Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
J Med Genet ; 61(7): 689-698, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38458752

ABSTRACT

BACKGROUND: Plexins are large transmembrane receptors for the semaphorin family of signalling proteins. Semaphorin-plexin signalling controls cellular interactions that are critical during development as well as in adult life stages. Nine plexin genes have been identified in humans, but despite the apparent importance of plexins in development, only biallelic PLXND1 and PLXNA1 variants have so far been associated with Mendelian genetic disease. METHODS: Eight individuals from six families presented with a recessively inherited variable clinical condition, with core features of amelogenesis imperfecta (AI) and sensorineural hearing loss (SNHL), with variable intellectual disability. Probands were investigated by exome or genome sequencing. Common variants and those unlikely to affect function were excluded. Variants consistent with autosomal recessive inheritance were prioritised. Variant segregation analysis was performed by Sanger sequencing. RNA expression analysis was conducted in C57Bl6 mice. RESULTS: Rare biallelic pathogenic variants in plexin B2 (PLXNB2), a large transmembrane semaphorin receptor protein, were found to segregate with disease in all six families. The variants identified include missense, nonsense, splicing changes and a multiexon deletion. Plxnb2 expression was detected in differentiating ameloblasts. CONCLUSION: We identify rare biallelic pathogenic variants in PLXNB2 as a cause of a new autosomal recessive, phenotypically diverse syndrome with AI and SNHL as core features. Intellectual disability, ocular disease, ear developmental abnormalities and lymphoedema were also present in multiple cases. The variable syndromic human phenotype overlaps with that seen in Plxnb2 knockout mice, and, together with the rarity of human PLXNB2 variants, may explain why pathogenic variants in PLXNB2 have not been reported previously.


Subject(s)
Amelogenesis Imperfecta , Intellectual Disability , Pedigree , Humans , Animals , Male , Female , Mice , Intellectual Disability/genetics , Intellectual Disability/pathology , Amelogenesis Imperfecta/genetics , Amelogenesis Imperfecta/pathology , Receptors, Cell Surface/genetics , Nerve Tissue Proteins/genetics , Alleles , Child , Hearing Loss/genetics , Hearing Loss/pathology , Hearing Loss, Sensorineural/genetics , Hearing Loss, Sensorineural/pathology , Adult , Mutation/genetics , Adolescent , Child, Preschool , Phenotype
2.
J Med Genet ; 61(6): 503-519, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38471765

ABSTRACT

Rubinstein-Taybi syndrome (RTS) is an archetypical genetic syndrome that is characterised by intellectual disability, well-defined facial features, distal limb anomalies and atypical growth, among numerous other signs and symptoms. It is caused by variants in either of two genes (CREBBP, EP300) which encode for the proteins CBP and p300, which both have a function in transcription regulation and histone acetylation. As a group of international experts and national support groups dedicated to the syndrome, we realised that marked heterogeneity currently exists in clinical and molecular diagnostic approaches and care practices in various parts of the world. Here, we outline a series of recommendations that document the consensus of a group of international experts on clinical diagnostic criteria for types of RTS (RTS1: CREBBP; RTS2: EP300), molecular investigations, long-term management of various particular physical and behavioural issues and care planning. The recommendations as presented here will need to be evaluated for improvements to allow for continued optimisation of diagnostics and care.


Subject(s)
CREB-Binding Protein , E1A-Associated p300 Protein , Rubinstein-Taybi Syndrome , Rubinstein-Taybi Syndrome/genetics , Rubinstein-Taybi Syndrome/diagnosis , Rubinstein-Taybi Syndrome/therapy , Humans , CREB-Binding Protein/genetics , E1A-Associated p300 Protein/genetics , Consensus , Disease Management , Mutation
3.
BMC Oral Health ; 24(1): 960, 2024 Aug 17.
Article in English | MEDLINE | ID: mdl-39153972

ABSTRACT

BACKGROUND: Pattern of dental anomalies encountered in cleft patients shows subtle signs of genetic involvement. This study aimed to evaluate the prevalence and pattern of tooth agenesis and supernumerary teeth in Thai cleft population according to the cleft type. METHODS: Data collected from patients with cleft lip and palate, who had been treated at Tawanchai Cleft Center, Khon Kaen University, Thailand, available during year 2012-2022, were investigated. Records from 194 patients with non-syndromic clefts met the inclusion criteria. Standard dental records, and at least either orthopantomogram (OPG) or cone beam computed tomography (CBCT), were examined. Statistical analysis was performed using chi-square and binominal test (p ≤ 0.05). RESULTS: Prevalence of tooth agenesis was higher (77.3%) than that of supernumerary teeth (5.7%) and was more common in bilateral cleft lip and palate (BCLP) (88.1%) than in unilateral cleft lip and palate (UCLP) (72.6%) (p = 0.017). The upper lateral incisor was more frequently affected (46.4%), followed by the upper second premolar. The number of missing teeth observed on the left side was significantly higher. Patients with left UCLP (ULCLP) had the highest prevalence of tooth agenesis. A total of 41 tooth agenesis code (TAC) patterns was found. The prevalence of supernumerary teeth was comparable with 6.6% of ULCLP, 5.1% of BCLP, and 4.5% of URCLP. Tooth-number anomalies were observed more often in the BCLP and were most likely to occur on the left side of the maxilla. Both types of anomalies could be featured in a small proportion of cleft patients. CONCLUSIONS: More than half of the patients with non-syndromic cleft lip and palate in this study, presented with tooth-number anomalies. Tooth agenesis was approximately 10-time more prevalent than supernumerary teeth. Tooth agenesis was likely to appear on the left-side of the maxilla regardless of the laterality of the cleft.


Subject(s)
Anodontia , Cleft Lip , Cleft Palate , Cone-Beam Computed Tomography , Tooth, Supernumerary , Humans , Cleft Lip/epidemiology , Cleft Palate/epidemiology , Tooth, Supernumerary/epidemiology , Tooth, Supernumerary/diagnostic imaging , Thailand/epidemiology , Prevalence , Male , Female , Anodontia/epidemiology , Anodontia/diagnostic imaging , Adolescent , Child , Radiography, Panoramic , Young Adult , Southeast Asian People
4.
JAMA Dermatol ; 160(5): 544-549, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38506824

ABSTRACT

Importance: Kindler epidermolysis bullosa is a genetic skin-blistering disease associated with recessive inherited pathogenic variants in FERMT1, which encodes kindlin-1. Severe orofacial manifestations of Kindler epidermolysis bullosa, including early oral squamous cell carcinoma, have been reported. Objective: To determine whether hypoplastic pitted amelogenesis imperfecta is a feature of Kindler epidermolysis bullosa. Design, Settings, and Participants: This longitudinal, 2-center cohort study was performed from 2003 to 2023 at the Epidermolysis Bullosa Centre, University of Freiburg, Germany, and the Special Care Dentistry Clinic, University of Chile in association with DEBRA Chile. Participants included a convenience sampling of all patients with a diagnosis of Kindler epidermolysis bullosa. Main Outcomes and Measures: The primary outcomes were the presence of hypoplastic pitted amelogenesis imperfecta, intraoral wounds, gingivitis and periodontal disease, gingival hyperplasia, vestibular obliteration, cheilitis, angular cheilitis, chronic lip wounds, microstomia, and oral squamous cell carcinoma. Results: The cohort consisted of 36 patients (15 female [42%] and 21 male [58%]; mean age at first examination, 23 years [range, 2 weeks to 70 years]) with Kindler epidermolysis bullosa. The follow-up ranged from 1 to 24 years. The enamel structure was assessed in 11 patients, all of whom presented with enamel structure abnormalities. The severity of hypoplastic pitted amelogenesis imperfecta varied from generalized to localized pitting. Additional orofacial features observed include gingivitis and periodontal disease, which was present in 90% (27 of 30 patients) of those assessed, followed by intraoral lesions (16 of 22 patients [73%]), angular cheilitis (24 of 33 patients [73%]), cheilitis (22 of 34 patients [65%]), gingival overgrowth (17 of 26 patients [65%]), microstomia (14 of 25 patients [56%]), and vestibular obliteration (8 of 16 patients [50%]). Other features included chronic lip ulcers (2 patients) and oral squamous cell carcinoma with lethal outcome (2 patients). Conclusions and Relevance: These findings suggest that hypoplastic pitted amelogenesis imperfecta is a feature of Kindler epidermolysis bullosa and underscore the extent and severity of oral manifestations in Kindler epidermolysis bullosa and the need for early and sustained dental care.


Subject(s)
Epidermolysis Bullosa , Humans , Male , Female , Adult , Young Adult , Child, Preschool , Adolescent , Child , Epidermolysis Bullosa/complications , Middle Aged , Longitudinal Studies , Periodontal Diseases/complications , Periodontal Diseases/epidemiology , Carcinoma, Squamous Cell/pathology , Amelogenesis Imperfecta/complications , Amelogenesis Imperfecta/genetics , Amelogenesis Imperfecta/pathology , Cohort Studies , Mouth Neoplasms/pathology , Mouth Neoplasms/complications , Gingivitis/pathology , Gingivitis/etiology , Cheilitis , Chile
5.
Sci Rep ; 14(1): 445, 2024 01 03.
Article in English | MEDLINE | ID: mdl-38172607

ABSTRACT

Kohlschütter-Tönz syndrome (KTS) is a rare autosomal recessive disorder characterized by severe intellectual disability, early-onset epileptic seizures, and amelogenesis imperfecta. Here, we present a novel Rogdi mutant mouse deleting exons 6-11- a mutation found in KTS patients disabling ROGDI function. This Rogdi-/- mutant model recapitulates most KTS symptoms. Mutants displayed pentylenetetrazol-induced seizures, confirming epilepsy susceptibility. Spontaneous locomotion and circadian activity tests demonstrate Rogdi mutant hyperactivity mirroring patient spasticity. Object recognition impairment indicates memory deficits. Rogdi-/- mutant enamel was markedly less mature. Scanning electron microscopy confirmed its hypomineralized/hypomature crystallization, as well as its low mineral content. Transcriptomic RNA sequencing of postnatal day 5 lower incisors showed downregulated enamel matrix proteins Enam, Amelx, and Ambn. Enamel crystallization appears highly pH-dependent, cycling between an acidic and neutral pH during enamel maturation. Rogdi-/- teeth exhibit no signs of cyclic dental acidification. Additionally, expression changes in Wdr72, Slc9a3r2, and Atp6v0c were identified as potential contributors to these tooth acidification abnormalities. These proteins interact through the acidifying V-ATPase complex. Here, we present the Rogdi-/- mutant as a novel model to partially decipher KTS pathophysiology. Rogdi-/- mutant defects in acidification might explain the unusual combination of enamel and rare neurological disease symptoms.


Subject(s)
Amelogenesis Imperfecta , Dementia , Epilepsy , Tooth Abnormalities , Humans , Animals , Mice , Amelogenesis Imperfecta/genetics , Seizures , Mutation , Membrane Proteins/genetics , Nuclear Proteins/genetics
6.
Comput Biol Med ; 180: 108927, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39096608

ABSTRACT

Rare genetic diseases are difficult to diagnose and this translates in patient's diagnostic odyssey! This is particularly true for more than 900 rare diseases including orodental developmental anomalies such as missing teeth. However, if left untreated, their symptoms can become significant and disabling for the patient. Early detection and rapid management are therefore essential in this context. The i-Dent project aims to supply a pre-diagnostic tool to detect rare diseases with tooth agenesis of varying severity and pattern. To identify missing teeth, image segmentation models (Mask R-CNN, U-Net) have been trained for the automatic detection of teeth on patients' panoramic dental X-rays. Teeth segmentation enables the identification of teeth which are present or missing within the mouth. Furthermore, a dental age assessment is conducted to verify whether the absence of teeth is an anomaly or a characteristic of the patient's age. Due to the small size of our dataset, we developed a new dental age assessment technique based on the tooth eruption rate. Information about missing teeth is then used by a final algorithm based on the agenesis probabilities to propose a pre-diagnosis of a rare disease. The results obtained in detecting three types of genes (PAX9, WNT10A and EDA) by our system are very promising, providing a pre-diagnosis with an average accuracy of 72 %.

7.
Med Sci (Paris) ; 40(1): 16-23, 2024 Jan.
Article in French | MEDLINE | ID: mdl-38299898

ABSTRACT

Tooth formation results from specific epithelial-mesenchymal interactions, which summarize a number of developmental processes. Tooth anomalies may thus reflect subclinical diseases of the kidney, bone and more broadly of the mineral metabolism, skin or nervous system. Odontogenesis starts from the 3rd week of intrauterine life by the odontogenic orientation of epithelial cells by a first PITX2 signal. The second phase is the acquisition of the number, shape, and position of teeth. It depends on multiple transcription and growth factors (BMP, FGF, SHH, WNT). These ecto-mesenchymal interactions guide cell migration, proliferation, apoptosis and differentiation ending in the formation of the specific dental mineralized tissues. Thus, any alteration will have consequences on the tooth structure or shape. Resulting manifestations will have to be considered in the patient phenotype and the multidisciplinary care, but also may contribute to identify the altered genetic circuity.


Title: La dent : un marqueur d'anomalies génétiques du développement. Abstract: L'odontogenèse résulte d'évènements reflétant de multiples processus impliqués dans le développement : crêtes neurales, interactions épithélio-mésenchymateuses, minéralisation. Les anomalies dentaires sont donc d'excellents marqueurs de l'impact de mutations de gènes qui affectent différents systèmes biologiques, tels que le métabolisme minéral, l'os, le rein, la peau ou le système nerveux. Dans cette revue, nous présentons de façon synthétique les gènes impliqués dans plusieurs maladies rares au travers de défauts des dents caractéristiques, de nombre, de forme et de structure.


Subject(s)
Signal Transduction , Tooth , Humans , Epithelium , Tooth/metabolism , Odontogenesis/genetics , Cell Differentiation/genetics , Gene Expression Regulation, Developmental
SELECTION OF CITATIONS
SEARCH DETAIL