from 11 clinically relevant human viruses in blood from healthy donors (n = 151). Specifically, we determined the VST frequencies by interferon-gamma enzyme-linked immunospot assay and classified their distribution according to age and gender to allow for a more specific evaluation and prediction of antiviral immune responses. The reference values established here provide an invaluable tool for immune response evaluation, intensity of therapeutic drugs and treatment decision-making in immunosuppressed patients. This data should make an important contribution to improving the assessment of immune responses in immunocompromised patients.


Subject(s)
Epstein-Barr Virus Infections , Hematopoietic Stem Cell Transplantation , Virus Diseases , Antiviral Agents , Herpesvirus 4, Human , Humans , Immunocompromised Host , Reference Values , T-Lymphocytes , Virus Diseases/diagnosis
7.
Biol Chem ; 403(11-12): 1091-1098, 2022 11 25.
Article in English | MEDLINE | ID: mdl-36054292

ABSTRACT

Transfusion effectiveness of red blood cells (RBCs) has been associated with duration of the storage period. Storage-dependent RBC alterations lead to hemolysis and release of toxic free heme, but the increase of free heme levels over time is largely unknown. In the current study, an apo-horseradish peroxidase (apoHRP)-based assay was applied to measure levels of free heme at regular intervals or periodically in supernatants of RBCs until a maximum storage period of 42 days. Free heme levels increased with linear time-dependent kinetics up to day 21 and accelerated disproportionally after day 28 until day 42, as determined with the apoHRP assay. Individual time courses of free heme in different RBC units exhibited high variability. Notably, levels of free hemoglobin, an established indicator of RBC damage, and those of total heme increased with continuous time-dependent linear kinetics over the entire 42 day storage period, respectively. Supernatants from RBC units with high levels of free heme led to inflammatory activation of human neutrophils. In conclusion, determining free heme in stored RBCs with the applied apoHRP assay may become feasible for testing of RBC storage quality in clinical transfusion medicine.


Subject(s)
Blood Preservation , Heme , Humans , Horseradish Peroxidase , Erythrocytes , Hemolysis
8.
Transfusion ; 62(1): 194-204, 2022 01.
Article in English | MEDLINE | ID: mdl-34783358

ABSTRACT

BACKGROUND: Use of donor granulocyte concentrate (GC) has been limited due to its short storage time of 6-24 h, which is partially due to residual red blood cells (RBCs) and platelets and the resulting lactate production leading to an acidotic milieu. To increase this storage time, we developed a closed system procedure compatible with standard blood bank technologies to remove RBC and platelets and to enrich the GC. METHODS: Standard GCs (sGCs) were sedimented, washed twice with 0.9% sodium chloride (NaCl), and resuspended in blood group-identical fresh frozen plasma. The resulting purified GCs (pGCs) were then stored in platelet bags at a cell concentration of about 5 × 107  ± 1.8 × 107 leukocytes/ml without agitation at room temperature for up to 72 h. Cell count and viability, pH, blood gases, phagocytosis, and oxidative burst were monitored daily. RESULTS: A significant reduction in RBC (98%) through sedimentation, and platelets (96%) by washing, purified the white blood cell (WBC) population and enriched the granulocytes to 96% of the WBC in the pGC. After 72 h of storage, over 90% of the initial WBC count of pGC remained, was viable (≥97%), and the granulocytes exhibited a high phagocytosis and oxidative burst functionality, comparable to sGC after 24 h. CONCLUSION: Purification extends the maximum storage period of GC from 24 to 72 h and may therefore improve the availability of GC and its clinical use.


Subject(s)
Blood Platelets , Granulocytes , Blood Preservation/methods , Erythrocytes , Humans , Leukocyte Count , Leukocytes
9.
Transfus Med Hemother ; 49(1): 30-43, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35221866

ABSTRACT

INTRODUCTION: Viral infections and reactivations still remain a cause of morbidity and mortality after hematopoietic stem cell transplantation due to immunodeficiency and immunosuppression. Transfer of unmanipulated donor-derived lymphocytes (DLI) represents a promising strategy for improving cellular immunity but carries the risk of graft versus host disease (GvHD). Depleting alloreactive naïve T cells (TN) from DLIs was implemented to reduce the risk of GvHD induction while preserving antiviral memory T-cell activity. Here, we compared two TN depletion strategies via CD45RA and CD62L expression and investigated the presence of antiviral memory T cells against human adenovirus (AdV) and Epstein-Barr virus (EBV) in the depleted fractions in relation to their functional and immunophenotypic characteristics. METHODS: T-cell responses against ppEBV_EBNA1, ppEBV_Consensus and ppAdV_Hexon within TN-depleted (CD45RA-/CD62L-) and TN-enriched (CD45RA+/CD62L+) fractions were quantified by interferon-gamma (IFN-γ) ELISpot assay after short- and long-term in vitro stimulation. T-cell frequencies and immunophenotypic composition were assessed in all fractions by flow cytometry. Moreover, alloimmune T-cell responses were evaluated by mixed lymphocyte reaction. RESULTS: According to differences in the phenotype composition, antigen-specific T-cell responses in CD45RA- fraction were up to 2 times higher than those in the CD62L- fraction, with the highest increase (up to 4-fold) observed after 7 days for ppEBV_EBNA1-specific T cells. The CD4+ effector memory T cells (TEM) were mainly responsible for EBV_EBNA1- and AdV_Hexon-specific T-cell responses, whereas the main functionally active T cells against ppEBV_Consensus were CD8+ central memory T cells (TCM) and TEM. Moreover, comparison of both depletion strategies indicated that alloreactivity in CD45RA- was lower than that in CD62L- fraction. CONCLUSION: Taken together, our results indicate that CD45RA depletion is a more suitable strategy for generating TN-depleted products consisting of memory T cells against ppEBV_EBNA1 and ppAdV_Hexon than CD62L in terms of depletion effectiveness, T-cell functionality and alloreactivity. To maximally exploit the beneficial effects mediated by antiviral memory T cells in TN-depleted products, depletion methods should be selected individually according to phenotype composition and CD4/CD8 antigen restriction. TN-depleted DLIs may improve the clinical outcome in terms of infections, GvHD, and disease relapse if selection of pathogen-specific donor T cells is not available.

10.
Clin Infect Dis ; 73(11): 2000-2008, 2021 12 06.
Article in English | MEDLINE | ID: mdl-34134134

ABSTRACT

BACKGROUND: Vaccine-induced neutralizing antibodies are key in combating the coronavirus disease 2019 (COVID-19) pandemic. However, delays of boost immunization due to limited availability of vaccines may leave individuals vulnerable to infection and prolonged or severe disease courses. The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOC)-B.1.1.7 (United Kingdom), B.1.351 (South Africa), and P.1 (Brazil)-may exacerbate this issue, as the latter two are able to evade control by antibodies. METHODS: We assessed humoral and T-cell responses against SARS-CoV-2 wild-type (WT), VOC, and endemic human coronaviruses (hCoVs) that were induced after single and double vaccination with BNT162b2. RESULTS: Despite readily detectable immunoglobulin G (IgG) against the receptor-binding domain of the SARS-CoV-2 S protein at day 14 after a single vaccination, inhibition of SARS-CoV-2 S-driven host cell entry was weak and particularly low for the B.1.351 variant. Frequencies of SARS-CoV-2 WT and VOC-specific T cells were low in many vaccinees after application of a single dose and influenced by immunity against endemic hCoV. The second vaccination significantly boosted T-cell frequencies reactive for WT and B.1.1.7 and B.1.351 variants. CONCLUSIONS: These results call into question whether neutralizing antibodies significantly contribute to protection against COVID-19 upon single vaccination and suggest that cellular immunity is central for the early defenses against COVID-19.


Subject(s)
BNT162 Vaccine/immunology , COVID-19 , Immunity, Cellular , Immunity, Humoral , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19/immunology , COVID-19/prevention & control , Humans , Immunoglobulin G/blood , Spike Glycoprotein, Coronavirus/immunology , T-Lymphocytes/immunology , Vaccination
11.
Int J Immunogenet ; 48(2): 120-134, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33410582

ABSTRACT

Xenotransplantation may become the highly desired solution to close the gap between the availability of donated organs and number of patients on the waiting list. In recent years, enormous progress has been made in the development of genetically engineered donor pigs. The introduced genetic modifications showed to be efficient in prolonging xenograft survival. In this review, we focus on the type of immune responses that may target xeno-organs after transplantation and promising immunogenetic modifications that show a beneficial effect in ameliorating or eliminating harmful xenogeneic immune responses. Increasing histocompatibility of xenografts by eliminating genetic discrepancies between species will pave their way into clinical application.


Subject(s)
Swine/immunology , Transplantation Immunology , Transplantation, Heterologous , Adaptive Immunity , Animals , Blood Coagulation , Complement Activation , Gene Editing , Gene Knockout Techniques , Genetic Engineering , Graft Rejection/prevention & control , HLA Antigens/immunology , Histocompatibility Antigens Class I/immunology , Humans , Immunity, Humoral , Immunity, Innate , Species Specificity , Swine/genetics
12.
Transfus Med Hemother ; 48(3): 137-147, 2021 May.
Article in English | MEDLINE | ID: mdl-34177417

ABSTRACT

BACKGROUND: Convalescent plasma is one of the treatment options for COVID-19 which is currently being investigated in many clinical trials. Understanding of donor and product characteristics is important for optimization of convalescent plasma. METHODS: Patients who had recovered from CO-VID-19 were recruited as donors for COVID-19 convalescent plasma (CCP) for a randomized clinical trial of CCP for treatment of severe COVID-19 (CAPSID Trial). Titers of neutralizing antibodies were measured by a plaque-reduction neutralization test (PRNT). Correlation of antibody titers with host factors and evolution of neutralizing antibody titers over time in repeat donors were analysed. RESULTS: A series of 144 donors (41% females, 59% males; median age 40 years) underwent 319 plasmapheresis procedures providing a median collection volume of 850 mL and a mean number of 2.7 therapeutic units per plasmapheresis. The majority of donors had a mild or moderate course of COVID-19. The titers of neutralizing antibodies varied greatly between CCP donors (from <1:20 to >1:640). Donor factors (gender, age, ABO type, body weight) did not correlate significantly with the titer of neutralizing antibodies. We observed a significant positive correlation of neutralization titers with the number of reported COVID-19 symptoms and with the time from SARS-CoV-2 diagnosis to plasmapheresis. Neutralizing antibody levels were stable or increased over time in 58% of repeat CCP donors. Mean titers of neutralizing antibodies of first donation and last donation of repeat CCP donors did not differ significantly (1:86 at first compared to 1:87 at the last donation). There was a significant correlation of neutralizing antibodies measured by PRNT and anti-SARS-CoV-2 IgG and IgA antibodies which were measured by ELISA. CCP donations with an anti-SARS-CoV-2 IgG antibody content above the 25th percentile were substantially enriched for CCP donations with higher neutralizing antibody levels. CONCLUSION: We demonstrate the feasibility of collection of a large number of CCP products under a harmonized protocol for a randomized clinical trial. Titers of neutralizing antibodies were stable or increased over time in a subgroup of repeat donors. A history of higher number of COVID-19 symptoms and higher levels of anti-SARS-CoV-2 IgG and IgA antibodies in immunoassays can preselect donations with higher neutralizing capacity.

13.
Genes Immun ; 21(1): 27-36, 2020 01.
Article in English | MEDLINE | ID: mdl-30635658

ABSTRACT

The study objective was to test the hypothesis that having histocompatible children increases the risk of rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE), possibly by contributing to the persistence of fetal cells acquired during pregnancy. We conducted a case control study using data from the UC San Francisco Mother Child Immunogenetic Study and studies at the Inova Translational Medicine Institute. We imputed human leukocyte antigen (HLA) alleles and minor histocompatibility antigens (mHags). We created a variable of exposure to histocompatible children. We estimated an average sequence similarity matching (SSM) score for each mother based on discordant mother-child alleles as a measure of histocompatibility. We used logistic regression models to estimate odds ratios (ORs) and 95% confidence intervals. A total of 138 RA, 117 SLE, and 913 control mothers were analyzed. Increased risk of RA was associated with having any child compatible at HLA-B (OR 1.9; 1.2-3.1), DPB1 (OR 1.8; 1.2-2.6) or DQB1 (OR 1.8; 1.2-2.7). Compatibility at mHag ZAPHIR was associated with reduced risk of SLE among mothers carrying the HLA-restriction allele B*07:02 (n = 262; OR 0.4; 0.2-0.8). Our findings support the hypothesis that mother-child histocompatibility is associated with risk of RA and SLE.


Subject(s)
Arthritis, Rheumatoid/etiology , Histocompatibility/immunology , Lupus Erythematosus, Systemic/etiology , Adult , Alleles , Arthritis, Rheumatoid/genetics , Case-Control Studies , Child , Female , Gene Frequency/genetics , Genetic Predisposition to Disease , HLA-B Antigens/genetics , HLA-B Antigens/metabolism , HLA-DQ beta-Chains/genetics , HLA-DQ beta-Chains/metabolism , Histocompatibility/genetics , Histocompatibility Antigens Class I/genetics , Histocompatibility Antigens Class I/immunology , Humans , Lupus Erythematosus, Systemic/genetics , Male , Mothers , Odds Ratio , Pregnancy
14.
J Cell Mol Med ; 24(9): 5070-5081, 2020 05.
Article in English | MEDLINE | ID: mdl-32212307

ABSTRACT

Xenotransplantation of pancreatic islets offers a promising alternative to overcome the shortage of allogeneic donors. Despite significant advances, either immune rejection or oxygen supply in immune protected encapsulated islets remains major bottlenecks for clinical application. To decrease xenogeneic immune responses, we generated tissue engineered swine leucocyte antigen (SLA)-silenced islet cell clusters (ICC). Single-cell suspensions from pancreatic islets were generated by enzymatic digestion of porcine ICCs. Cells were silenced for SLA class I and class II by lentiviral vectors encoding for short hairpin RNAs targeting beta2-microglobulin or class II transactivator, respectively. SLA-silenced ICCs-derived cells were then used to form new ICCs in stirred bioreactors in the presence of collagen VI. SLA class I silencing was designed to reach a level of up to 89% and class II by up to 81% on ICCs-derived cells. Xenogeneic T cell immune responses, NK cell and antibody-mediated cellular-dependent immune responses were significantly decreased in SLA-silenced cells. In stirred bioreactors, tissue engineered islets showed the typical 3D structure and insulin production. These data show the feasibility to generate low immunogenic porcine ICCs after single-cell engineering and post-transduction islet reassembling that might serve as an alternative to allogeneic pancreatic islet cell transplantation.


Subject(s)
Histocompatibility Antigens Class I/immunology , Islets of Langerhans Transplantation/methods , Islets of Langerhans/metabolism , Animals , Antibodies/chemistry , Antibody Formation , Cell Survival , Cells, Cultured , Gene Silencing , Genetic Engineering/methods , Immunity, Cellular , Insulin/metabolism , Killer Cells, Natural/metabolism , Neoplasm Transplantation , Pancreas/metabolism , RNA Interference , Swine , T-Lymphocytes/metabolism , Transcriptional Activation , Transplantation, Heterologous
15.
Br J Haematol ; 189(3): 489-499, 2020 05.
Article in English | MEDLINE | ID: mdl-32072624

ABSTRACT

Endemic Burkitt lymphoma (eBL) is an aggressive childhood B-cell lymphoma associated with Plasmodium falciparum (Pf) malaria and Epstein-Barr virus (EBV) infections. Variation in the Human Leukocyte Antigen (HLA) system is suspected to play a role, but assessments using less accurate serology-based HLA typing techniques in small studies yielded conflicting results. We studied 200 eBL cases and 400 controls aged 0-15 years enrolled in northern Uganda and typed by accurate high-resolution HLA sequencing methods. HLA results were analyzed at one- or two-field resolution. Odds ratios and 95% confidence intervals (aOR, 95% CI) for eBL risk associated with common HLA alleles versus alleles that were rare (<1%) or differed by <2% between the cases and controls as the reference category, were estimated using multiple logistic regression adjusting for age, sex, microgeography, region, malaria positivity and treatment history, and genetic variants associated with eBL. Compared to the controls, eBL cases had a lower frequency of HLA-A*02 (aOR = 0·59, 95% CI 0·38-0·91), HLA-B*41 (aOR = 0·36, 95% CI 0·13-1·00), and HLA-B*58 alleles (aOR = 0·59, 95% CI 0·36-0·97). eBL cases had a lower frequency of HLA-DPB1 homozygosity (aOR = 0·57, 95% CI 0·40-0·82) but a higher frequency of HLA-DQA1 homozygosity (aOR = 2·19, 95% CI 1·42-3·37). Our results suggest that variation in HLA may be associated with eBL risk.


Subject(s)
Burkitt Lymphoma/blood , HLA Antigens/metabolism , Adolescent , Child , Child, Preschool , Female , Humans , Infant , Infant, Newborn , Male , Risk Factors , Uganda
16.
J Transl Med ; 18(1): 148, 2020 04 01.
Article in English | MEDLINE | ID: mdl-32238166

ABSTRACT

BACKGROUND: Adoptive transfer of virus-specific T cells (VSTs) represents a prophylactic and curative approach for opportunistic viral infections and reactivations after transplantation. However, inadequate frequencies of circulating memory VSTs in the T-cell donor's peripheral blood often result in insufficient enrichment efficiency and purity of the final T-cell product, limiting the effectiveness of this approach. METHODS: This pilot study was designed as a cross-over trial and compared the effect of a single bout (30 min) of high-intensity interval training (HIT) with that of 30 min of continuous exercise (CONT) on the frequency and function of circulating donor VSTs. To this end, we used established immunoassays to examine the donors' cellular immune status, in particular, with respect to the frequency and specific characteristics of VSTs restricted against Cytomegalovirus (CMV)-, Epstein-Barr-Virus (EBV)- and Adenovirus (AdV)-derived antigens. T-cell function, phenotype, activation and proliferation were examined at different time points before and after exercise to identify the most suitable time for T-cell donation. The clinical applicability was determined by small-scale T-cell enrichment using interferon- (IFN-) γ cytokine secretion assay and virus-derived overlapping peptide pools. RESULTS: HIT proved to be the most effective exercise program with up to fivefold higher VST response. In general, donors with a moderate fitness level had higher starting and post-exercise frequencies of VSTs than highly fit donors, who showed significantly lower post-exercise increases in VST frequencies. Both exercise programs boosted the number of VSTs against less immunodominant antigens, specifically CMV (IE-1), EBV (EBNA-1) and AdV (Hexon, Penton), compared to VSTs against immunodominant antigens with higher memory T-cell frequencies. CONCLUSION: This study demonstrates that exercise before T-cell donation has a beneficial effect on the donor's cellular immunity with respect to the proportion of circulating functionally active VSTs. We conclude that a single bout of HIT exercise 24 h before T-cell donation can significantly improve manufacturing of clinically applicable VSTs. This simple and economical adjuvant treatment proved to be especially efficient in enhancing virus-specific memory T cells with low precursor frequencies.


Subject(s)
Hematopoietic Stem Cell Transplantation , High-Intensity Interval Training , Immunotherapy, Adoptive , Pilot Projects , T-Lymphocytes
17.
Transpl Infect Dis ; 22(1): e13201, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31643129

ABSTRACT

Adenovirus (HAdV) infections confer a high risk of morbidity and mortality for immunocompromised patients after stem cell transplantation (SCT). Treatment with standard antiviral drugs is of limited efficacy and associated with a high rate of adverse effects. HAdV-specific T cells are crucial for sustained viral elimination and the efficacy of adoptive T-cell therapy with donor-derived HAdV-specific T cells has been reported by several investigators. Here, we report our experience with the transfer of HAdV-specific T cells specific for penton, which was recently identified as an immunodominant target of T cells, and hexon in a 14-year-old boy after T-cell-depleted haploidentical SCT for myelodysplastic syndrome (MDS). He developed severe HAdV-associated enteritis complicated by acute graft-versus-host disease (GvHD). The patient received ten infusions of allogeneic HAdV-specific T cells manufactured from the haploidentical stem cell donor using the CliniMacs Interferon-γ (IFN-γ) cytokine capture and immunomagnetic selection. Initially, T cells were generated against the immunodominant target hexon and in subsequent transfers dual antigen-specific T cells against hexon and penton were applied. T-cell transfers were scheduled individually tailored to current immunosuppressive treatment. Each transfer was followed by reduction of HAdV load in peripheral blood and clinical improvement. Importantly, T-cell responses to both penton and hexon pools emerged in patient blood after repetitive transfers. Unfortunately, the patient experienced bacterial sepsis, and in this context, severe GvHD requiring intensive immunosuppression followed by secondary progression of HAdV infection. The patient succumbed to multiorgan failure 283 days after SCT. This case demonstrates the feasibility of HAdV-specific T-cell transfer even in the presence of immunosuppressive treatment. Targeting of multiple immunodominant viral proteins may prove valuable in patients with complicated HAdV infections.


Subject(s)
Adenovirus Infections, Human/therapy , Adoptive Transfer/methods , Capsid Proteins/immunology , Hematopoietic Stem Cell Transplantation/adverse effects , T-Lymphocytes/immunology , Transplantation, Homologous/adverse effects , Adenovirus Infections, Human/etiology , Adenovirus Infections, Human/immunology , Adolescent , Graft vs Host Disease/complications , Humans , Male , Sepsis/microbiology , Sepsis/mortality , Tissue Donors
18.
Int J Mol Sci ; 21(20)2020 Oct 16.
Article in English | MEDLINE | ID: mdl-33081128

ABSTRACT

Donor platelet transfusion is currently the only efficient treatment of life-threatening thrombocytopenia, but it is highly challenged by immunological, quality, and contamination issues, as well as short shelf life of the donor material. Ex vivo produced megakaryocytes and platelets represent a promising alternative strategy to the conventional platelet transfusion. However, practical implementation of such strategy demands availability of reliable biobanking techniques, which would permit eliminating continuous cell culture maintenance, ensure time for quality testing, enable stock management and logistics, as well as availability in a ready-to-use manner. At the same time, protocols applying DMSO-based cryopreservation media were associated with increased risks of adverse long-term side effects after patient use. Here, we show the possibility to develop cryopreservation techniques for iPSC-derived megakaryocytes under defined xeno-free conditions with significant reduction or complete elimination of DMSO. Comprehensive phenotypic and functional in vitro characterization of megakaryocytes has been performed before and after cryopreservation. Megakaryocytes cryopreserved DMSO-free, or using low DMSO concentrations, showed the capability to produce platelets in vivo after transfusion in a mouse model. These findings propose biobanking approaches essential for development of megakaryocyte-based replacement and regenerative therapies.


Subject(s)
Blood Preservation/methods , Cryopreservation , Cryoprotective Agents/toxicity , Dimethyl Sulfoxide/toxicity , Megakaryocytes/drug effects , Animals , Blood Platelets/cytology , Blood Platelets/drug effects , Cells, Cultured , Humans , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/drug effects , Megakaryocytes/cytology , Mice , Mice, SCID
19.
Int J Mol Sci ; 21(21)2020 Oct 28.
Article in English | MEDLINE | ID: mdl-33126487

ABSTRACT

The human leukocyte antigen (HLA)-Ib molecule, HLA-F, is known as a CD4+ T-cell protein and mediator of HIV progression. While HLA-Ia molecules do not have the chance to select and present viral peptides for immune recognition due to protein downregulation, HLA-F is upregulated. Post HIV infection, HLA-F loses the affinity to its activating receptor KIR3DS1 on NK cells leading to progression of the HIV infection. Several studies aimed to solve the question of the biophysical interface between HLA ligands and their cognate receptors. It became clear that even an invariant HLA molecule can be structurally modified by the variability of the bound peptide. We recently discovered the ability of HLA-F to select and present peptides and the HLA-F allele-specific peptide selection from the proteomic content using soluble HLA (sHLA) technology and a sophisticated MS method. We established recombinant K562 cells that express membrane-bound HLA-F*01:01, 01:03 or 01:04 complexes. While a recombinant soluble form of KIR3DS1 did not bind to the peptide-HLA-F complexes, acid elution of the peptides resulted in the presentation of HLA-F open conformers, and the binding of the soluble KIR3DS1 receptor increased. We used CD4+/HIV- and CD4+/HIV+ cells and performed an MS proteome analysis. We could detect hemoglobin as significantly upregulated in CD4+ T-cells post HIV infection. The expression of cellular hemoglobin in nonerythroid cells has been described, yet HLA-Ib presentation of hemoglobin-derived peptides is novel. Peptide sequence analysis from HLA-F allelic variants featured hemoglobin peptides as dominant and shared. The reciprocal experiment of binding hemoglobin peptide fractions to the HLA-F open conformers resulted in significantly diminished receptor recognition. These results underpin the molecular involvement of HLA-F and its designated peptide ligand in HIV immune escape.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , HIV Infections/immunology , Hemoglobins/metabolism , Histocompatibility Antigens Class I/immunology , Peptide Fragments/metabolism , Proteome/analysis , Receptors, KIR3DS1/immunology , HIV Infections/metabolism , HIV Infections/virology , HIV-1/immunology , Histocompatibility Antigens Class I/metabolism , Humans , Protein Binding , Receptors, KIR3DS1/metabolism
20.
Int J Mol Sci ; 21(11)2020 Jun 04.
Article in English | MEDLINE | ID: mdl-32512889

ABSTRACT

For decades, the unique regenerative properties of the human amniotic membrane (hAM) have been successfully utilized in ophthalmology. As a directly applied biomaterial, the hAM should be available in a ready to use manner in clinical settings. However, an extended period of time is obligatory for performing quality and safety tests. Hence, the low temperature storage of the hAM is a virtually inevitable step in the chain from donor retrieval to patient application. At the same time, the impact of subzero temperatures carries an increased risk of irreversible alterations of the structure and composition of biological objects. In the present study, we performed a comprehensive analysis of the hAM as a medicinal product; this is intended for a novel strategy of application in ophthalmology requiring a GMP production protocol including double freezing-thawing cycles. We compared clinically relevant parameters, such as levels of growth factors and extracellular matrix proteins content, morphology, ultrastructure and mechanical properties, before and after one and two freezing cycles. It was found that epidermal growth factor (EGF), transforming growth factor beta 1 (TGF-ß1), hepatocyte growth factor (HGF), basic fibroblast growth factor (bFGF), hyaluronic acid, and laminin could be detected in all studied conditions without significant differences. Additionally, histological and ultrastructure analysis, as well as transparency and mechanical tests, demonstrated that properties of the hAM required to support therapeutic efficacy in ophthalmology are not impaired by dual freezing.


Subject(s)
Amnion/chemistry , Amnion/physiology , Freezing , Ophthalmology , Amnion/ultrastructure , Cryoelectron Microscopy , Cryopreservation , Humans , Mechanical Phenomena , Ophthalmology/methods
SELECTION OF CITATIONS
SEARCH DETAIL