Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
Phytother Res ; 35(7): 3533-3557, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33590924

ABSTRACT

Oxidative stress is the imbalance between reactive oxygen species (ROS) production, and accumulation and the ability of a biological system to clear these reactive products. This imbalance leads to cell and tissue damage causing several disorders in human body, such as neurodegeneration, metabolic problems, cardiovascular diseases, and cancer. Cucurbitaceae family consists of about 100 genera and 1,000 species of plants including mostly tropical, annual or perennial, monoecious, and dioecious herbs. The plants from Cucurbita species are rich sources of phytochemicals and act as a rich source of antioxidants. The most important phytochemicals present in the cucurbits are cucurbitacins, saponins, carotenoids, phytosterols, and polyphenols. These bioactive phyto-constituents are responsible for the pharmacological effects including antioxidant, antitumor, antidiabetic, hepatoprotective, antimicrobial, anti-obesity, diuretic, anti-ulcer activity, and antigenotoxic. A wide number of in vitro and in vivo studies have ascribed these health-promoting effects of Cucurbita genus. Results of clinical trials suggest that Cucurbita provides health benefits for diabetic patients, patients with benign prostate hyperplasia, infertile women, postmenopausal women, and stress urinary incontinence in women. The intend of the present review is to focus on the protective role of Cucurbita spp. phytochemicals on oxidative stress-related disorders on the basis of preclinical and human studies. The review will also give insights on the in vitro and in vivo antioxidant potential of the Cucurbitaceae family as a whole.


Subject(s)
Antioxidants , Cucurbita , Cucurbitaceae , Phytochemicals , Antioxidants/pharmacology , Cucurbita/chemistry , Cucurbitaceae/chemistry , Humans , Oxidative Stress , Phytochemicals/pharmacology , Plant Extracts/pharmacology
2.
Molecules ; 26(15)2021 Jul 22.
Article in English | MEDLINE | ID: mdl-34361585

ABSTRACT

Bioactive molecules from the class of polyphenols are secondary metabolites from plants. They are present in honey from nectar and pollen of flowers from where honeybees collect the "raw material" to produce honey. Robinia pseudoacacia and Helianthus annuus are important sources of nectar for production of two monofloral honeys with specific characteristics and important biological activity. A high-performance liquid chromatography-electro spray ionization-mass spectrometry (HPLC-ESI-MS) separation method was used to determine polyphenolic profile from the two types of Romanian unifloral honeys. Robinia and Helianthus honey showed a common flavonoid profile, where pinobanksin (1.61 and 1.94 mg/kg), pinocembrin (0.97 and 1.78 mg/kg) and chrysin (0.96 and 1.08 mg/kg) were identified in both honey types; a characteristic flavonoid profile in which acacetin (1.20 mg/kg), specific only for Robinia honey, was shown; and quercetin (1.85 mg/kg), luteolin (21.03 mg/kg), kaempferol (0.96 mg/kg) and galangin (1.89 mg/kg), specific for Helianthus honey, were shown. In addition, different phenolic acids were found in Robinia and Helianthus honey, while abscisic acid was found only in Robinia honey. Abscisic acid was correlated with geographical location; the samples collected from the south part of Romania had higher amounts, due to climatic conditions. Acacetin was proposed as a biochemical marker for Romanian Robinia honey and quercetin for Helianthus honey.


Subject(s)
Food Analysis , Helianthus , Honey/analysis , Polyphenols/analysis , Robinia , Spectrometry, Mass, Electrospray Ionization , Flavones/analysis , Quercetin/analysis
3.
Plants (Basel) ; 13(3)2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38337961

ABSTRACT

Fallopia japonica (Japanese knotweed, Reynoutria japonica or Polygonum cuspidatum) is considered an extremely invasive plant worldwide and a bioindicator of heavy metals. Yet, its potential as a crop for honeybees is still underevaluated. This study employs atomic absorption spectrometry to quantitatively analyze the concentration of macro-elements, namely, calcium (Ca), potassium (K) and magnesium (Mg); micro-elements, such as copper (Cu), iron (Fe), manganese (Mn) and selenium (Se); and trace elements, i.e., cadmium (Cd), chromium (Cr), nickel (Ni) and lead (Pb) in different anatomic parts of Fallopia japonica (FJ) plants (roots, rhizomes, stems, leaves) and their traceability into honey. This research encompasses a thorough examination of samples collected from the northwestern and western part of Romania, providing insights into their elemental composition. The results showed that the level of trace elements decreases in terms of traceability in honey samples (Pb was not detected in any of the analyzed samples, while Cd had a minimum content 0.001 mg/kg), ensuring its quality and health safety for consumption. Moreover, the data generated can function as a valuable resource to explore the plant's positive eco-friendly impacts, particularly in relation to its honey.

4.
Life (Basel) ; 13(7)2023 Jul 17.
Article in English | MEDLINE | ID: mdl-37511948

ABSTRACT

Royal jelly (RJ), a highly nutritious natural product, has gained recognition for its remarkable health-promoting properties, leading to its widespread use in the pharmaceutical, food, and cosmetic industries. Extensive investigations have revealed that RJ possesses a broad spectrum of therapeutic effects, including anti-inflammatory, antioxidant, antitumor, anti-aging, and antibacterial activities. Distinctive among bee products, RJ exhibits a significantly higher water and relatively lower sugar content. It is characterized by its substantial protein content, making it a valuable source of this essential macronutrient. Moreover, RJ contains a diverse array of bioactive substances, such as lipids, phenolic compounds, flavonoids, organic acids, minerals, vitamins, enzymes, and hormones. This review aims to provide an overview of current research on the bioactive components present in RJ and their associated health-promoting qualities. According to existing literature, these bioactive substances hold great potential as alternative approaches to enhancing human health. Notably, this review emphasizes the anti-inflammatory properties of RJ, particularly in relation to inflammatory diseases, such as multiple sclerosis (MS), rheumatoid arthritis (RA), and inflammatory bowel diseases (IBD). Furthermore, we delve into the antitumor and antioxidant activities of RJ, aiming to deepen our understanding of its biological functions. By shedding light on the multifaceted benefits of RJ, this review seeks to encourage its utilization and inspire further investigation in this field.

5.
Antioxidants (Basel) ; 12(7)2023 Jul 06.
Article in English | MEDLINE | ID: mdl-37507929

ABSTRACT

Due to the increased emergence of drug-resistant bacteria, the declining efficiency of traditional antimicrobials has generated severe concerns in recent years. Subsequently, more interest in other antimicrobial agents from natural resources draws more attention as an alternative to conventional medications. This study investigated the bactericidal mechanism of monoterpene 1,8-cineol (eucalyptol), a major compound of various essential oils, against methicillin-resistant Staphylococcus aureus (MRSA). The antibacterial activity of 1,8-cineol was assessed by an MTT assay against clinical and reference MRSA strains. A cell membrane integrity test, followed by zeta potential (ZP) measurements, was performed to evaluate the disruption of the bacterial membrane integrity. Additionally, the cytotoxic effect of this molecule on MRSA bacteria was investigated by monitoring reactive oxygen species (ROS) generation, lipid peroxidation (MDA), and antioxidant enzyme activities (CAT and SOD). Regarding the anti-staphylococcal effect, the obtained results revealed the antibacterial efficacy of 1,8-cineol wherein the minimum inhibitory concentrations were equal to 7.23 mg/mL. Furthermore, it enhanced membrane permeability, with a 5.36-fold increase in nucleic acid and protein leakage as compared with untreated strains, along with the alteration of surface charge (ZP) in MRSA cells. The tested compound caused an increase in ROS generation reaching 17,462 FU and MDA production, reaching 9.56 µM/mg protein, in treated bacterial cells, along with a decrease in oxidative stress enzymes activities. Our findings suggest that 1,8-cineol has the ability to damage the membrane integrity and induce ROS-mediated oxidative stress in MRSA cells, leading to its antagonistic effect against this pathogen and consequently aiding in the reversal of antibiotic resistance.

6.
Plants (Basel) ; 11(17)2022 Sep 02.
Article in English | MEDLINE | ID: mdl-36079680

ABSTRACT

Propolis or "bee glue" is a resinous waxy substance that is produced by honeybees (Apis mellifera) by mixing the exudates collected from plants, namely tree buds, sap flows, leaves, branches and barks with their saliva and beeswax. Propolis composition is very complex. Its main constituents are resins and volatiles originating from plants and wax added by the bee. The biological activity of propolis is assigned to these plant-derived substances. The main three types of propolis are European propolis, called poplar type propolis; Green Brazilian propolis (derived mainly from the leaf resin of Baccharis dracunculifolia) and Red Cuban propolis (from the floral resin of Clusia rosea). The plant's source gives it a specific composition and properties for the propolis types that are coming from different regions of the world. For this reason, studies on the chemical composition of propolis as well as its botanical sources resulting in its geographically conditioned diversity, were a very good theme for the present Special Issue (SI) of Plants journal. The present SI contains nine original contributions addressing propolis plant sources, their chemical composition and different bioactive properties derived from this origin. The chemical composition of propolis that is made by the bees was also discussed, as well as the different medical activities of propolis extract. The papers cover a wide range of subjects, including (i) the plant species used by the bees as raw material for propolis production, (ii) the biological activities of plant extracts related to propolis, (iii) the chemical composition of different types of propolis, (iv) the biological activity of propolis, (v) propolis and human health, and (vi) synergism between plants and propolis in human health. The studies have been carried out in both in vitro and in vivo surveys and a wide range of geographic regions are covered in the sample collection.

7.
Plants (Basel) ; 11(9)2022 Apr 29.
Article in English | MEDLINE | ID: mdl-35567206

ABSTRACT

Propolis composition depends on several factors. The classification of propolis is based on its geographical location, color and agricultural characteristics. It is also classified according to the flora where the bees collect the resins, which represent the raw material for propolis production. Propolis possesses high antioxidant activity determined by its phenolic compounds. Due to diverse composition and possible impact on human health, eight samples of propolis were evaluated for their phenolic composition and antioxidant activity. Samples of Polish, Romanian, Turkish and Uruguayan origin propolis were used for phenolic spectrum determination using high performance liquid chromatography and photodiode array detection and in vitro DPPH and ABTS methods were used to determine the antioxidant activity of the extracts. PCA and HCA models were applied to evaluate the correlation between isolated polyphenols and antioxidant activity. The results confirmed variability in propolis composition depending on the geographical region of collection and the plant sources, and correlation between chemical composition and antioxidant activity. Results of PCA and HCA analyses confirm that Polish propolis is similar to that from different provinces of Romania, while Turkish and Uruguay are completely different. Polish and Romanian propolis belong to the poplar type. The assessed phenolic compounds of propolis samples used in the study are responsible for its antioxidant effect. The observed antioxidant activity of the analyzed samples may suggest directing subsequent research on prophylactic and therapeutic properties concerning cardiovascular, metabolic, neurodegenerative, and cancerous diseases, which are worth continuing.

8.
Saudi J Biol Sci ; 29(2): 767-773, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35197743

ABSTRACT

In this study, the combined effect of temperature (60 to 80 °C) time (10 to 15 min.) and pH (3 to 6) was employed on the anti-oxidant potential (1,1-diphenyl-2-picrylhydrazyl-radical scavenging activity-DPPH-RSA, total phenolic content-TPC, and total flavonoid content-TFC) of wild bush Indian honey from high altitudes of Kashmir Valley by using response surface methodology (RSM). The statistical analysis showed that all the process variables had a substantial effect on the responses related to DPPH-RSA, TFC, and TPC, all of which increased as temperature and time increased. With an increase in pH, the antioxidant activity of wild bush honey was significantly decreased. The heat treatment of honey at high temperature (80 °C) was found to be more efficacious than at 70 and 60 °C, respectively. The findings showed that at higher temperature, browning pigments were formed which enhanced considerably the antioxidant activity of honey.

9.
Nutrients ; 14(17)2022 Aug 30.
Article in English | MEDLINE | ID: mdl-36079835

ABSTRACT

Bee products have been extensively employed in traditional therapeutic practices to treat several diseases and microbial infections. Numerous bioactive components of bee products have exhibited several antibacterial, antifungal, antiviral, anticancer, antiprotozoal, hepatoprotective, and immunomodulatory properties. Apitherapy is a form of alternative medicine that uses the bioactive properties of bee products to prevent and/or treat different diseases. This review aims to provide an elaborated vision of the antiviral activities of bee products with recent advances in research. Since ancient times, bee products have been well known for their several medicinal properties. The antiviral and immunomodulatory effects of bee products and their bioactive components are emerging as a promising alternative therapy against several viral infections. Numerous studies have been performed, but many clinical trials should be conducted to evaluate the potential of apitherapy against pathogenic viruses. In that direction, here, we review and highlight the potential roles of bee products as apitherapeutics in combating numerous viral infections. Available studies validate the effectiveness of bee products in virus inhibition. With such significant antiviral potential, bee products and their bioactive components/extracts can be effectively employed as an alternative strategy to improve human health from individual to communal levels as well.


Subject(s)
Propolis , Viruses , Animals , Antiviral Agents/pharmacology , Apitherapy , Bees , Humans , Mammals , Propolis/pharmacology , Propolis/therapeutic use
10.
Front Nutr ; 9: 972154, 2022.
Article in English | MEDLINE | ID: mdl-36034919

ABSTRACT

The growing consumer awareness of climate change and the resulting food sustainability issues have led to an increasing adoption of several emerging food trends. Some of these trends have been strengthened by the emergence of the fourth industrial revolution (or Industry 4.0), and its innovations and technologies that have fundamentally reshaped and transformed current strategies and prospects for food production and consumption patterns. In this review a general overview of the industrial revolutions through a food perspective will be provided. Then, the current knowledge base regarding consumer acceptance of eight traditional animal-proteins alternatives (e.g., plant-based foods and insects) and more recent trends (e.g., cell-cultured meat and 3D-printed foods) will be updated. A special focus will be given to the impact of digital technologies and other food Industry 4.0 innovations on the shift toward greener, healthier, and more sustainable diets. Emerging food trends have promising potential to promote nutritious and sustainable alternatives to animal-based products. This literature narrative review showed that plant-based foods are the largest portion of alternative proteins but intensive research is being done with other sources (notably the insects and cell-cultured animal products). Recent technological advances are likely to have significant roles in enhancing sensory and nutritional properties, improving consumer perception of these emerging foods. Thus, consumer acceptance and consumption of new foods are predicted to continue growing, although more effort should be made to make these food products more convenient, nutritious, and affordable, and to market them to consumers positively emphasizing their safety and benefits.

11.
Plants (Basel) ; 11(15)2022 Jul 30.
Article in English | MEDLINE | ID: mdl-35956470

ABSTRACT

Calluna vulgaris, belonging to the Ericaceae family, is an invasive plant that has widely spread from Europe all across Asia, North America, Australia and New Zealand. Being able to survive in rigid soil and environmental conditions, it is nowadays considered to be of high nature-conservation value. Known for its nutritional and medicinal properties, C. vulgaris stands out for its varied physiochemical composition, spotlighting a wide range of biological activity. Among the most important bioactive compounds identified in C. vulgaris, the phenolic components found in different parts of this herbaceous plant are the main source of its diverse pro-health properties (antioxidant, anti-inflammatory, antimicrobial, chemoprotective, etc.). Nonetheless, this plant exhibits an excellent nectariferous potential for social insects such as honeybees; therefore, comparing the bioactive compounds observed in the plant and in the final product of the beehive, namely honey, will help us understand and find new insights into the health benefits provided by the consumption of C. vulgaris-related products. Thus, the main interest of this work is to review the nutritional profile, chemical composition and biological activities of the C. vulgaris plant and its related honey in order to encourage the future exploration and use of this health-promoting plant in novel foods, pharmacological products and apitherapy.

12.
Front Nutr ; 8: 789117, 2021.
Article in English | MEDLINE | ID: mdl-34938763

ABSTRACT

Goat milk is considered to be a potential source of various macro- and micro-nutrients. It contains a good proportion of protein, fat, carbohydrates, and other nutritional components which help in promoting nutritional and desirable health benefits. Goat milk is considered to be superior in terms of numerous health benefits, and lower risk of allergy, when compared to the milk of other species. Several processing techniques such as pasteurization, ultrafiltration, microfiltration, and ultrasound have been employed to enhance the quality and shelf life of goat milk and its products. The diverse range of goat milk-based products such as yogurt, cheese, fermented milk, goat milk powder, and others are available in the market and are prepared by the intervention of advanced processing technologies. Goats raised in pasture-based feeding systems are shown to have a better milk nutritional composition than its counterpart. Goat milk contains potential bioactive components, which aids in the maintenance of the proper metabolism and functioning of the human body. This review gives insight into the key nutritional ingredients and bioactive constituents present in goat milk and their potential role in the development of various functional foods using different processing technologies. Goat milk could be considered as a significant option for milk consumption in infants, as compared to other milk available.

13.
Plants (Basel) ; 10(12)2021 Nov 29.
Article in English | MEDLINE | ID: mdl-34961091

ABSTRACT

Known especially for its negative ecological impact, Fallopia japonica (Japanese knotweed) is now considered one of the most invasive species. Nevertheless, its chemical composition has shown, beyond doubt, some high biological active compounds that can be a source of valuable pharmacological potential for the enhancement of human health. In this direction, resveratrol, emodin or polydatin, to name a few, have been extensively studied to demonstrate the beneficial effects on animals and humans. Thus, by taking into consideration the recent advances in the study of Japanese knotweed and its phytochemical constituents, the aim of this article is to provide an overview on the high therapeutic potential, underlining its antioxidant, antimicrobial, anti-inflammatory and anticancer effects, among the most important ones. Moreover, we describe some future directions for reducing the negative impact of Fallopia japonica by using the plant for its beekeeping properties in providing a distinct honey type that incorporates most of its bioactive compounds, with the same health-promoting properties.

14.
Plants (Basel) ; 9(11)2020 Nov 21.
Article in English | MEDLINE | ID: mdl-33233429

ABSTRACT

Nowadays, propolis is used as a highly valuable product in alternative medicine for improving health or treating a large spectrum of pathologies, an ingredient in pharmaceutical products, and also as a food additive. Different vegetal materials are collected by honeybees and mixed with wax and other own substances in order to obtain the final product, called propolis. It is known as the bee product with the widest chemical composition due to the raw material collected by the bees. Different types are known worldwide: green Brazilian propolis (having Baccharis dracunculifolia as the major plant source), red Brazilian propolis (from Dalbergia ecastophyllum), European propolis (Populus nigra L.), Russian propolis (Betula verrucosa Ehrh), Cuban and Venezuelan red propolis (Clusia spp.), etc. An impressive number of scientific papers already demonstrate the pharmacological potential of different types of propolis, the most important activities being the antimicrobial, anti-inflammatory, antitumor, immunomodulatory, and antioxidant activities. However, the bioactive compounds responsible for each activity have not been fully elucidated. This review aims to collect important data about the chemical composition and bioactive properties of the vegetal sources and to compare with the chemical composition of respective propolis types, in order to determine the connection between the floral source and the propolis properties.

15.
Plants (Basel) ; 10(1)2020 Dec 24.
Article in English | MEDLINE | ID: mdl-33374275

ABSTRACT

Propolis is a resinous mixture, made by the honeybees from substances collected from tree or other plant buds, plant exudates, or resins found in the stem, branches, or leaves of different plants. The geographical origin of propolis is given by plant sources from respective areas. Different studies have classified this bee product according to the vegetal material from the same areas. Poplar-type propolis has the widest spread in the world, in the temperate zones from Europe, Asia, or North America. The name is given by the main plant source from where the bees are collecting the resins, although other vegetal sources are present in the mentioned areas. Different Pinus spp., Prunus spp., Acacia spp. and also Betula pendula, Aesculus hippocastanum, and Salix alba are important sources of resins for "poplar-type" propolis. The aim of this review is to identify the vegetal material's chemical composition and activities of plant resins and balms used by the bees to produce poplar-type propolis and to compare it with the final product from similar geographical regions. The relevance of this review is to find the similarities between the chemical composition and properties of plant sources and propolis. The latest determination methods of bioactive compounds from plants and propolis are also reviewed.

16.
Food Chem ; 325: 126870, 2020 Apr 28.
Article in English | MEDLINE | ID: mdl-32387927

ABSTRACT

Eucalyptus honey is an important unifloral honey commercialized worldwide and much desired by consumers due to the medicinal properties attributed to it because of the plant from which it is produced. In general, eucalyptus honey has been classified as being rich in pollen grains from the eucalyptus tree as well as having physicochemical characteristics that, in a way, have made it stand out from other honeys. Similar to other types of honey, eucalyptus honey can suffer contaminations and adulterations that compromise its quality, safety and authenticity. Thus, detailed knowledge of the composition and properties of this monofloral honeys is of great importance. With this background, the aim of this review is to present and discuss recent data regarding the physicochemical characteristics, chemical and health-promoting properties of eucalyptus honey as well as microbial contamination, authenticity, processing and adulteration.

17.
Foods ; 8(10)2019 Sep 27.
Article in English | MEDLINE | ID: mdl-31569748

ABSTRACT

Honey composition and color depend greatly on the botanical and geographical origin. Water content, water activity and color of 50 declared acacia samples, collected from three different geographical zones of Romania, together with chromatographic determination of sugar spectrum were analyzed. A number of 79 volatile compounds from the classes of: Alcohols, aldehydes, esters, ketones, sulphur compounds, aliphatic hydrocarbons, nitrogen compounds, carboxylic acids, aromatic acids and ethers were identified by solid-phase micro-extraction and gas-chromatography mass spectrometry. The overall volatile profile and sugar spectrum of the investigated honey samples allow the differentiation of geographical origin for the acacia honey samples subjected to analysis. The statistical models of the chromatic determination, physicochemical parameters and volatile profile was optimal to characterize the honey samples and group them into three geographical origins, even they belong to the same botanical origin.

18.
Food Chem ; 108(2): 649-56, 2008 May 15.
Article in English | MEDLINE | ID: mdl-26059144

ABSTRACT

The carotenoid and phenolic acid contents in fresh, stored and processed (blanched, frozen and boiled) spinach were comparatively determined by spectrophotometric and HPLC analyses. The major carotenoids identified after HPLC analysis in saponified samples were lutein (37-53µg/kg), ß-carotene (18-31µg/kg), violaxanthin (9-23µg/kg) and neoxanthin (10-22µg/kg). These carotenoids were all affected by storage and/or heating. The content of carotenoids was best preserved after storage for one day at 4°C. The total phenolic content in the fresh spinach was 2088mg GAE/kg FW. After LC-MS analysis three phenolic acids were identified and quantified. These being ortho-coumaric acid (28-60mg/kg FW), ferulic acid (10-35mg/kg) and para-coumaric acid (1-30mg/kg) depending on the sample type. After storage of spinach at different temperatures (4°C or -18°C) the amount of total phenolic compounds decreased by around 20%, while the amount of individual phenolic acids increased by four times on average.

19.
Oxid Med Cell Longev ; 2018: 4757893, 2018.
Article in English | MEDLINE | ID: mdl-29507651

ABSTRACT

Diabetes is a metabolic disorder with multifactorial and heterogeneous etiologies. Two types of diabetes are common among humans: type 1 diabetes that occurs when the immune system attacks and destroys insulin and type 2 diabetes, the most common form, that may be caused by several factors, the most important being lifestyle, but also may be determined by different genes. Honey was used in folk medicine for a long time, but the health benefits were explained in the last decades, when the scientific world was concerned in testing and thus explaining the benefits of honey. Different studies demonstrate the hypoglycemic effect of honey, but the mechanism of this effect remains unclear. This review presents the experimental studies completed in the recent years, which support honey as a novel antidiabetic agent that might be of potential significance for the management of diabetes and its complications and also highlights the potential impacts and future perspectives on the use of honey as an antidiabetic agent.


Subject(s)
Diabetes Mellitus/diet therapy , Honey , Hypoglycemic Agents/therapeutic use , Animals , Humans , Monosaccharides/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL