Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
Add more filters

Publication year range
1.
Alzheimers Dement ; 17(9): 1528-1553, 2021 09.
Article in English | MEDLINE | ID: mdl-33860614

ABSTRACT

The Electrophysiology Professional Interest Area (EPIA) and Global Brain Consortium endorsed recommendations on candidate electroencephalography (EEG) measures for Alzheimer's disease (AD) clinical trials. The Panel reviewed the field literature. As most consistent findings, AD patients with mild cognitive impairment and dementia showed abnormalities in peak frequency, power, and "interrelatedness" at posterior alpha (8-12 Hz) and widespread delta (< 4 Hz) and theta (4-8 Hz) rhythms in relation to disease progression and interventions. The following consensus statements were subscribed: (1) Standardization of instructions to patients, resting state EEG (rsEEG) recording methods, and selection of artifact-free rsEEG periods are needed; (2) power density and "interrelatedness" rsEEG measures (e.g., directed transfer function, phase lag index, linear lagged connectivity, etc.) at delta, theta, and alpha frequency bands may be use for stratification of AD patients and monitoring of disease progression and intervention; and (3) international multisectoral initiatives are mandatory for regulatory purposes.


Subject(s)
Alzheimer Disease/physiopathology , Clinical Trials as Topic , Electroencephalography/standards , Brain/physiopathology , Cognitive Dysfunction/physiopathology , Disease Progression , Humans
2.
Suppl Clin Neurophysiol ; 62: 223-36, 2013.
Article in English | MEDLINE | ID: mdl-24053043

ABSTRACT

The human brain contains an intricate network of about 100 billion neurons. Aging of the brain is characterized by a combination of synaptic pruning, loss of cortico-cortical connections, and neuronal apoptosis that provoke an age-dependent decline of cognitive functions. Neural/synaptic redundancy and plastic remodeling of brain networking, also secondary to mental and physical training, promote maintenance of brain activity and cognitive status in healthy elderly subjects for everyday life. However, age is the main risk factor for neurodegenerative disorders such as Alzheimer's disease (AD) that impact on cognition. Growing evidence supports the idea that AD targets specific and functionally connected neuronal networks and that oscillatory electromagnetic brain activity might be a hallmark of the disease. In this line, digital electroencephalography (EEG) allows noninvasive analysis of cortical neuronal synchronization, as revealed by resting state brain rhythms. This review provides an overview of the studies on resting state eyes-closed EEG rhythms recorded in amnesic mild cognitive impairment (MCI) and AD subjects. Several studies support the idea that spectral markers of these EEG rhythms, such as power density, spectral coherence, and other quantitative features, differ among normal elderly, MCI, and AD subjects, at least at group level. Regarding the classification of these subjects at individual level, the most previous studies showed a moderate accuracy (70-80%) in the classification of EEG markers relative to normal and AD subjects. In conclusion, resting state EEG makers are promising for large-scale, low-cost, fully noninvasive screening of elderly subjects at risk of AD.


Subject(s)
Alzheimer Disease/pathology , Cerebral Cortex/physiopathology , Electroencephalography , Rest/physiology , Brain Waves/physiology , Cognitive Dysfunction/pathology , Humans
3.
Biomedicines ; 11(4)2023 Mar 27.
Article in English | MEDLINE | ID: mdl-37189642

ABSTRACT

BACKGROUND: Respiratory sinus arrhythmia (RSA) denotes decrease of cardiac beat-to-beat intervals (RRI) during inspiration and RRI increase during expiration, but an inverse pattern (termed negative RSA) was also found in healthy humans with elevated anxiety. It was detected using wave-by-wave analysis of cardiorespiratory rhythms and was considered to reflect a strategy of anxiety management involving the activation of a neural pacemaker. Results were consistent with slow breathing, but contained uncertainty at normal breathing rates (0.2-0.4 Hz). OBJECTIVES AND METHODS: We combined wave-by-wave analysis and directed information flow analysis to obtain information on anxiety management at higher breathing rates. We analyzed cardiorespiratory rhythms and blood oxygen level-dependent (BOLD) signals from the brainstem and cortex in 10 healthy fMRI participants with elevated anxiety. RESULTS: Three subjects with slow respiratory, RRI, and neural BOLD oscillations showed 57 ± 26% negative RSA and significant anxiety reduction by 54 ± 9%. Six participants with breathing rate of ~0.3 Hz showed 41 ± 16% negative RSA and weaker anxiety reduction. They presented significant information flow from RRI to respiration and from the middle frontal cortex to the brainstem, which may result from respiration-entrained brain oscillations, indicating another anxiety management strategy. CONCLUSIONS: The two analytical approaches applied here indicate at least two different anxiety management strategies in healthy subjects.

4.
Sci Rep ; 13(1): 2380, 2023 02 10.
Article in English | MEDLINE | ID: mdl-36765092

ABSTRACT

Brain-body interactions can be studied by using directed coupling measurements of fMRI oscillations in the low (0.1-0.2 Hz) and high frequency bands (HF; 0.2-0.4 Hz). Recently, a preponderance of oscillations in the information flow between the brainstem and the prefrontal cortex at around 0.15/0.16 Hz was shown. The goal of this study was to investigate the information flow between BOLD-, respiratory-, and heart beat-to-beat interval (RRI) signals in the HF band in healthy subjects with high anxiety during fMRI examinations. A multivariate autoregressive model was concurrently applied to the BOLD signals from the middle frontal gyrus (MFG), precentral gyrus and the brainstem, as well as to respiratory and RRI signals. Causal coupling between all signals was determined using the Directed Transfer Function (DTF). We found a salience of fast respiratory waves with a period of 3.1 s (corresponding to ~ 0.32 Hz) and a highly significant (p < 0.001) top-down information-flow from BOLD oscillations in the MFG to the brainstem. Additionally, there was a significant (p < 0.01) information flow from RRI to respiratory oscillations. We speculate that brain oscillations around 0.32 Hz, triggered by nasal breathing, are projected downwards to the brainstem. Particularly interesting is the driving force of cardiac to respiratory waves with a ratio of 1:1 or 1:2. These results support the binary hierarchy model with preferred respiratory frequencies at 0.32 Hz and 0.16 Hz.


Subject(s)
Brain , Magnetic Resonance Imaging , Humans , Magnetic Resonance Imaging/methods , Healthy Volunteers , Brain/diagnostic imaging , Respiration , Anxiety/diagnostic imaging
5.
Front Physiol ; 13: 868294, 2022.
Article in English | MEDLINE | ID: mdl-35557965

ABSTRACT

The paper concerns the development of methods of EEG functional connectivity estimation including short overview of the currently applied measures describing their advantages and flaws. Linear and non-linear, bivariate and multivariate methods are confronted. The performance of different connectivity measures in respect of robustness to noise, common drive effect and volume conduction is considered providing a guidance towards future developments in the field, which involve evaluation not only functional, but also effective (causal) connectivity. The time-varying connectivity measure making possible estimation of dynamical information processing in brain is presented. The methods of post-processing of connectivity results are considered involving application of advanced graph analysis taking into account community structure of networks and providing hierarchy of networks rather than the single, binary networks currently used.

6.
Sci Rep ; 12(1): 9117, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35650314

ABSTRACT

Slow oscillations of different center frequencies and their coupling play an important role in brain-body interactions. The crucial question analyzed by us is, whether the low frequency (LF) band (0.05-0.15 Hz) or the intermediate frequency (IMF) band (0.1-0.2 Hz) is more eminent in respect of the information flow between body (heart rate and respiration) and BOLD signals in cortex and brainstem. A recently published study with the LF band in fMRI-naïve subjects revealed an intensive information flow from the cortex to the brainstem and a weaker flow from the brainstem to the cortex. The comparison of both bands revealed a significant information flow from the middle frontal gyrus (MFG) to the precentral gyrus (PCG) and from brainstem to PCG only in the IMF band. This pattern of directed coupling between slow oscillations in the cortex and brainstem not only supports the existence of a pacemaker-like structure in brainstem, but provides first evidence that oscillations centered at 0.15/0.16 Hz can also emerge in brain networks. BOLD oscillations in resting states are dominating at ~ 0.08 Hz and respiratory rates at ~ 0.32 Hz. Therefore, the frequency component at ~ 0.16 Hz (doubling-halving 0.08 Hz or 0.32 Hz) is of special interest, because phase coupled oscillations can reduce the energy demand.


Subject(s)
Anxiety Disorders , Magnetic Resonance Imaging , Anxiety , Brain/physiology , Brain Mapping , Humans , Magnetic Resonance Imaging/methods
7.
Sci Rep ; 12(1): 22343, 2022 12 26.
Article in English | MEDLINE | ID: mdl-36572725

ABSTRACT

Slow gamma oscillations (20-50 Hz) have been suggested to coordinate information transfer between brain structures involved in memory formation. Whereas the involvement of slow gamma in memory processing was studied by means of correlation between the gamma power and the occurrence of a given event (sharp wave ripples (SWRs), cortical transients), our approach consists of the analysis of the transmission of slow gamma itself. We use the method based on Granger causality principle-direct Directed Transfer Function, which allows to determine directed propagation of brain activity, including bidirectional flows. Four cortical sites along with CA1 ipsi- and contralateral were recorded in behaving wild-type and APP/PS1 mice before and after learning session of a spatial memory task. During slow wave sleep propagation of slow gamma was bidirectional, forming multiple loops of interaction which involved both CA1 and some of cortical sites. In episodes coincident with SWRs the number and strength of connectivity pathways increased in both groups compared to episodes without SWRs. The effect of learning was expressed only in APP/PS1 mice and consisted in strengthening of the slow gamma transmission from hippocampus to cortex as well as between both CA1 which may serve more efficient transmission of information from impaired CA1.


Subject(s)
Hippocampus , Sleep, Slow-Wave , Mice , Animals , Hippocampus/metabolism , Spatial Memory
8.
Brain Topogr ; 24(1): 1-8, 2011 Mar.
Article in English | MEDLINE | ID: mdl-20686832

ABSTRACT

For about two decades now, the localization of the brain regions involved in reasoning processes is being investigated through fMRI studies, and it is known that for a transitive form of reasoning the frontal and parietal regions are most active. In contrast, less is known about the information exchange during the performance of such complex tasks. In this study, the propagation of brain activity during a transitive reasoning task was investigated and compared to the propagation during a simple memory task. We studied EEG transmission patterns obtained for physiological indicators of brain activity and determined whether there are frequency bands specifically related to this type of cognitive operations. The analysis was performed by means of the directed transfer function. The transmission patterns were determined in the theta, alpha and gamma bands. The results show stronger transmissions in theta and alpha bands from frontal to parietal as well as within frontal regions in reasoning trials comparing to memory trials. The increase in theta and alpha transmissions was accompanied by flows in gamma band from right posterior to left posterior and anterior sites. These results are consistent with previous neuroimaging (fMRI) data concerning fronto-parietal regions involvement in reasoning and working memory processes and also provide new evidence for the executive role of frontal theta waves in organizing the cognition.


Subject(s)
Brain Waves/physiology , Cognition/physiology , Executive Function/physiology , Memory/physiology , Thinking/physiology , Adult , Female , Frontal Lobe/physiology , Humans , Male , Theta Rhythm/physiology , Young Adult
9.
Sci Rep ; 11(1): 22348, 2021 11 16.
Article in English | MEDLINE | ID: mdl-34785719

ABSTRACT

Brain-heart synchronization is fundamental for emotional-well-being and brain-heart desynchronization is characteristic for anxiety disorders including specific phobias. Recording BOLD signals with functional magnetic resonance imaging (fMRI) is an important noninvasive diagnostic tool; however, 1-2% of fMRI examinations have to be aborted due to claustrophobia. In the present study, we investigated the information flow between regions of interest (ROI's) in the cortex and brain stem by using a frequency band close to 0.1 Hz. Causal coupling between signals important in brain-heart interaction (cardiac intervals, respiration, and BOLD signals) was studied by means of Directed Transfer Function based on the Granger causality principle. Compared were initial resting states with elevated anxiety and final resting states with low or no anxiety in a group of fMRI-naïve young subjects. During initial high anxiety the results showed an increased information flow from the middle frontal gyrus (MFG) to the pre-central gyrus (PCG) and to the brainstem. There also was an increased flow from the brainstem to the PCG. While the top-down flow during increased anxiety was predominant, the weaker ascending flow from brainstem structures may characterize a rhythmic pacemaker-like activity that (at least in part) drives respiration. We assume that these changes in information flow reflect successful anxiety processing.


Subject(s)
Anxiety Disorders , Brain Stem , Magnetic Resonance Imaging , Prefrontal Cortex , Adult , Anxiety Disorders/diagnostic imaging , Anxiety Disorders/physiopathology , Brain Stem/diagnostic imaging , Brain Stem/physiopathology , Female , Humans , Male , Prefrontal Cortex/diagnostic imaging , Prefrontal Cortex/physiopathology
10.
Brain Topogr ; 23(2): 205-13, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20191316

ABSTRACT

The transmission of brain activity during constant attention test was estimated by means of the short-time directed transfer function (SDTF). SDTF is an estimator based on a multivariate autoregressive model. It determines the propagation as a function of time and frequency. For nine healthy subjects the transmission of EEG activity was determined for target and non-target conditions corresponding to pressing of a switch in case of appearance of two identical images or withholding the reaction in case of different images. The involvement of prefrontal and frontal cortex manifested by the propagation from these structures was observed, especially in the early stages of the task. For the target condition there was a burst of propagation from C3 after pressing the switch, which can be interpreted as beta rebound upon completion of motor action. In case of non-target condition the propagation from F8 or Fz to C3 was observed, which can be connected with the active inhibition of motor cortex by right inferior frontal cortex or presupplementary motor area.


Subject(s)
Brain/physiology , Cognition/physiology , Adult , Algorithms , Brain Mapping/methods , Electroencephalography/methods , Humans , Male , Multivariate Analysis , Neural Pathways/physiology , Neuropsychological Tests , Regression Analysis , Signal Processing, Computer-Assisted , Time Factors , Video Recording , Young Adult
11.
PLoS One ; 15(12): e0243767, 2020.
Article in English | MEDLINE | ID: mdl-33382724

ABSTRACT

Hippocampal-cortical dialogue, during which hippocampal ripple oscillations support information transfer, is necessary for long-term consolidation of spatial memories. Whereas a vast amount of work has been carried out to understand the cellular and molecular mechanisms involved in the impairments of memory formation in Alzheimer's disease (AD), far less work has been accomplished to understand these memory deficiencies at the network-level interaction that may underlie memory processing. We recently demonstrated that freely moving 8 to 9-month-old APP/PS1 mice, a model of AD, are able to learn a spatial reference memory task despite a major deficit in Sharp-Wave Ripples (SWRs), the integrity of which is considered to be crucial for spatial memory formation. In order to test whether reconfiguration of hippocampal-cortical dialogue could be responsible for the maintenance of this ability for memory formation, we undertook a study to identify causal relations between hippocampal and cortical circuits in epochs when SWRs are generated in hippocampus. We analyzed the data set obtained from multielectrode intracranial recording of transgenic and wild-type mice undergoing consolidation of spatial memory reported in our previous study. We applied Directed Transfer Function, a connectivity measure based on Granger causality, in order to determine effective coupling between distributed circuits which express oscillatory activity in multiple frequency bands. Our results showed that hippocampal-cortical coupling in epochs containing SWRs was expressed in the two frequency ranges corresponding to ripple (130-180 Hz) and slow gamma (20-60 Hz) band. The general features of connectivity patterns were similar in the 8 to 9-month-old APP/PS1 and wild-type animals except that the coupling in the slow gamma range was stronger and spread to more cortical sites in APP/PS1 mice than in the wild-type group. During the occurrence of SWRs, the strength of effective coupling from the cortex to hippocampus (CA1) in the ripple band undergoes sharp increase, involving cortical areas that were different in the two groups of animals. In the wild-type group, retrosplenial cortex and posterior cingulate cortex interacted with the hippocampus most strongly, whereas in the APP/PS1 group more anterior structures interacted with the hippocampus, that is, anterior cingulate cortex and prefrontal cortex. This reconfiguration of cortical-hippocampal interaction pattern may be an adaptive mechanism responsible for supporting spatial memory consolidation in AD mice model.


Subject(s)
Amyloid beta-Protein Precursor/genetics , Cerebral Cortex/physiology , Electroencephalography , Hippocampus/physiology , Neocortex/physiology , Spatial Memory/physiology , Animals , Female , Male , Mice , Mice, Transgenic
12.
Clin Neurophysiol ; 131(1): 285-307, 2020 01.
Article in English | MEDLINE | ID: mdl-31501011

ABSTRACT

In 1999, the International Federation of Clinical Neurophysiology (IFCN) published "IFCN Guidelines for topographic and frequency analysis of EEGs and EPs" (Nuwer et al., 1999). Here a Workgroup of IFCN experts presents unanimous recommendations on the following procedures relevant for the topographic and frequency analysis of resting state EEGs (rsEEGs) in clinical research defined as neurophysiological experimental studies carried out in neurological and psychiatric patients: (1) recording of rsEEGs (environmental conditions and instructions to participants; montage of the EEG electrodes; recording settings); (2) digital storage of rsEEG and control data; (3) computerized visualization of rsEEGs and control data (identification of artifacts and neuropathological rsEEG waveforms); (4) extraction of "synchronization" features based on frequency analysis (band-pass filtering and computation of rsEEG amplitude/power density spectrum); (5) extraction of "connectivity" features based on frequency analysis (linear and nonlinear measures); (6) extraction of "topographic" features (topographic mapping; cortical source mapping; estimation of scalp current density and dura surface potential; cortical connectivity mapping), and (7) statistical analysis and neurophysiological interpretation of those rsEEG features. As core outcomes, the IFCN Workgroup endorsed the use of the most promising "synchronization" and "connectivity" features for clinical research, carefully considering the limitations discussed in this paper. The Workgroup also encourages more experimental (i.e. simulation studies) and clinical research within international initiatives (i.e., shared software platforms and databases) facing the open controversies about electrode montages and linear vs. nonlinear and electrode vs. source levels of those analyses.


Subject(s)
Electroencephalography/methods , Mental Disorders/physiopathology , Nervous System Diseases/physiopathology , Rest/physiology , Artifacts , Biomedical Research , Brain Mapping/methods , Brain Waves/physiology , Databases as Topic , Electrodes , Electroencephalography/instrumentation , Electroencephalography/standards , Electroencephalography Phase Synchronization/physiology , Environment , Humans , Information Storage and Retrieval/methods , Neurophysiology , Scalp , Simulation Training , Software , Wakefulness/physiology
13.
Neurobiol Aging ; 85: 58-73, 2020 01.
Article in English | MEDLINE | ID: mdl-31739167

ABSTRACT

Electrophysiology provides a real-time readout of neural functions and network capability in different brain states, on temporal (fractions of milliseconds) and spatial (micro, meso, and macro) scales unmet by other methodologies. However, current international guidelines do not endorse the use of electroencephalographic (EEG)/magnetoencephalographic (MEG) biomarkers in clinical trials performed in patients with Alzheimer's disease (AD), despite a surge in recent validated evidence. This position paper of the ISTAART Electrophysiology Professional Interest Area endorses consolidated and translational electrophysiological techniques applied to both experimental animal models of AD and patients, to probe the effects of AD neuropathology (i.e., brain amyloidosis, tauopathy, and neurodegeneration) on neurophysiological mechanisms underpinning neural excitation/inhibition and neurotransmission as well as brain network dynamics, synchronization, and functional connectivity, reflecting thalamocortical and corticocortical residual capacity. Converging evidence shows relationships between abnormalities in EEG/MEG markers and cognitive deficits in groups of AD patients at different disease stages. The supporting evidence for the application of electrophysiology in AD clinical research as well as drug discovery pathways warrants an international initiative to include the use of EEG/MEG biomarkers in the main multicentric projects planned in AD patients, to produce conclusive findings challenging the present regulatory requirements and guidelines for AD studies.


Subject(s)
Alzheimer Disease/diagnosis , Alzheimer Disease/physiopathology , Brain/physiopathology , Electrophysiology/methods , Alzheimer Disease/pathology , Animals , Brain/pathology , Drug Discovery , Electroencephalography , Evoked Potentials , Humans , Magnetoencephalography
14.
J Acoust Soc Am ; 126(6): 3137-46, 2009 Dec.
Article in English | MEDLINE | ID: mdl-20000927

ABSTRACT

Transiently evoked otoacoustic emissions (TEOAEs) are normally modeled as the sum of asymmetric waveforms. However, some previous studies of TEOAEs used time-frequency (TF) methods to decompose the signals into symmetric waveforms. This approach was justified mainly as a means to reduce the complexity of the calculations. The present study extended the dictionary of numeric functions to incorporate asymmetric waveforms into the analysis. The necessary calculations were carried out using an adaptive approximation algorithm based on the matching pursuit (MP) numerical technique. The classic MP dictionary uses Gabor functions and consists of waveforms described by five parameters, namely, frequency, latency, time span, amplitude, and phase. In the present investigation, a sixth parameter, the degree of asymmetry, was added in order to enhance the flexibility of this approach. The effects of expanding the available functions were evaluated by means of both simulations using synthetic signals and authentic TEOAEs. The resulting analyses showed that the contributions of asymmetric components in the OAE signal are appreciable. In short, the expanded analysis method brought about important improvements in identifying TEOAE components including the correct detection of components with long decays, which are often related to spontaneous OAE activity, the elimination of a "dark energy" effect in TF distributions, and more reliable estimates of latency-frequency relationships. The latter feature is especially important for correct estimation of latency-frequency data, which is a crucial factor in investigations of OAE-generation mechanisms.


Subject(s)
Algorithms , Evoked Potentials , Otoacoustic Emissions, Spontaneous , Signal Processing, Computer-Assisted , Acoustic Stimulation , Adult , Computer Simulation , Ear , Female , Humans , Male , Principal Component Analysis , Time Factors , Young Adult
15.
Int J Neural Syst ; 29(3): 1850046, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30428723

ABSTRACT

Transmission of EEG activity during a visual and auditory version of the working memory task based on the paradigm of linear syllogism was investigated. Our aim was to find possible similarities and differences in the synchronization patterns between brain structures during the same mental activity performed on different modality stimuli. The EEG activity transmission was evaluated by means of full frequency Directed Transfer Function (ffDTF) and short-time Directed Transfer Function (SDTF). SDTF provided information on dynamical propagation of EEG activity. The assortative mixing approach was applied to quantify coupling between regions of interest encompassing frontal, central and two posterior modules. The results showed similar schemes of coupling for both modalities with stronger coupling within the regions of interests than between them, which is concordant with the theories concerning efficient wiring and metabolic energy saving. The patterns of transmission showed main sources of activity in the anterior and posterior regions communicating intermittently in a broad frequency range. The differences between the patterns of transmission between the visual and auditory versions of working memory tasks were subtle and involved bigger propagation from the posterior electrodes towards the frontal ones during the visual task as well as from the temporal sites to the frontal ones during the auditory task.


Subject(s)
Auditory Perception/physiology , Brain/physiology , Memory, Short-Term/physiology , Visual Perception/physiology , Adult , Electroencephalography , Female , Humans , Male , Neural Pathways/physiology , Young Adult
16.
Hear Res ; 235(1-2): 80-9, 2008 Jan.
Article in English | MEDLINE | ID: mdl-18082347

ABSTRACT

Otoacoustic emission (OAE) data recorded for tone bursts presented separately and as a two-tone burst complex, that had been reported previously [Yoshikawa, H., Smurzynski, J., Probst R., 2000. Suppression of tone burst evoked otoacoustic emissions in relation to frequency separation. Hear. Res. 148, 95-106], were re-processed using the method of adaptive approximations by matching pursuit (MP). Two types of stimuli were applied to record tone burst OAEs (TBOAEs): (a) cosine-windowed tone bursts of 5-ms duration with center frequencies of 1, 1.5, 2 and 3kHz, (b) complex stimuli consisting of a digital addition of the 1-kHz tone burst together with either the 1.5-, 2- or 3-kHz tone burst. The MP method allowed decomposition of signals into waveforms of defined frequency, latency, time span, and amplitude. This approach provided a high time-frequency (t-f) resolution and identified patterns of resonance modes that were characteristic for TBOAEs recorded in each individual ear. Individual responses to single-tone bursts were processed off-line to form 'sum of singles' responses. The results confirmed linear superposition behavior for a frequency separation of two-tone bursts of 2kHz (the 1-kHz and 3-kHz condition). For the 1, 1.5-kHz condition, the MP results revealed the existence of closely positioned resonance modes associated with responses recorded individually with the stimuli differing in frequency by 500Hz. Then, the differences between t-f distributions calculated for dual (two-tone bursts) and sum-of-singles conditions exhibited mutual suppression of resonance modes common to both stimuli. The degree of attenuation depended on the individual pattern of characteristic resonance modes, i.e., suppression occurred when two resonant modes excited by both stimuli overlapped. It was postulated that the suppression observed in case of dual stimuli with closely-spaced components is due to mutual attenuation of the overlapping resonance modes.


Subject(s)
Acoustic Stimulation/methods , Cochlea/physiology , Otoacoustic Emissions, Spontaneous , Perceptual Masking , Adult , Humans , Reaction Time , Signal Processing, Computer-Assisted , Sound Spectrography , Time Factors , Vibration
17.
Acta Neurobiol Exp (Wars) ; 68(1): 103-12, 2008.
Article in English | MEDLINE | ID: mdl-18389021

ABSTRACT

The Short-Time Directed Transfer Function (SDTF) is an estimator based on a multivariate autoregressive model which has proved to be successful in ERP experiments, e.g. those connected with motor action and its imagination. The aim of this study is the evaluation of the performance of SDTF in the cognitive experiment. We have applied SDTF for the estimation of the pattern of EEG signal transmissions during a Continuous Attention Test (CAT). Time-frequency patterns of propagation were estimated for two experimental conditions. Statistical procedures based on thin-plate spline model were used for estimation of significant changes in respect to the reference epoch. The repeatability of the results for a subject and across the subjects were investigated. The effect of prolonged transmission in the gamma band from the prefrontal electrodes found in all subjects was explained by the active inhibition in the case when a subject had to sustain from performing the action.


Subject(s)
Attention/physiology , Brain Mapping , Evoked Potentials/physiology , Signal Processing, Computer-Assisted , Electroencephalography , Humans , Models, Neurological , Neuropsychological Tests
18.
J Acoust Soc Am ; 124(6): 3720-9, 2008 Dec.
Article in English | MEDLINE | ID: mdl-19206799

ABSTRACT

A synchronized spontaneous otoacoustic emission paradigm was used to measure the response in time intervals of 80 ms following a click stimulus. The responses obtained were decomposed into basic waveforms by means of adaptive approximations using a matching pursuit algorithm. High-resolution time-frequency distributions of signal energy were calculated and showed three types of component: (1) purely evoked of duration less than 5 ms, (2) longer lasting and decaying, with exponentially decreasing amplitude, and (3) long lasting and stable. The distributions of the frequencies of components of different durations were similar, with most components falling within the 1-2 kHz interval. It is shown that the presence of long-lasting components may influence the estimation of the latency of evoked emissions, especially at higher frequencies where the evoked part has a very short duration.


Subject(s)
Algorithms , Cochlea/physiology , Models, Biological , Otoacoustic Emissions, Spontaneous , Signal Processing, Computer-Assisted , Acoustic Stimulation , Adult , Female , Humans , Reaction Time , Time Factors , Young Adult
20.
Hear Res ; 231(1-2): 54-62, 2007 Sep.
Article in English | MEDLINE | ID: mdl-17606343

ABSTRACT

Transiently evoked otoacoustic emissions (TEOAEs) were recorded from full-term and preterm neonates. The responses were decomposed, by means of an adaptive approximation method, into waveforms of defined frequencies, amplitudes, latencies and time spans. Statistically significant differences in the latency values were found between the tested groups. Differences were also found in the time spans of the TEOAEs components. For the preterm neonates the contribution of long-duration components (i.e. long-time span) was higher. Those components were characterized by narrow frequency band and contrary to the short-time span components their latencies did not depend on frequency. The removal of the long-duration components, from the pool of analyzed data, decreased the latency differences between the tested groups. The results indicate that the origin of the longer latency values for preterm neonates (with a post conceptional age up to 33 weeks) in respect to full-term neonates can be attributed to the presence of long-lasting components. The correspondence, which was found between frequencies of long-duration components and the spectral peaks of spontaneous otoacoustic emissions (SOAEs), suggests that those components may be connected with SOAEs.


Subject(s)
Audiometry/methods , Hearing Disorders/diagnosis , Otoacoustic Emissions, Spontaneous , Acoustic Stimulation , Auditory Threshold , Cochlea/pathology , Evoked Potentials, Auditory , Gestational Age , Hearing , Hearing Disorders/pathology , Humans , Infant, Newborn , Infant, Premature , Neonatal Screening , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL