Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 75
Filter
1.
Int J Mol Sci ; 25(11)2024 May 27.
Article in English | MEDLINE | ID: mdl-38892027

ABSTRACT

Articular cartilage is crucial for joint function but its avascularity limits intrinsic repair, leading to conditions like osteoarthritis (OA). Chondromodulin-I (Cnmd) has emerged as a key molecule in cartilage biology, with potential implications for OA therapy. Cnmd is primarily expressed in cartilage and plays an important role in chondrocyte proliferation, cartilage homeostasis, and the blocking of angiogenesis. In vivo and in vitro studies on Cnmd, also suggest an involvement in bone repair and in delaying OA progression. Its downregulation correlates with OA severity, indicating its potential as a therapeutic target. Further research is needed to fully understand the mode of action of Cnmd and its beneficial implications for managing OA. This comprehensive review aims to elucidate the molecular characteristics of Cnmd, from its expression pattern, role in cartilage maintenance, callus formation during bone repair and association with OA.


Subject(s)
Cartilage, Articular , Intercellular Signaling Peptides and Proteins , Osteoarthritis , Animals , Humans , Cartilage, Articular/metabolism , Cartilage, Articular/pathology , Chondrocytes/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Membrane Proteins/metabolism , Osteoarthritis/metabolism , Osteoarthritis/pathology , Adult
2.
Int J Mol Sci ; 23(2)2022 Jan 15.
Article in English | MEDLINE | ID: mdl-35055112

ABSTRACT

In 3D bioprinting for cartilage regeneration, bioinks that support chondrogenic development are of key importance. Growth factors covalently bound in non-printable hydrogels have been shown to effectively promote chondrogenesis. However, studies that investigate the functionality of tethered growth factors within 3D printable bioinks are still lacking. Therefore, in this study, we established a dual-stage crosslinked hyaluronic acid-based bioink that enabled covalent tethering of transforming growth factor-beta 1 (TGF-ß1). Bone marrow-derived mesenchymal stromal cells (MSCs) were cultured over three weeks in vitro, and chondrogenic differentiation of MSCs within bioink constructs with tethered TGF-ß1 was markedly enhanced, as compared to constructs with non-covalently incorporated TGF-ß1. This was substantiated with regard to early TGF-ß1 signaling, chondrogenic gene expression, qualitative and quantitative ECM deposition and distribution, and resulting construct stiffness. Furthermore, it was successfully demonstrated, in a comparative analysis of cast and printed bioinks, that covalently tethered TGF-ß1 maintained its functionality after 3D printing. Taken together, the presented ink composition enabled the generation of high-quality cartilaginous tissues without the need for continuous exogenous growth factor supply and, thus, bears great potential for future investigation towards cartilage regeneration. Furthermore, growth factor tethering within bioinks, potentially leading to superior tissue development, may also be explored for other biofabrication applications.


Subject(s)
Bioprinting/methods , Cartilage, Articular/cytology , Hyaluronic Acid/chemistry , Mesenchymal Stem Cells/cytology , Transforming Growth Factor beta1/pharmacology , Cartilage, Articular/drug effects , Cartilage, Articular/metabolism , Cell Differentiation , Cells, Cultured , Extracellular Matrix/metabolism , Humans , Hydrogels , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Printing, Three-Dimensional , Tissue Engineering/methods , Tissue Scaffolds , Transforming Growth Factor beta1/chemistry
3.
Molecules ; 26(19)2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34641507

ABSTRACT

Hyaluronic acid (HA)-based hydrogels are very commonly applied as cell carriers for different approaches in regenerative medicine. HA itself is a well-studied biomolecule that originates from the physiological extracellular matrix (ECM) of mammalians and, due to its acidic polysaccharide structure, offers many different possibilities for suitable chemical modifications which are necessary to control, for example, network formation. Most of these chemical modifications are performed using the free acid function of the polymer and, additionally, lead to an undesirable breakdown of the biopolymer's backbone. An alternative modification of the vicinal diol of the glucuronic acid is oxidation with sodium periodate to generate dialdehydes via a ring opening mechanism that can subsequently be further modified or crosslinked via Schiff base chemistry. Since this oxidation causes a structural destruction of the polysaccharide backbone, it was our intention to study a novel synthesis protocol frequently applied to selectively oxidize the C6 hydroxyl group of saccharides. On the basis of this TEMPO/TCC oxidation, we studied an alternative hydrogel platform based on oxidized HA crosslinked using adipic acid dihydrazide as the crosslinker.


Subject(s)
Cyclic N-Oxides/chemistry , Hyaluronic Acid/chemistry , Hydrogels/chemistry , Mesenchymal Stem Cells/cytology , Adipates/chemistry , Cell Differentiation , Cell Survival , Chondrogenesis , Cross-Linking Reagents/chemistry , Elastic Modulus , Humans , Hyaluronan Receptors/metabolism , Hyaluronic Acid/metabolism , Oxidation-Reduction , Schiff Bases/chemistry , Surface Plasmon Resonance
4.
Int J Mol Sci ; 21(19)2020 Sep 25.
Article in English | MEDLINE | ID: mdl-32992847

ABSTRACT

Identification of articular cartilage progenitor cells (ACPCs) has opened up new opportunities for cartilage repair. These cells may be used as alternatives for or in combination with mesenchymal stromal cells (MSCs) in cartilage engineering. However, their potential needs to be further investigated, since only a few studies have compared ACPCs and MSCs when cultured in hydrogels. Therefore, in this study, we compared chondrogenic differentiation of equine ACPCs and MSCs in agarose constructs as monocultures and as zonally layered co-cultures under both normoxic and hypoxic conditions. ACPCs and MSCs exhibited distinctly differential production of the cartilaginous extracellular matrix (ECM). For ACPC constructs, markedly higher glycosaminoglycan (GAG) contents were determined by histological and quantitative biochemical evaluation, both in normoxia and hypoxia. Differential GAG production was also reflected in layered co-culture constructs. For both cell types, similar staining for type II collagen was detected. However, distinctly weaker staining for undesired type I collagen was observed in the ACPC constructs. For ACPCs, only very low alkaline phosphatase (ALP) activity, a marker of terminal differentiation, was determined, in stark contrast to what was found for MSCs. This study underscores the potential of ACPCs as a promising cell source for cartilage engineering.


Subject(s)
Cartilage, Articular/cytology , Chondrogenesis , Mesenchymal Stem Cells/cytology , Stem Cells/cytology , Tissue Engineering , Animals , Cell Differentiation , Cells, Cultured , Horses
5.
J Cell Physiol ; 233(4): 3315-3329, 2018 04.
Article in English | MEDLINE | ID: mdl-28888046

ABSTRACT

Adipose-derived stromal/stem cells (ASCs) represent a widely used cell source with multi-lineage differentiation capacity in approaches for tissue engineering and regenerative medicine. Despite the multitude of literature on their differentiation capacity, little is reported about the physiological properties contributing to and controlling the process of lineage differentiation. Direct intercellular communication between adjacent cells via gap junctions has been shown to modulate differentiation processes in other cell types, with connexin 43 (Cx43) being the most abundant isoform of the gap junction-forming connexins. Thus, in the present study we focused on the expression of Cx43 and gap junctional intercellular communication (GJIC) in human ASCs, and its significance for adipogenic differentiation of these cells. Cx43 expression in ASCs was demonstrated histologically and on the gene and protein expression level, and was shown to be greatly positively influenced by cell seeding density. Functionality of gap junctions was proven by dye transfer analysis in growth medium. Adipogenic differentiation of ASCs was shown to be also distinctly elevated at higher cell seeding densities. Inhibition of GJIC by 18α-glycyrrhetinic acid (AGA) significantly compromised adipogenic differentiation, as demonstrated by histology, triglyceride quantification, and adipogenic marker gene expression. Flow cytometry analysis showed a lower proportion of cells undergoing adipogenesis when GJIC was inhibited, further indicating the importance of GJIC in the differentiation process. Altogether, this study demonstrates the impact of direct cell-cell communication via gap junctions on the adipogenic differentiation process of ASCs, and may contribute to further integrate direct intercellular crosstalk in rationales for tissue engineering approaches.


Subject(s)
Adipogenesis , Adipose Tissue/cytology , Cell Communication , Gap Junctions/metabolism , Stem Cells/metabolism , Cell Count , Connexin 43/metabolism , Humans , Stromal Cells/metabolism
6.
Small ; 14(22): e1800232, 2018 05.
Article in English | MEDLINE | ID: mdl-29707891

ABSTRACT

The electrohydrodynamic stabilization of direct-written fluid jets is explored to design and manufacture tissue engineering scaffolds based on their desired fiber dimensions. It is demonstrated that melt electrowriting can fabricate a full spectrum of various fibers with discrete diameters (2-50 µm) using a single nozzle. This change in fiber diameter is digitally controlled by combining the mass flow rate to the nozzle with collector speed variations without changing the applied voltage. The greatest spectrum of fiber diameters was achieved by the simultaneous alteration of those parameters during printing. The highest placement accuracy could be achieved when maintaining the collector speed slightly above the critical translation speed. This permits the fabrication of medical-grade poly(ε-caprolactone) into complex multimodal and multiphasic scaffolds, using a single nozzle in a single print. This ability to control fiber diameter during printing opens new design opportunities for accurate scaffold fabrication for biomedical applications.


Subject(s)
Electrochemistry/methods , Tissue Engineering/methods , Tissue Scaffolds/chemistry , Adipose Tissue/cytology , Humans , Pressure , Stem Cells/cytology
8.
BMC Musculoskelet Disord ; 17: 287, 2016 07 15.
Article in English | MEDLINE | ID: mdl-27422525

ABSTRACT

BACKGROUND: Tibial head depression fractures demand a high level of fracture stabilization to prevent a secondary loss of reduction after surgery. Elderly individuals are at an increased risk of developing these fractures, and biomechanical investigations of the fractures are rare. Therefore, the aim of this study was to systematically analyze different types of osteosyntheses in combination with two commonly used bone substitutes. METHODS: Lateral tibial head depression fractures were created in synthetic bones. After reduction, the fractures were stabilized with eight different treatment options of osteosynthesis alone or in combination with a bone substitute. Two screws, 4 screws and a lateral buttress plate were investigated. As a bone substitute, two common clinically used calcium phosphate cements, Norian® Drillable and ChronOS™ Inject, were applied. Displacement of the articular fracture fragment (mm) during cyclic loading, stiffness (N/mm) and maximum load (N) in Load-to-Failure tests were measured. RESULTS: The three different osteosyntheses (Group 1: 2 screws, group 2: 4 screws, group 3: plate) alone revealed a significantly higher displacement compared to the control group (Group 7: ChronOS™ Inject only) (Group 1, 7 [p < 0.01]; group 2, 7 [p = 0.04]; group 3, 7 [p < 0.01]). However, the osteosyntheses in combination with bone substitute exhibited no differences in displacement compared to the control group. The buttress plate demonstrated a higher normalized maximum load than the 2 and 4 screw osteosynthesis. Comparing the two different bone substitutes to each other, ChronOS™ inject had a significantly higher stiffness and lower displacement than Norian® Drillable. CONCLUSIONS: The highest biomechanical stability under maximal loading was provided by a buttress plate osteosynthesis. A bone substitute, such as the biomechanically favorable ChronOS™ Inject, is essential to reduce the displacement under lower loading.


Subject(s)
Bone Cements/therapeutic use , Bone Substitutes/therapeutic use , Calcium Phosphates/therapeutic use , Fracture Fixation, Internal/methods , Intra-Articular Fractures/surgery , Tibial Fractures/surgery , Biomechanical Phenomena , Bone Plates , Bone Screws , Fracture Fixation, Internal/instrumentation , Humans , Tibial Fractures/complications
9.
Cytotherapy ; 16(12): 1700-8, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25304663

ABSTRACT

BACKGROUND AIMS: Complex injuries of the upper and lower extremities often result in scarring and subsequent adhesion formation, which may cause severe pain and distinctly reduce range of motion. In revision surgery, replacement of the missing subcutaneous tissue is desirable to prevent new adhesions, to cushion scarred tendons and nerves and to regain tissue elasticity. Therefore, the objective of this study was the in vitro evaluation of cell-seeded collagen matrices to serve as the basis for the reconstruction of the subcutaneous adipose tissue layer. METHODS: Five commercially available acellular dermal collagen matrices were seeded with human adipose-derived stromal cells (hASC). Size and shape stability of cell-matrix constructs were assessed and cell adhesion onto the matrix surface was evaluated histologically. Adipogenic differentiation of hASC on matrices was evaluated by means of histological staining, triglyceride quantification, and quantitative real-time polymerase chain reaction gene expression analysis. RESULTS: The collagen matrix Permacol was the only cell-seeded material that exhibited excellent size and shape stability. For Permacol and Strattice, successful seeding with continuous cell layers on top of the matrices was observed. For both matrices, histological staining, triglyceride quantification and messenger RNA expression of adipogenic transcription factors indicated substantial adipogenic differentiation of hASC after long-term induction as well as after short-term induction of only 4 days. CONCLUSIONS: Of all matrices investigated, only Permacol exhibited adequate handling stability and the development of a thin adipose tissue layer on top of the matrix. Thus, this matrix appears promising to be used in the development of a subcutaneous cushioning layer after complex injuries involving large scar formation.


Subject(s)
Collagen/chemistry , Extracellular Matrix/chemistry , Mesenchymal Stem Cells/metabolism , Subcutaneous Fat/metabolism , Adult , Cell Culture Techniques , Cells, Cultured , Female , Gene Expression Regulation , Humans , Male , Mesenchymal Stem Cells/cytology , Middle Aged , Subcutaneous Fat/cytology
10.
ScientificWorldJournal ; 2014: 648787, 2014.
Article in English | MEDLINE | ID: mdl-24757429

ABSTRACT

PURPOSE: To analyse the biomechanical characteristics of locking plates under cyclic loading compared to a nonlocking plate in a diaphyseal metacarpal fracture. METHODS: Oblique diaphyseal shaft fractures in porcine metacarpal bones were created in a biomechanical fracture model. An anatomical reduction and stabilization with a nonlocking and a comparable locking plate in mono- or bicortical screw fixation followed. Under cyclic loading, the displacement, and in subsequent load-to-failure tests, the maximum load and stiffness were measured. RESULTS: For the monocortical screw fixation of the locking plate, a similar displacement, maximum load, and stiffness could be demonstrated compared to the bicortical screw fixation of the nonlocking plate. CONCLUSIONS: Locking plates in monocortical configuration may function as a useful alternative to the currently common treatment with bicortical fixations. Thereby, irritation of the flexor tendons would be avoided without compromising the stability, thus enabling the necessary early functional rehabilitation.


Subject(s)
Bone Plates , Fractures, Bone/physiopathology , Fractures, Bone/surgery , Biomechanical Phenomena , Humans , Stress, Mechanical
11.
J Orthop Sci ; 19(6): 978-83, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25113667

ABSTRACT

BACKGROUND: The aim of this study was to investigate a drillable and injectable bone substitute (calcium phosphate cement) and the operative technique enabled by the drillable option in a new biomechanical fracture model for tibial depression fractures in synthetic bones. MATERIALS AND METHODS: Lateral depression fractures of the tibial plateau (AO 41-B2, Schatzker III) were created in a biomechanical fracture model in three different synthetic bones (Sawbone 3401, Synbone 1110/1116). Reproducible fractures were generated employing Synbone 1110, which exhibited a comparable strength to human osteoporotic bones and was used for the further experiments. After reduction of the fractures, the stabilization was performed with two different operative techniques. In group 1, first an osteosynthesis with four screws was performed and then the metaphyseal defect was filled up with calcium phosphate cement (Norian drillable). In group 2, initially the filling up with Norian drillable was done enabling a complete filling of the defect, followed by placing of the screws. Displacement under cyclic loading with 250 N for 3,000 cycles, stiffness, and maximum load in load-to-failure tests were determined. RESULTS: A comparison of the two operative techniques of stabilization showed a distinctly lower displacement and higher stiffness for group 2 when the defect was filled up first. For the maximum load, no significant differences could be demonstrated. CONCLUSIONS: A complete filling of the defect by first applying the calcium phosphate cement significantly reduces the secondary loss of reduction of the depression fracture fragment under cyclic loading with a clinically relevant partial weight bearing. The beneficial effects of drillable calcium phosphate cement may also be transferable to defects other than tibial-head depression fractures.


Subject(s)
Bone Cements , Bone Screws , Bone Substitutes , Fracture Fixation, Internal/methods , Knee Joint/surgery , Tibial Fractures/surgery , Biomechanical Phenomena , Humans , Materials Testing
12.
Methods Mol Biol ; 2783: 221-233, 2024.
Article in English | MEDLINE | ID: mdl-38478236

ABSTRACT

Three-dimensional (3D) cell culture techniques have become a valuable tool to mimic the complex interactions of cells with each other and their surrounding extracellular matrix as they occur in vivo. In this respect, 3D spheroids are widely acknowledged as self-assembled cellular aggregates that can be generated from a variety of cell types without the need for exogenous material while being highly reproducible, easy to handle, and cost-effective. Furthermore, due to their capacity to be developed into microtissues, spheroids represent potential building blocks for various tissue engineering applications, including 3D bioprinting approaches for tissue model development. Adipose-derived stromal/stem cells (ASCs), due to their ease of isolation, multipotent nature, and secretory capacity, represent an attractive cell source employed in numerous tissue engineering studies and other cell-based therapy approaches. In this chapter, we describe two procedures for robust spheroid generation, namely the liquid overlay technique, either using agarose-coated 96-well plates or employing agarose-cast micromolds. Furthermore, we show, in principle, the generation of ASC spheroids with subsequent adipogenic differentiation and the spheroid generation using adipogenically differentiated ASCs, as well as the morphological characterization of generated spheroids.


Subject(s)
Adipocytes , Spheroids, Cellular , Sepharose , Cell Differentiation , Tissue Engineering/methods , Adipose Tissue
13.
Adv Biol (Weinh) ; : e2400184, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38971965

ABSTRACT

Triple-negative breast cancer (TNBC) is the most invasive type of breast cancer with high risk of brain metastasis. To better understand interactions between breast tumors with the brain extracellular matrix (ECM), a 3D cell culture model is implemented using a thiolated hyaluronic acid (HA-SH) based hydrogel. The latter is used as HA represents a major component of brain ECM. Melt-electrowritten (MEW) scaffolds of box- and triangular-shaped polycaprolactone (PCL) micro-fibers for hydrogel reinforcement are utilized. Two different molecular weight HA-SH materials (230 and 420 kDa) are used with elastic moduli of 148 ± 34 Pa (soft) and 1274 ± 440 Pa (stiff). Both hydrogels demonstrate similar porosities. The different molecular weight of HA-SH, however, significantly changes mechanical properties, e.g., stiffness, nonlinearity, and hysteresis. The breast tumor cell line MDA-MB-231 forms mainly multicellular aggregates in both HA-SH hydrogels but sustains high viability (75%). Supplementation of HA-SH hydrogels with ECM components does not affect gene expression but improves cell viability and impacts cellular distribution and morphology. The presence of other brain cell types further support numerous cell-cell interactions with tumor cells. In summary, the present 3D cell culture model represents a novel tool establishing a disease cell culture model in a systematic way.

14.
Biofabrication ; 16(3)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38934608

ABSTRACT

Breast cancer develops in close proximity to mammary adipose tissue and interactions with the local adipose environment have been shown to drive tumor progression. The specific role, however, of this complex tumor microenvironment in cancer cell migration still needs to be elucidated. Therefore, in this study, a 3D bioprinted breast cancer model was developed that allows for a comprehensive analysis of individual tumor cell migration parameters in dependence of adjacent adipose stroma. In this co-culture model, a breast cancer compartment with MDA-MB-231 breast cancer cells embedded in collagen is surrounded by an adipose tissue compartment consisting of adipose-derived stromal cell (ASC) or adipose spheroids in a printable bioink based on thiolated hyaluronic acid. Printing parameters were optimized for adipose spheroids to ensure viability and integrity of the fragile lipid-laden cells. Preservation of the adipogenic phenotype after printing was demonstrated by quantification of lipid content, expression of adipogenic marker genes, the presence of a coherent adipo-specific extracellular matrix, and cytokine secretion. The migration of tumor cells as a function of paracrine signaling of the surrounding adipose compartment was then analyzed using live-cell imaging. The presence of ASC or adipose spheroids substantially increased key migration parameters of MDA-MB-231 cells, namely motile fraction, persistence, invasion distance, and speed. These findings shed new light on the role of adipose tissue in cancer cell migration. They highlight the potential of our 3D printed breast cancer-stroma model to elucidate mechanisms of stroma-induced cancer cell migration and to serve as a screening platform for novel anti-cancer drugs targeting cancer cell dissemination.


Subject(s)
Adipose Tissue , Bioprinting , Breast Neoplasms , Cell Movement , Printing, Three-Dimensional , Spheroids, Cellular , Stromal Cells , Humans , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Spheroids, Cellular/pathology , Spheroids, Cellular/metabolism , Cell Movement/drug effects , Adipose Tissue/cytology , Female , Cell Line, Tumor , Stromal Cells/pathology , Stromal Cells/metabolism , Stromal Cells/cytology , Coculture Techniques , Tumor Microenvironment
15.
Int Orthop ; 37(1): 153-8, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23229799

ABSTRACT

PURPOSE: Insulin is a commonly used additive in chondrogenic media for differentiating mesenchymal stem cells (MSCs). The indispensability of other bioactive factors like TGF-ß or dexamethasone in these medium formulations has been shown, but the role of insulin is unclear. The purpose of this study was to investigate whether insulin is essential for MSC chondrogenesis and if there is a dose-dependent effect of insulin on MSC chondrogenesis. METHODS: We cultivated human MSCs in pellet culture in serum-free chondrogenic medium with insulin concentrations between 0 and 50 µg/ml and assessed the grade of chondrogenic differentiation by histological evaluation and determination of glycosaminoglycan (GAG), total collagen and DNA content. We further tested whether insulin can be delivered in an amount sufficient for MSC chondrogenesis via a drug delivery system in insulin-free medium. RESULTS: Chondrogenesis was not induced by standard chondrogenic medium without insulin and the expression of cartilage differentiation markers was dose-dependent at insulin concentrations between 0 and 10 µg/ml. An insulin concentration of 50 µg/ml had no additional effect compared with 10 µg/ml. Insulin was delivered by a release system into the cell culture under insulin-free conditions in an amount sufficient to induce chondrogenesis. CONCLUSIONS: Insulin is essential for MSC chondrogenesis in this system and chondrogenic differentiation is influenced by insulin in a dose-dependent manner. Insulin can be provided in a sufficient amount by a drug delivery system. Therefore, insulin is a suitable and inexpensive indicator substance for testing drug release systems in vitro.


Subject(s)
Chondrogenesis/drug effects , Insulin/pharmacology , Mesenchymal Stem Cells/drug effects , Analysis of Variance , Cell Differentiation , Cells, Cultured , Collagen/metabolism , DNA/metabolism , Dose-Response Relationship, Drug , Drug Delivery Systems , Enzyme-Linked Immunosorbent Assay , Glycosaminoglycans/metabolism , Humans , In Vitro Techniques , Insulin/administration & dosage , Staining and Labeling
16.
Cancers (Basel) ; 15(13)2023 Jul 05.
Article in English | MEDLINE | ID: mdl-37444610

ABSTRACT

The tumor microenvironment (TME) in breast cancer is determined by the complex crosstalk of cancer cells with adipose tissue-inherent cells such as adipose-derived stromal cells (ASCs) and adipocytes resulting from the local invasion of tumor cells in the mammary fat pad. This leads to heterotypic cellular contacts between these cell types. To adequately mimic the specific cell-to-cell interaction in an in vivo-like 3D environment, we developed a direct co-culture spheroid model using ASCs or differentiated adipocytes in combination with MDA-MB-231 or MCF-7 breast carcinoma cells. Co-spheroids were generated in a well-defined and reproducible manner in a high-throughput process. We compared the expression of the tumor-promoting chemokine CCL5 and its cognate receptors in these co-spheroids to indirect and direct standard 2D co-cultures. A marked up-regulation of CCL5 and in particular the receptor CCR1 with strict dependence on cell-cell contacts and culture dimensionality was evident. Furthermore, the impact of direct contacts between ASCs and tumor cells and the involvement of CCR1 in promoting tumor cell migration were demonstrated. Overall, these results show the importance of direct 3D co-culture models to better represent the complex tumor-stroma interaction in a tissue-like context. The unveiling of tumor-specific markers that are up-regulated upon direct cell-cell contact with neighboring stromal cells, as demonstrated in the 3D co-culture spheroids, may represent a promising strategy to find new targets for the diagnosis and treatment of invasive breast cancer.

17.
J Exp Orthop ; 10(1): 29, 2023 Mar 21.
Article in English | MEDLINE | ID: mdl-36943593

ABSTRACT

PURPOSE: Hypertrophic cartilage is an important characteristic of osteoarthritis and can often be found in patients suffering from osteoarthritis. Although the exact pathomechanism remains poorly understood, hypertrophic de-differentiation of chondrocytes also poses a major challenge in the cell-based repair of hyaline cartilage using mesenchymal stromal cells (MSCs). While different members of the transforming growth factor beta (TGF-ß) family have been shown to promote chondrogenesis in MSCs, the transition into a hypertrophic phenotype remains a problem. To further examine this topic we compared the effects of the transcription growth and differentiation factor 5 (GDF-5) and the mutant R57A on in vitro chondrogenesis in MSCs. METHODS: Bone marrow-derived MSCs (BMSCs) were placed in pellet culture and in-cubated in chondrogenic differentiation medium containing R57A, GDF-5 and TGF-ß1 for 21 days. Chondrogenesis was examined histologically, immunohistochemically, through biochemical assays and by RT-qPCR regarding the expression of chondrogenic marker genes. RESULTS: Treatment of BMSCs with R57A led to a dose dependent induction of chondrogenesis in BMSCs. Biochemical assays also showed an elevated glycosaminoglycan (GAG) content and expression of chondrogenic marker genes in corresponding pellets. While treatment with R57A led to superior chondrogenic differentiation compared to treatment with the GDF-5 wild type and similar levels compared to incubation with TGF-ß1, levels of chondrogenic hypertrophy were lower after induction with R57A and the GDF-5 wild type. CONCLUSIONS: R57A is a stronger inducer of chondrogenesis in BMSCs than the GDF-5 wild type while leading to lower levels of chondrogenic hypertrophy in comparison with TGF-ß1.

18.
Adv Healthc Mater ; 12(30): e2300977, 2023 12.
Article in English | MEDLINE | ID: mdl-37699146

ABSTRACT

Volumetric bioprinting (VBP) is a light-based 3D printing platform, which recently prompted a paradigm shift for additive manufacturing (AM) techniques considering its capability to enable the fabrication of complex cell-laden geometries in tens of seconds with high spatiotemporal control and pattern accuracy. A flexible allyl-modified gelatin (gelAGE)-based photoclick resin is developed in this study to fabricate matrices with exceptionally soft polymer networks (0.2-1.0 kPa). The gelAGE-based resin formulations are designed to exploit the fast thiol-ene crosslinking in combination with a four-arm thiolated polyethylene glycol (PEG4SH) in the presence of a photoinitiator. The flexibility of the gelAGE biomaterial platform allows one to tailor its concentration spanning from 2.75% to 6% and to vary the allyl to thiol ratio without hampering the photocrosslinking efficiency. The thiol-ene crosslinking enables the production of viable cell-material constructs with a high throughput in tens of seconds. The suitability of the gelAGE-based resins is demonstrated by adipogenic differentiation of adipose-derived stromal cells (ASC) after VBP and by the printing of more fragile adipocytes as a proof-of-concept. Taken together, this study introduces a soft photoclick resin which paves the way for volumetric printing applications toward soft tissue engineering.


Subject(s)
Bioprinting , Tissue Engineering , Tissue Engineering/methods , Gelatin , Bioprinting/methods , Hydrogels , Printing, Three-Dimensional , Sulfhydryl Compounds , Tissue Scaffolds
19.
Adv Mater ; 35(36): e2301673, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37269532

ABSTRACT

In living tissues, cells express their functions following complex signals from their surrounding microenvironment. Capturing both hierarchical architectures at the micro- and macroscale, and anisotropic cell patterning remains a major challenge in bioprinting, and a bottleneck toward creating physiologically-relevant models. Addressing this limitation, a novel technique is introduced, termed Embedded Extrusion-Volumetric Printing (EmVP), converging extrusion-bioprinting and layer-less, ultra-fast volumetric bioprinting, allowing spatially pattern multiple inks/cell types. Light-responsive microgels are developed for the first time as bioresins (µResins) for light-based volumetric bioprinting, providing a microporous environment permissive for cell homing and self-organization. Tuning the mechanical and optical properties of gelatin-based microparticles enables their use as support bath for suspended extrusion printing, in which features containing high cell densities can be easily introduced. µResins can be sculpted within seconds with tomographic light projections into centimeter-scale, granular hydrogel-based, convoluted constructs. Interstitial microvoids enhanced differentiation of multiple stem/progenitor cells (vascular, mesenchymal, neural), otherwise not possible with conventional bulk hydrogels. As proof-of-concept, EmVP is applied to create complex synthetic biology-inspired intercellular communication models, where adipocyte differentiation is regulated by optogenetic-engineered pancreatic cells. Overall, EmVP offers new avenues for producing regenerative grafts with biological functionality, and for developing engineered living systems and (metabolic) disease models.


Subject(s)
Bioprinting , Microgels , Tissue Engineering/methods , Hydrogels , Bioprinting/methods , Printing, Three-Dimensional , Tissue Scaffolds
20.
Small ; 8(24): 3847-56, 2012 Dec 21.
Article in English | MEDLINE | ID: mdl-22911477

ABSTRACT

Because nanoparticles are finding uses in myriad biomedical applications, including the delivery of nucleic acids, a detailed knowledge of their interaction with the biological system is of utmost importance. Here the size-dependent uptake of gold nanoparticles (AuNPs) (20, 30, 50 and 80 nm), coated with a layer-by-layer approach with nucleic acid and poly(ethylene imine) (PEI), into a variety of mammalian cell lines is studied. In contrast to other studies, the optimal particle diameter for cellular uptake is determined but also the number of therapeutic cargo molecules per cell. It is found that 20 nm AuNPs, with diameters of about 32 nm after the coating process and about 88 nm including the protein corona after incubation in cell culture medium, yield the highest number of nanoparticles and therapeutic DNA molecules per cell. Interestingly, PEI, which is known for its toxicity, can be applied at significantly higher concentrations than its IC(50) value, most likely because it is tightly bound to the AuNP surface and/or covered by a protein corona. These results are important for the future design of nanomaterials for the delivery of nucleic acids in two ways. They demonstrate that changes in the nanoparticle size can lead to significant differences in the number of therapeutic molecules delivered per cell, and they reveal that the toxicity of polyelectrolytes can be modulated by an appropriate binding to the nanoparticle surface.


Subject(s)
DNA/administration & dosage , Gold , Metal Nanoparticles , Animals , Base Sequence , Biological Transport, Active , CHO Cells , Coated Materials, Biocompatible , Cricetinae , Cricetulus , DNA/genetics , Drug Delivery Systems , HeLa Cells , Humans , MCF-7 Cells , Metal Nanoparticles/chemistry , Metal Nanoparticles/ultrastructure , Microscopy, Electron, Transmission , Nanotechnology , Particle Size , Polyethyleneimine , RNA, Small Interfering/genetics , Surface Plasmon Resonance
SELECTION OF CITATIONS
SEARCH DETAIL