Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Hum Brain Mapp ; 40(6): 1955-1968, 2019 04 15.
Article in English | MEDLINE | ID: mdl-30618191

ABSTRACT

Dynamic functional network connectivity (dFNC) is an expansion of traditional, static FNC that measures connectivity variation among brain networks throughout scan duration. We used a large resting-state fMRI (rs-fMRI) sample from the PREDICT-HD study (N = 183 Huntington disease gene mutation carriers [HDgmc] and N = 78 healthy control [HC] participants) to examine whole-brain dFNC and its associations with CAG repeat length as well as the product of scaled CAG length and age, a variable representing disease burden. We also tested for relationships between functional connectivity and motor and cognitive measurements. Group independent component analysis was applied to rs-fMRI data to obtain whole-brain resting state networks. FNC was defined as the correlation between RSN time-courses. Dynamic FNC behavior was captured using a sliding time window approach, and FNC results from each window were assigned to four clusters representing FNC states, using a k-means clustering algorithm. HDgmc individuals spent significantly more time in State-1 (the state with the weakest FNC pattern) compared to HC. However, overall HC individuals showed more FNC dynamism than HDgmc. Significant associations between FNC states and genetic and clinical variables were also identified. In FNC State-4 (the one that most resembled static FNC), HDgmc exhibited significantly decreased connectivity between the putamen and medial prefrontal cortex compared to HC, and this was significantly associated with cognitive performance. In FNC State-1, disease burden in HDgmc participants was significantly associated with connectivity between the postcentral gyrus and posterior cingulate cortex, as well as between the inferior occipital gyrus and posterior parietal cortex.


Subject(s)
Brain/diagnostic imaging , Cognition/physiology , Huntington Disease/diagnostic imaging , Nerve Net/diagnostic imaging , Adult , Brain Mapping , Female , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Neuropsychological Tests
2.
J Int Neuropsychol Soc ; 25(5): 462-469, 2019 05.
Article in English | MEDLINE | ID: mdl-30806337

ABSTRACT

OBJECTIVES: Apathy is a debilitating symptom of Huntington's disease (HD) and manifests before motor diagnosis, making it an excellent therapeutic target in the preclinical phase of Huntington's disease (prHD). HD is a neurological genetic disorder characterized by cognitive and motor impairment, and psychiatric abnormalities. Apathy is not well characterized within the prHD. In previous literature, damage to the caudate and putamen has been correlated with increased apathy in other neurodegenerative and movement disorders. The objective of this study was to determine whether apathy severity in individuals with prHD is related to striatum volumes and cognitive control. We hypothesized that, within prHD individuals, striatum volumes and cognitive control scores would be related to apathy. METHODS: We constructed linear mixed models to analyze striatum volumes and cognitive control, a composite measure that includes tasks assessing with apathy scores from 797 prHD participants. The outcome variable for each model was apathy, and the independent variables for the four separate models were caudate volume, putamen volume, cognitive control score, and motor symptom score. We also included depression as a covariate to ensure that our results were not solely related to mood. RESULTS: Caudate and putamen volumes, as well as measures of cognitive control, were significantly related to apathy scores even after controlling for depression. CONCLUSIONS: The behavioral apathy expressed by these individuals was related to regions of the brain commonly associated with isolated apathy, and not a direct result of mood symptoms. (JINS, 2019, 25, 462-469).


Subject(s)
Apathy/physiology , Caudate Nucleus/pathology , Executive Function/physiology , Huntington Disease/pathology , Huntington Disease/physiopathology , Prodromal Symptoms , Putamen/pathology , Adult , Caudate Nucleus/diagnostic imaging , Female , Humans , Huntington Disease/diagnostic imaging , Magnetic Resonance Imaging , Male , Middle Aged , Putamen/diagnostic imaging
3.
J Int Neuropsychol Soc ; 23(2): 159-170, 2017 02.
Article in English | MEDLINE | ID: mdl-28205498

ABSTRACT

OBJECTIVES: Huntington's disease (HD) is a debilitating genetic disorder characterized by motor, cognitive and psychiatric abnormalities associated with neuropathological decline. HD pathology is the result of an extended chain of CAG (cytosine, adenine, guanine) trinucleotide repetitions in the HTT gene. Clinical diagnosis of HD requires the presence of an otherwise unexplained extrapyramidal movement disorder in a participant at risk for HD. Over the past 15 years, evidence has shown that cognitive, psychiatric, and subtle motor dysfunction is evident decades before traditional motor diagnosis. This study examines the relationships among subcortical brain volumes and measures of emerging disease phenotype in prodromal HD, before clinical diagnosis. METHODS: The dataset includes 34 cognitive, motor, psychiatric, and functional variables and five subcortical brain volumes from 984 prodromal HD individuals enrolled in the PREDICT HD study. Using cluster analyses, seven distinct clusters encompassing cognitive, motor, psychiatric, and functional domains were identified. Individual cluster scores were then regressed against the subcortical brain volumetric measurements. RESULTS: Accounting for site and genetic burden (the interaction of age and CAG repeat length) smaller caudate and putamen volumes were related to clusters reflecting motor symptom severity, cognitive control, and verbal learning. CONCLUSIONS: Variable reduction of the HD phenotype using cluster analysis revealed biologically related domains of HD and are suitable for future research with this population. Our cognitive control cluster scores show sensitivity to changes in basal ganglia both within and outside the striatum that may not be captured by examining only motor scores. (JINS, 2017, 23, 159-170).


Subject(s)
Basal Ganglia/pathology , Cognition Disorders/etiology , Huntington Disease/complications , Huntington Disease/pathology , Learning Disabilities/etiology , Movement/physiology , Adult , Basal Ganglia/diagnostic imaging , Cluster Analysis , Female , Humans , Huntingtin Protein/genetics , Huntington Disease/genetics , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Male , Middle Aged , Neuropsychological Tests , Trinucleotide Repeats/genetics
4.
Transl Res ; 254: 41-53, 2023 04.
Article in English | MEDLINE | ID: mdl-36529160

ABSTRACT

Alzheimer's disease (AD) is the most common cause of dementia and is characterized by progressive neurodegeneration and cognitive decline. Understanding the pathophysiology underlying AD is paramount for the management of individuals at risk of and suffering from AD. The vascular hypothesis stipulates a relationship between cardiovascular disease and AD-related changes although the nature of this relationship remains unknown. In this review, we discuss several potential pathological pathways of vascular involvement in AD that have been described including dysregulation of neurovascular coupling, disruption of the blood brain barrier, and reduced clearance of metabolite waste such as beta-amyloid, a toxic peptide considered the hallmark of AD. We will also discuss the two-hit hypothesis which proposes a 2-step positive feedback loop in which microvascular insults precede the accumulation of Aß and are thought to be at the origin of the disease development. At neuroimaging, signs of vascular dysfunction such as chronic cerebral hypoperfusion have been demonstrated, appearing early in AD, even before cognitive decline and alteration of traditional biomarkers. Cerebral small vessel disease such as cerebral amyloid angiopathy, characterized by the aggregation of Aß in the vessel wall, is highly prevalent in vascular dementia and AD patients. Current data is unclear whether cardiovascular disease causes, precipitates, amplifies, precedes, or simply coincides with AD. Targeted imaging tools to quantitatively evaluate the intracranial vasculature and longitudinal studies in individuals at risk for or in the early stages of the AD continuum could be critical in disentangling this complex relationship between vascular disease and AD.


Subject(s)
Alzheimer Disease , Cardiovascular Diseases , Cognitive Dysfunction , Humans , Blood-Brain Barrier/metabolism , Brain/pathology
5.
Front Neuroinform ; 17: 1207721, 2023.
Article in English | MEDLINE | ID: mdl-37404336

ABSTRACT

Collaborative neuroimaging research is often hindered by technological, policy, administrative, and methodological barriers, despite the abundance of available data. COINSTAC (The Collaborative Informatics and Neuroimaging Suite Toolkit for Anonymous Computation) is a platform that successfully tackles these challenges through federated analysis, allowing researchers to analyze datasets without publicly sharing their data. This paper presents a significant enhancement to the COINSTAC platform: COINSTAC Vaults (CVs). CVs are designed to further reduce barriers by hosting standardized, persistent, and highly-available datasets, while seamlessly integrating with COINSTAC's federated analysis capabilities. CVs offer a user-friendly interface for self-service analysis, streamlining collaboration, and eliminating the need for manual coordination with data owners. Importantly, CVs can also be used in conjunction with open data as well, by simply creating a CV hosting the open data one would like to include in the analysis, thus filling an important gap in the data sharing ecosystem. We demonstrate the impact of CVs through several functional and structural neuroimaging studies utilizing federated analysis showcasing their potential to improve the reproducibility of research and increase sample sizes in neuroimaging studies.

6.
bioRxiv ; 2023 May 11.
Article in English | MEDLINE | ID: mdl-37214791

ABSTRACT

Collaborative neuroimaging research is often hindered by technological, policy, administrative, and methodological barriers, despite the abundance of available data. COINSTAC is a platform that successfully tackles these challenges through federated analysis, allowing researchers to analyze datasets without publicly sharing their data. This paper presents a significant enhancement to the COINSTAC platform: COINSTAC Vaults (CVs). CVs are designed to further reduce barriers by hosting standardized, persistent, and highly-available datasets, while seamlessly integrating with COINSTAC's federated analysis capabilities. CVs offer a user-friendly interface for self-service analysis, streamlining collaboration and eliminating the need for manual coordination with data owners. Importantly, CVs can also be used in conjunction with open data as well, by simply creating a CV hosting the open data one would like to include in the analysis, thus filling an important gap in the data sharing ecosystem. We demonstrate the impact of CVs through several functional and structural neuroimaging studies utilizing federated analysis showcasing their potential to improve the reproducibility of research and increase sample sizes in neuroimaging studies.

7.
Psychiatry Res ; 201(2): 152-8, 2012 Feb 28.
Article in English | MEDLINE | ID: mdl-22386966

ABSTRACT

The majority of patients with schizophrenia smoke cigarettes. Both nicotine use and schizophrenia have been associated with alterations in brain white matter microstructure as measured by diffusion tensor imaging (DTI). The purpose of this study was to examine fractional anisotropy (FA) in smoking and non-smoking patients with schizophrenia and in healthy volunteers. A total of 43 patients (28 smoking and 15 non-smoking) with schizophrenia and 40 healthy, non-smoking participants underwent DTI. Mean FA was calculated in four global regions of interest (ROIs) (whole brain, cerebellum, brainstem, and total cortical) as well as in four regional ROIs (frontal, temporal, parietal and occipital lobes). The non-smoking patient group had a significantly higher intellectual quotient (IQ) compared with the patients who smoked, and our results varied according to whether IQ was included as a covariate. Without IQ correction, significant between-group effects for FA were found in four ROIs: total brain, total cortical, frontal lobe and the occipital lobe. In all cases the FA was lower among the smoking patient group, and highest in the control group. Smoking patients differed significantly from non-smoking patients in the frontal lobe ROI. However, these differences were no longer significant after IQ correction. FA differences between non-smoking patients and controls were not significant. Among smoking and non-smoking patients with schizophrenia but not healthy controls, FA was correlated with IQ. In conclusion, group effects of smoking on FA in schizophrenia might be mediated by IQ. Further, low FA in specific brain areas may be a neural marker for complex pathophysiology and risk for diverse problems such as schizophrenia, low IQ, and nicotine addiction.


Subject(s)
Brain/pathology , Diffusion Magnetic Resonance Imaging , Image Interpretation, Computer-Assisted , Leukoencephalopathies/pathology , Schizophrenia/pathology , Smoking/adverse effects , Tobacco Use Disorder/pathology , Adult , Brain Stem/pathology , Cerebellum/pathology , Cerebral Cortex/pathology , Cerebral Ventricles/pathology , Female , Humans , Intelligence/physiology , Male , Middle Aged , Nerve Fibers, Myelinated/pathology , Reference Values , Temporal Lobe/pathology
8.
Neuroimage ; 53(1): 119-31, 2010 Oct 15.
Article in English | MEDLINE | ID: mdl-20451631

ABSTRACT

Neuroimaging studies are facilitated significantly when it is possible to recruit subjects and acquire data at multiple sites. However, the use of different scanners and acquisition protocols is a potential source of variability in multi-site data. In this work we present a multi-site study of the reliability of fMRI activation indices, where 10 healthy volunteers were scanned at 4 different sites while performing a working memory paradigm. Our results indicate that, even with different scanner manufacturers and field strengths, activation variability due to site differences is small compared to variability due to subject differences in this cognitive task, provided we choose an appropriate activation measure.


Subject(s)
Algorithms , Brain/physiology , Evoked Potentials/physiology , Image Interpretation, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Memory, Short-Term/physiology , Pattern Recognition, Automated/methods , Adult , Diffusion Tensor Imaging , Female , Humans , Image Enhancement/methods , Male , Middle Aged , Reproducibility of Results , Sensitivity and Specificity
9.
Neurology ; 90(4): e264-e272, 2018 01 23.
Article in English | MEDLINE | ID: mdl-29282329

ABSTRACT

OBJECTIVE: To investigate the feasibility of microRNA (miRNA) levels in CSF as biomarkers for prodromal Huntington disease (HD). METHODS: miRNA levels were measured in CSF from 60 PREDICT-HD study participants using the HTG protocol. Using a CAG-Age Product score, 30 prodromal HD participants were selected based on estimated probability of imminent clinical diagnosis of HD (i.e., low, medium, high; n = 10/group). For comparison, participants already diagnosed (n = 15) and healthy controls (n = 15) were also selected. RESULTS: A total of 2,081 miRNAs were detected and 6 were significantly increased in the prodromal HD gene expansion carriers vs controls at false discovery rate q < 0.05 (miR-520f-3p, miR-135b-3p, miR-4317, miR-3928-5p, miR-8082, miR-140-5p). Evaluating the miRNA levels in each of the HD risk categories, all 6 revealed a pattern of increasing abundance from control to low risk, and from low risk to medium risk, which then leveled off from the medium to high risk and HD diagnosed groups. CONCLUSIONS: This study reports miRNAs as CSF biomarkers of prodromal and diagnosed HD. Importantly, miRNAs were detected in the prodromal HD groups furthest from diagnosis where treatments are likely to be most consequential and meaningful. The identification of potential biomarkers in the disease prodrome may prove useful in evaluating treatments that may postpone disease onset. CLINICALTRIALSGOV IDENTIFIER: NCT00051324.


Subject(s)
Huntington Disease/cerebrospinal fluid , MicroRNAs/cerebrospinal fluid , Adult , Biomarkers/cerebrospinal fluid , Feasibility Studies , Female , Heterozygote , Humans , Huntington Disease/genetics , Male , Middle Aged , Prodromal Symptoms
10.
Med Biol Eng Comput ; 44(3): 242-9, 2006 Mar.
Article in English | MEDLINE | ID: mdl-16937165

ABSTRACT

A novel hybrid algorithm for the tissue segmentation of brain magnetic resonance images is proposed. The core of the algorithm is a probabilistic neural network (PNN) in which weighting factors are added to the summation layer, such that partial volume effects can be taken into account in the modeling process. The mean vectors for the probability density function estimation and the corresponding weighting factors are generated by a hierarchical scheme involving a self-organizing map neural network and an expectation maximization algorithm. Unlike conventional PNN, this approach circumvents the need for training sets. Tissue segmentation results from various algorithms are compared and the effectiveness and robustness of the proposed approach are demonstrated.


Subject(s)
Brain/anatomy & histology , Magnetic Resonance Imaging/methods , Algorithms , Computer Simulation , Humans , Image Enhancement/methods , Models, Neurological , Neural Networks, Computer , Probability
11.
Neuroinformatics ; 11(3): 367-88, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23760817

ABSTRACT

Expertly collected, well-curated data sets consisting of comprehensive clinical characterization and raw structural, functional and diffusion-weighted DICOM images in schizophrenia patients and sex and age-matched controls are now accessible to the scientific community through an on-line data repository (coins.mrn.org). The Mental Illness and Neuroscience Discovery Institute, now the Mind Research Network (MRN, http://www.mrn.org/ ), comprised of investigators at the University of New Mexico, the University of Minnesota, Massachusetts General Hospital, and the University of Iowa, conducted a cross-sectional study to identify quantitative neuroimaging biomarkers of schizophrenia. Data acquisition across multiple sites permitted the integration and cross-validation of clinical, cognitive, morphometric, and functional neuroimaging results gathered from unique samples of schizophrenia patients and controls using a common protocol across sites. Particular effort was made to recruit patients early in the course of their illness, at the onset of their symptoms. There is a relatively even sampling of illness duration in chronic patients. This data repository will be useful to 1) scientists who can study schizophrenia by further analysis of this cohort and/or by pooling with other data; 2) computer scientists and software algorithm developers for testing and validating novel registration, segmentation, and other analysis software; and 3) educators in the fields of neuroimaging, medical image analysis and medical imaging informatics who need exemplar data sets for courses and workshops. Sharing provides the opportunity for independent replication of already published results from this data set and novel exploration. This manuscript describes the inclusion/exclusion criteria, imaging parameters and other information that will assist those wishing to use this data repository.


Subject(s)
Brain Mapping , Brain/blood supply , Brain/pathology , Information Dissemination , Schizophrenia/diagnosis , Adolescent , Adult , Antipsychotic Agents/therapeutic use , Cognition Disorders/etiology , Cohort Studies , Cross-Sectional Studies , Diffusion Magnetic Resonance Imaging , Female , Humans , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Male , Middle Aged , Oxygen/blood , Psychiatric Status Rating Scales , Retrospective Studies , Schizophrenia/complications , Schizophrenia/drug therapy , Schizophrenia/genetics , Schizophrenic Psychology , Young Adult
12.
Neuroinformatics ; 8(4): 231-49, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20567938

ABSTRACT

Managing vast datasets collected throughout multiple clinical imaging communities has become critical with the ever increasing and diverse nature of datasets. Development of data management infrastructure is further complicated by technical and experimental advances that drive modifications to existing protocols and acquisition of new types of research data to be incorporated into existing data management systems. In this paper, an extensible data management system for clinical neuroimaging studies is introduced: The Human Clinical Imaging Database (HID) and Toolkit. The database schema is constructed to support the storage of new data types without changes to the underlying schema. The complex infrastructure allows management of experiment data, such as image protocol and behavioral task parameters, as well as subject-specific data, including demographics, clinical assessments, and behavioral task performance metrics. Of significant interest, embedded clinical data entry and management tools enhance both consistency of data reporting and automatic entry of data into the database. The Clinical Assessment Layout Manager (CALM) allows users to create on-line data entry forms for use within and across sites, through which data is pulled into the underlying database via the generic clinical assessment management engine (GAME). Importantly, the system is designed to operate in a distributed environment, serving both human users and client applications in a service-oriented manner. Querying capabilities use a built-in multi-database parallel query builder/result combiner, allowing web-accessible queries within and across multiple federated databases. The system along with its documentation is open-source and available from the Neuroimaging Informatics Tools and Resource Clearinghouse (NITRC) site.


Subject(s)
Biomedical Research , Database Management Systems , Diagnostic Imaging , Information Dissemination , Internet , Medical Informatics , Biomedical Research/organization & administration , Brain Mapping , Database Management Systems/organization & administration , Humans , Models, Statistical
13.
Front Neuroinform ; 3: 30, 2009.
Article in English | MEDLINE | ID: mdl-19826494

ABSTRACT

Organizing and annotating biomedical data in structured ways has gained much interest and focus in the last 30 years. Driven by decreases in digital storage costs and advances in genetics sequencing, imaging, electronic data collection, and microarray technologies, data is being collected at an ever increasing rate. The need to store and exchange data in meaningful ways in support of data analysis, hypothesis testing and future collaborative use is pervasive. Because trans-disciplinary projects rely on effective use of data from many domains, there is a genuine interest in informatics community on how best to store and combine this data while maintaining a high level of data quality and documentation. The difficulties in sharing and combining raw data become amplified after post-processing and/or data analysis in which the new dataset of interest is a function of the original data and may have been collected by multiple collaborating sites. Simple meta-data, documenting which subject and version of data were used for a particular analysis, becomes complicated by the heterogeneity of the collecting sites yet is critically important to the interpretation and reuse of derived results. This manuscript will present a case study of using the XML-Based Clinical Experiment Data Exchange (XCEDE) schema and the Human Imaging Database (HID) in the Biomedical Informatics Research Network's (BIRN) distributed environment to document and exchange derived data. The discussion includes an overview of the data structures used in both the XML and the database representations, insight into the design considerations, and the extensibility of the design to support additional analysis streams.

14.
Neuroimage ; 32(4): 1891-904, 2006 Oct 01.
Article in English | MEDLINE | ID: mdl-16797187

ABSTRACT

Neuroimaging studies of healthy aging often reveal differences in neural activation patterns between young and elderly groups for episodic memory tasks, even though there are no differences in behavioral performance. One explanation typically offered is that the elderly compensate for their memory deficiencies through the recruitment of additional prefrontal regions. The present study of healthy aging compared magnetoencephalographic (MEG) time-courses localized to specific cortical regions in two groups of subjects (20-29 years and >or=65 years) during a visual delayed-match-to-sample (DMS) task. MR morphometrics and neuropsychological test results were also examined with the hope of providing insight into the nature of the age-related differences. The behavioral results indicated no differences in performance between young and elderly groups. Although there was a main effect of age on the latency of the initial peak in primary/secondary visual cortex, these longer latencies were not correlated with the performance of elderly on the DMS task. The lateral occipital gyrus (LOG) revealed qualitatively different patterns of activity for the two age groups corroborated by neuropsychological test results. Morphometric results for the young versus elderly groups revealed less white (WM) and gray matter (GM) volumes in the frontal lobes of the elderly. When a group of middle-aged subjects (33-43 years) was included in the morphometric analyses, the middle-aged subjects revealed statistically greater WM volumes in frontal and parietal cortex suggesting immature WM tracts in the young. Perhaps our elderly utilized a different strategy compared to the young due to the different brain maturation levels of these groups.


Subject(s)
Aging/physiology , Aging/psychology , Brain/growth & development , Brain/physiology , Memory, Short-Term/physiology , Adult , Aged , Brain/anatomy & histology , Female , Humans , Magnetic Resonance Imaging , Magnetoencephalography , Male , Neuropsychological Tests , Photic Stimulation , Psychomotor Performance/physiology , Temporal Lobe/physiology
SELECTION OF CITATIONS
SEARCH DETAIL