Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 97
Filter
Add more filters

Publication year range
1.
Immunity ; 57(3): 541-558.e7, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38442708

ABSTRACT

Cancer patients often receive a combination of antibodies targeting programmed death-ligand 1 (PD-L1) and cytotoxic T lymphocyte antigen-4 (CTLA4). We conducted a window-of-opportunity study in head and neck squamous cell carcinoma (HNSCC) to examine the contribution of anti-CTLA4 to anti-PD-L1 therapy. Single-cell profiling of on- versus pre-treatment biopsies identified T cell expansion as an early response marker. In tumors, anti-PD-L1 triggered the expansion of mostly CD8+ T cells, whereas combination therapy expanded both CD4+ and CD8+ T cells. Such CD4+ T cells exhibited an activated T helper 1 (Th1) phenotype. CD4+ and CD8+ T cells co-localized with and were surrounded by dendritic cells expressing T cell homing factors or antibody-producing plasma cells. T cell receptor tracing suggests that anti-CTLA4, but not anti-PD-L1, triggers the trafficking of CD4+ naive/central-memory T cells from tumor-draining lymph nodes (tdLNs), via blood, to the tumor wherein T cells acquire a Th1 phenotype. Thus, CD4+ T cell activation and recruitment from tdLNs are hallmarks of early response to anti-PD-L1 plus anti-CTLA4 in HNSCC.


Subject(s)
CD8-Positive T-Lymphocytes , Head and Neck Neoplasms , Humans , Squamous Cell Carcinoma of Head and Neck , B7-H1 Antigen/genetics , CTLA-4 Antigen , Head and Neck Neoplasms/drug therapy , CD4-Positive T-Lymphocytes , Tumor Microenvironment
2.
Cell ; 175(2): 400-415.e13, 2018 10 04.
Article in English | MEDLINE | ID: mdl-30173915

ABSTRACT

Macrophages are highly heterogeneous tissue-resident immune cells that perform a variety of tissue-supportive functions. The current paradigm dictates that intestinal macrophages are continuously replaced by incoming monocytes that acquire a pro-inflammatory or tissue-protective signature. Here, we identify a self-maintaining population of macrophages that arise from both embryonic precursors and adult bone marrow-derived monocytes and persists throughout adulthood. Gene expression and imaging studies of self-maintaining macrophages revealed distinct transcriptional profiles that reflect their unique localization (i.e., closely positioned to blood vessels, submucosal and myenteric plexus, Paneth cells, and Peyer's patches). Depletion of self-maintaining macrophages resulted in morphological abnormalities in the submucosal vasculature and loss of enteric neurons, leading to vascular leakage, impaired secretion, and reduced intestinal motility. These results provide critical insights in intestinal macrophage heterogeneity and demonstrate the strategic role of self-maintaining macrophages in gut homeostasis and intestinal physiology.


Subject(s)
Intestines/immunology , Macrophages/immunology , Animals , Body Patterning/physiology , Cell Differentiation/genetics , Cell Differentiation/immunology , Gastrointestinal Motility/immunology , Gastrointestinal Motility/physiology , Homeostasis , Inflammation/immunology , Intestinal Mucosa/immunology , Intestine, Small/metabolism , Mice , Monocytes/metabolism , Neurons/metabolism , Phagocytes/immunology , Transcriptome
4.
Hepatology ; 2024 May 16.
Article in English | MEDLINE | ID: mdl-38761406

ABSTRACT

BACKGROUND AND AIMS: Acute-on-chronic liver failure (ACLF) is a complication of cirrhosis characterized by multiple organ failure and high short-term mortality. The pathophysiology of ACLF involves elevated systemic inflammation leading to organ failure, along with immune dysfunction that heightens susceptibility to bacterial infections. However, it is unclear how these aspects are associated with recovery and nonrecovery in ACLF. APPROACH AND RESULTS: Here, we mapped the single-cell transcriptome of circulating immune cells from patients with ACLF and acute decompensated (AD) cirrhosis and healthy individuals. We further interrogate how these findings, as well as immunometabolic and functional profiles, associate with ACLF-recovery (ACLF-R) or nonrecovery (ACLF-NR). Our analysis unveiled 2 distinct states of classical monocytes (cMons). Hereto, ACLF-R cMons were characterized by transcripts associated with immune and stress tolerance, including anti-inflammatory genes such as RETN and LGALS1 . Additional metabolomic and functional validation experiments implicated an elevated oxidative phosphorylation metabolic program as well as an impaired ACLF-R cMon functionality. Interestingly, we observed a common stress-induced tolerant state, oxidative phosphorylation program, and blunted activation among lymphoid populations in patients with ACLF-R. Conversely, ACLF-NR cMon featured elevated expression of inflammatory and stress response genes such as VIM , LGALS2 , and TREM1 , along with blunted metabolic activity and increased functionality. CONCLUSIONS: This study identifies distinct immunometabolic cellular states that contribute to disease outcomes in patients with ACLF. Our findings provide valuable insights into the pathogenesis of ACLF, shedding light on factors driving either recovery or nonrecovery phenotypes, which may be harnessed as potential therapeutic targets in the future.

5.
Liver Int ; 44(9): 2382-2395, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38847551

ABSTRACT

BACKGROUND & AIMS: Cystic fibrosis (CF) is considered a multisystemic disorder in which CF-associated liver disease (CFLD) is the third most common cause of mortality. Currently, no effective treatment is available for CFLD because its pathophysiology is still unclear. Interestingly, CFLD exhibits identical vascular characteristics as non-cirrhotic portal hypertension, recently classified as porto-sinusoidal vascular disorders (PSVD). METHODS: Since endothelial cells (ECs) are an important component in PSVD, we performed single-cell RNA sequencing (scRNA-seq) on four explant livers from CFLD patients to identify differential endothelial characteristics which could contribute to the disease. We comprehensively characterized the endothelial compartment and compared it with publicly available scRNA-seq datasets from cirrhotic and healthy livers. Key gene signatures were validated ex vivo on patient tissues. RESULTS: We found that ECs from CF liver explants are more closely related to healthy than cirrhotic patients. In CF patients we also discovered a distinct population of liver sinusoidal ECs-coined CF LSECs-upregulating genes involved in the complement cascade and coagulation. Finally, our immunostainings further validated the predominant periportal location of CF LSECs. CONCLUSIONS: Our work showed novel aspects of human liver ECs at the single-cell level thereby supporting endothelial involvement in CFLD, and reinforcing the hypothesis that ECs could be a driver of PSVD. Therefore, considering the vascular compartment in CF and CFLD may help developing new therapeutic approaches for these diseases.


Subject(s)
Complement Activation , Cystic Fibrosis , Endothelial Cells , Sequence Analysis, RNA , Single-Cell Analysis , Humans , Cystic Fibrosis/genetics , Endothelial Cells/metabolism , Liver/pathology , Liver/metabolism , Male , Female , Adult , Liver Cirrhosis/genetics , Liver Cirrhosis/pathology , Liver Diseases/genetics
7.
Nature ; 537(7618): 63-68, 2016 09 01.
Article in English | MEDLINE | ID: mdl-27533040

ABSTRACT

Hypermethylation of the promoters of tumour suppressor genes represses transcription of these genes, conferring growth advantages to cancer cells. How these changes arise is poorly understood. Here we show that the activity of oxygen-dependent ten-eleven translocation (TET) enzymes is reduced by tumour hypoxia in human and mouse cells. TET enzymes catalyse DNA demethylation through 5-methylcytosine oxidation. This reduction in activity occurs independently of hypoxia-associated alterations in TET expression, proliferation, metabolism, hypoxia-inducible factor activity or reactive oxygen species, and depends directly on oxygen shortage. Hypoxia-induced loss of TET activity increases hypermethylation at gene promoters in vitro. In patients, tumour suppressor gene promoters are markedly more methylated in hypoxic tumour tissue, independent of proliferation, stromal cell infiltration and tumour characteristics. Our data suggest that up to half of hypermethylation events are due to hypoxia, with these events conferring a selective advantage. Accordingly, increased hypoxia in mouse breast tumours increases hypermethylation, while restoration of tumour oxygenation abrogates this effect. Tumour hypoxia therefore acts as a novel regulator of DNA methylation.


Subject(s)
DNA Methylation , DNA-Binding Proteins/deficiency , Mixed Function Oxygenases/deficiency , Oxygen/metabolism , Proto-Oncogene Proteins/deficiency , Tumor Hypoxia/physiology , 5-Methylcytosine/metabolism , Animals , Cell Proliferation , DNA Methylation/drug effects , DNA Methylation/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Dioxygenases , Female , Gene Silencing/drug effects , Genes, Tumor Suppressor , Humans , Male , Mammary Neoplasms, Animal/genetics , Mammary Neoplasms, Animal/metabolism , Mammary Neoplasms, Animal/pathology , Mice , Mixed Function Oxygenases/genetics , Mixed Function Oxygenases/metabolism , Oxidation-Reduction/drug effects , Oxygen/pharmacology , Promoter Regions, Genetic/genetics , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Stromal Cells/pathology , Tumor Hypoxia/drug effects , Tumor Hypoxia/genetics
8.
Int J Mol Sci ; 23(10)2022 May 19.
Article in English | MEDLINE | ID: mdl-35628499

ABSTRACT

Alveolar soft part sarcoma (ASPS) is a rare subtype of soft tissue sarcoma characterized by an unbalanced translocation, resulting in ASPSCR1-TFE3 fusion that transcriptionally upregulates MET expression. The European Organization for Research and Treatment of Cancer (EORTC) 90101 "CREATE" phase II trial evaluated the MET inhibitor crizotinib in ASPS patients, achieving only limited antitumor activity. We performed a comprehensive molecular analysis of ASPS tissue samples collected in this trial to identify potential biomarkers correlating with treatment outcome. A tissue microarray containing 47 ASPS cases was used for the characterization of the tumor microenvironment using multiplex immunofluorescence. DNA isolated from 34 available tumor samples was analyzed to detect recurrent gene copy number alterations (CNAs) and mutations by low-coverage whole-genome sequencing and whole-exome sequencing. Pathway enrichment analysis was used to identify diseased-associated pathways in ASPS sarcomagenesis. Kaplan-Meier estimates, Cox regression, and the Fisher's exact test were used to correlate histopathological and molecular findings with clinical data related to crizotinib treatment, aiming to identify potential factors associated with patient outcome. Tumor microenvironment characterization showed the presence of PD-L1 and CTLA-4 in 10 and 2 tumors, respectively, and the absence of PD-1 in all specimens. Apart from CD68, other immunological markers were rarely expressed, suggesting a low level of tumor-infiltrating lymphocytes in ASPS. By CNA analysis, we detected a number of broad and focal alterations. The most common alteration was the loss of chromosomal region 1p36.32 in 44% of cases. The loss of chromosomal regions 1p36.32, 1p33, 1p22.2, and 8p was associated with shorter progression-free survival. Using whole-exome sequencing, 13 cancer-associated genes were found to be mutated in at least three cases. Pathway enrichment analysis identified genetic alterations in NOTCH signaling, chromatin organization, and SUMOylation pathways. NOTCH4 intracellular domain dysregulation was associated with poor outcome, while inactivation of the beta-catenin/TCF complex correlated with improved outcome in patients receiving crizotinib. ASPS is characterized by molecular heterogeneity. We identify genetic aberrations potentially predictive of treatment outcome during crizotinib therapy and provide additional insights into the biology of ASPS, paving the way to improve treatment approaches for this extremely rare malignancy.


Subject(s)
Sarcoma, Alveolar Soft Part , Soft Tissue Neoplasms , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Crizotinib/therapeutic use , Humans , Sarcoma, Alveolar Soft Part/diagnosis , Sarcoma, Alveolar Soft Part/drug therapy , Sarcoma, Alveolar Soft Part/genetics , Soft Tissue Neoplasms/pathology , Translocation, Genetic , Tumor Microenvironment/genetics
9.
Genet Epidemiol ; 44(5): 442-468, 2020 07.
Article in English | MEDLINE | ID: mdl-32115800

ABSTRACT

Previous transcriptome-wide association studies (TWAS) have identified breast cancer risk genes by integrating data from expression quantitative loci and genome-wide association studies (GWAS), but analyses of breast cancer subtype-specific associations have been limited. In this study, we conducted a TWAS using gene expression data from GTEx and summary statistics from the hitherto largest GWAS meta-analysis conducted for breast cancer overall, and by estrogen receptor subtypes (ER+ and ER-). We further compared associations with ER+ and ER- subtypes, using a case-only TWAS approach. We also conducted multigene conditional analyses in regions with multiple TWAS associations. Two genes, STXBP4 and HIST2H2BA, were specifically associated with ER+ but not with ER- breast cancer. We further identified 30 TWAS-significant genes associated with overall breast cancer risk, including four that were not identified in previous studies. Conditional analyses identified single independent breast-cancer gene in three of six regions harboring multiple TWAS-significant genes. Our study provides new information on breast cancer genetics and biology, particularly about genomic differences between ER+ and ER- breast cancer.


Subject(s)
Breast Neoplasms/genetics , Genome-Wide Association Study , Receptors, Estrogen/metabolism , Breast Neoplasms/metabolism , Estrogens/metabolism , Female , Genetic Predisposition to Disease , Genomics , Humans , Risk Assessment , Transcriptome , Vesicular Transport Proteins/genetics
10.
Br J Cancer ; 124(4): 842-854, 2021 02.
Article in English | MEDLINE | ID: mdl-33495599

ABSTRACT

BACKGROUND: Epidemiological studies provide strong evidence for a role of endogenous sex hormones in the aetiology of breast cancer. The aim of this analysis was to identify genetic variants that are associated with urinary sex-hormone levels and breast cancer risk. METHODS: We carried out a genome-wide association study of urinary oestrone-3-glucuronide and pregnanediol-3-glucuronide levels in 560 premenopausal women, with additional analysis of progesterone levels in 298 premenopausal women. To test for the association with breast cancer risk, we carried out follow-up genotyping in 90,916 cases and 89,893 controls from the Breast Cancer Association Consortium. All women were of European ancestry. RESULTS: For pregnanediol-3-glucuronide, there were no genome-wide significant associations; for oestrone-3-glucuronide, we identified a single peak mapping to the CYP3A locus, annotated by rs45446698. The minor rs45446698-C allele was associated with lower oestrone-3-glucuronide (-49.2%, 95% CI -56.1% to -41.1%, P = 3.1 × 10-18); in follow-up analyses, rs45446698-C was also associated with lower progesterone (-26.7%, 95% CI -39.4% to -11.6%, P = 0.001) and reduced risk of oestrogen and progesterone receptor-positive breast cancer (OR = 0.86, 95% CI 0.82-0.91, P = 6.9 × 10-8). CONCLUSIONS: The CYP3A7*1C allele is associated with reduced risk of hormone receptor-positive breast cancer possibly mediated via an effect on the metabolism of endogenous sex hormones in premenopausal women.


Subject(s)
Breast Neoplasms/genetics , Cytochrome P-450 CYP3A/genetics , Estrone/analogs & derivatives , Pregnanediol/analogs & derivatives , Progesterone/urine , Receptors, Estrogen/metabolism , Receptors, Progesterone/metabolism , Alleles , Breast Neoplasms/enzymology , Breast Neoplasms/urine , Case-Control Studies , Cytochrome P-450 CYP3A/metabolism , Estrone/genetics , Estrone/urine , Female , Genome-Wide Association Study , Humans , Polymorphism, Single Nucleotide , Pregnanediol/genetics , Pregnanediol/urine , Premenopause
11.
Acta Oncol ; 60(11): 1499-1506, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34448678

ABSTRACT

BACKGROUND: Glandular metastases (GM) have been associated with improved survival in metastatic clear cell renal cell carcinoma (m-ccRCC). We aimed to molecularly characterize m-ccRCC with GM. MATERIAL AND METHODS: We performed a retrospective cohort study on all m-ccRCC patients with available tissue at our institution, diagnosed with metastatic disease from 2000 to 2019. We determined previously described angiogenesis- and immune-related gene expression signatures (GES) and ccrcc molecular subtypes through whole transcriptome RNA sequencing of primary tumors and metastases. We tested differences in GES and molecular subtypes across groups and studied overall (OS) and progression-free survival (PFS) using Kaplan-Meier survival analysis and Cox regression models. RESULTS: Primary tumors of patients who developed GM (n = 55) had higher IMmotion Angio (p < 0.001) and JAVELIN Angio (p = 0.003) GES as well as a higher proportion of angiogenic ccrcc2 molecular subtypes (p = 0.008) than primary tumors of patients with non-GM (n = 128). Metastatic lesions in glandular organs (n = 32) also had higher IMmotion Angio (p = 0.008) and JAVELIN Angio (p = 0.02) GES and were more frequently of the ccrcc2 molecular subtype (p = 0.03), compared to metastatic lesions in non-glandular organs in patients who did not develop any GM (n = 231), but not compared to metastatic lesions in non-glandular organs in patients who also developed GM (n = 18). Patients with GM had better OS (HR 0.49, p < 0.001) and PFS on first-line vascular endothelial growth factor receptor tyrosine kinase inhibitors (VEGFR-TKIs) (HR 0.64, p = 0.045) than patients with non-GM. PFS on first- or any-line immuno-oncology (IO) was not different. IMmotion Angio, JAVELIN Angio GES, and ccrcc2 molecular subtype were associated with better OS and PFS on first-line VEGFR-TKIs, but not PFS on first or any-line IO. CONCLUSIONS: Patients with m-ccRCC who develop GM are molecularly characterized by heightened angiogenesis, translating into better prognosis and better outcomes on VEGFR-TKIs, but not IO. Based on these findings, VEGFR-TKIs should be included in the first-line treatment of m-ccRCC patients with GM.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Carcinoma, Renal Cell/drug therapy , Carcinoma, Renal Cell/genetics , Humans , Kidney Neoplasms/drug therapy , Kidney Neoplasms/genetics , Retrospective Studies , Tropism , Vascular Endothelial Growth Factor A
12.
Diabetologia ; 63(10): 2235-2248, 2020 10.
Article in English | MEDLINE | ID: mdl-32734440

ABSTRACT

AIMS/HYPOTHESIS: Diabetic retinopathy is a common complication of diabetes and a leading cause of visual impairment and blindness. Despite recent advances, our understanding of its pathophysiology remains incomplete. The aim of this study was to provide deeper insight into the complex network of molecular and cellular changes that underlie diabetic retinopathy by systematically mapping the transcriptional changes that occur in the different cellular compartments of the degenerating diabetic mouse retina. METHODS: Single-cell RNA sequencing was performed on retinal tissue from 12-week-old wild-type and Akimba (Ins2Akita×Vegfa+/-) mice, which are known to replicate features of clinical diabetic retinopathy. This resulted in transcriptome data for 9474 retinal cells, which could be annotated to eight distinct retinal cell types. Using STRING analysis, we studied differentially expressed gene networks in neuronal, glial and immune cell compartments to create a comprehensive view on the pathological changes that occur in the Akimba retina. Using subclustering analysis, we further characterised macroglial and inflammatory cell subpopulations. Prominent findings were confirmed at the protein level using immunohistochemistry, western blotting and ELISA. RESULTS: At 12 weeks, the Akimba retina was found to display degeneration of rod photoreceptors and presence of inflammatory cells, identified by subclustering analysis as monocyte, macrophage and microglial populations. Analysis of differentially expressed genes in the rod, cone, bipolar cell and macroglial compartments indicated changes in cell metabolism and ribosomal gene expression, gliosis, activation of immune system pathways and redox and metal ion dyshomeostasis. Experiments at the protein level supported a metabolic shift from glycolysis to oxidative phosphorylation (glyceraldehyde 3-phosphate dehydrogenase), activation of microglia/macrophages (isolectin-B4), metal ion and oxidative stress response (metallothionein and haem oxygenase-1) and reactive macroglia (glial fibrillary acidic protein and S100) in the Akimba retina, compared with wild-type mice. Our single-cell approach also indicates macroglial subpopulations with distinct fibrotic, inflammatory and gliotic profiles. CONCLUSIONS/INTERPRETATION: Our study identifies molecular pathways underlying inflammatory, metabolic and oxidative stress-mediated changes in the Akimba mouse model of diabetic retinopathy and distinguishes distinct functional subtypes of inflammatory and macroglial cells. DATA AVAILABILITY: RNA-seq data have been deposited in the ArrayExpress database at EMBL-EBI ( www.ebi.ac.uk/arrayexpress ) under accession number E-MTAB-9061. Graphical abstract.


Subject(s)
Diabetic Retinopathy/genetics , Gene Expression Profiling , Retina/metabolism , Animals , Diabetic Retinopathy/metabolism , Glycolysis/genetics , Insulin/genetics , Macrophages/cytology , Macrophages/metabolism , Mice , Mice, Transgenic , Microglia/cytology , Microglia/metabolism , Monocytes/cytology , Monocytes/metabolism , Oxidative Phosphorylation , Oxidative Stress/genetics , RNA-Seq , Retina/cytology , Retinal Bipolar Cells/cytology , Retinal Bipolar Cells/metabolism , Retinal Cone Photoreceptor Cells/cytology , Retinal Cone Photoreceptor Cells/metabolism , Retinal Rod Photoreceptor Cells/cytology , Retinal Rod Photoreceptor Cells/metabolism , Single-Cell Analysis , Stress, Physiological/genetics , Vascular Endothelial Growth Factor A/genetics
13.
Int J Cancer ; 146(11): 3207-3218, 2020 06 01.
Article in English | MEDLINE | ID: mdl-31745979

ABSTRACT

Lung cancer is the number one cause of cancer-related death worldwide with cigarette smoking as its major risk factor. Although the incidence of lung cancer in never smokers is rising, this subgroup of patients is underrepresented in genomic studies of lung cancer. Here, we assembled a prospective cohort of 46 never-smoking, nonsmall cell lung cancer (NSCLC) patients and performed whole-exome and low-coverage whole-genome sequencing on tumors and matched germline DNA. We observed fewer somatic mutations, genomic breakpoints and a smaller fraction of the genome with chromosomal instability in lung tumors from never smokers compared to smokers. The lower number of mutations, enabled us to identify TSC22D1 as a potential driver gene in NSCLC. On the other hand, the frequency of mutations in actionable genes such as EGFR and ERBB2 and of amplifications in MET were higher, while the mutation rate of TP53, which is a negative prognostic factor, was lower in never smokers compared to smokers. Together, these observations suggest a more favorable prognosis for never smokers with NSCLC. Classification of somatic mutations into six-substitution type patterns or into 96-substitution type signatures revealed distinct clusters between smokers and never smokers. Particularly, we identified in never smokers signatures related to aging, homologous recombination damage and APOBEC/AID activity as the most important underlying processes of NSCLC. This further indicates that second-hand smoking is not driving NSCLC pathogenesis in never smokers.


Subject(s)
Carcinoma, Non-Small-Cell Lung/genetics , Lung Neoplasms/genetics , Non-Smokers , Carcinoma, Non-Small-Cell Lung/pathology , ErbB Receptors/genetics , Humans , Lung/pathology , Lung Neoplasms/pathology , Mutation/genetics , Prospective Studies , Receptor, ErbB-2/genetics , Repressor Proteins/genetics , Risk Factors , Smoking/adverse effects , Tobacco Smoke Pollution/adverse effects , Tumor Suppressor Protein p53/genetics , Exome Sequencing , Whole Genome Sequencing
14.
EMBO J ; 35(9): 924-41, 2016 05 02.
Article in English | MEDLINE | ID: mdl-26856890

ABSTRACT

Blood vessels are part of the stem cell niche in the developing cerebral cortex, but their in vivo role in controlling the expansion and differentiation of neural stem cells (NSCs) in development has not been studied. Here, we report that relief of hypoxia in the developing cerebral cortex by ingrowth of blood vessels temporo-spatially coincided with NSC differentiation. Selective perturbation of brain angiogenesis in vessel-specific Gpr124 null embryos, which prevented the relief from hypoxia, increased NSC expansion at the expense of differentiation. Conversely, exposure to increased oxygen levels rescued NSC differentiation in Gpr124 null embryos and increased it further in WT embryos, suggesting that niche blood vessels regulate NSC differentiation at least in part by providing oxygen. Consistent herewith, hypoxia-inducible factor (HIF)-1α levels controlled the switch of NSC expansion to differentiation. Finally, we provide evidence that high glycolytic activity of NSCs is required to prevent their precocious differentiation in vivo Thus, blood vessel function is required for efficient NSC differentiation in the developing cerebral cortex by providing oxygen and possibly regulating NSC metabolism.


Subject(s)
Cell Differentiation , Cell Proliferation , Cerebral Cortex/embryology , Glycolysis , Hypoxia , Neovascularization, Physiologic , Neural Stem Cells/physiology , Animals , Hypoxia-Inducible Factor 1, alpha Subunit/analysis , Mice , Oxygen/metabolism
15.
Br J Cancer ; 120(6): 647-657, 2019 03.
Article in English | MEDLINE | ID: mdl-30787463

ABSTRACT

BACKGROUND: We examined the associations between germline variants and breast cancer mortality using a large meta-analysis of women of European ancestry. METHODS: Meta-analyses included summary estimates based on Cox models of twelve datasets using ~10.4 million variants for 96,661 women with breast cancer and 7697 events (breast cancer-specific deaths). Oestrogen receptor (ER)-specific analyses were based on 64,171 ER-positive (4116) and 16,172 ER-negative (2125) patients. We evaluated the probability of a signal to be a true positive using the Bayesian false discovery probability (BFDP). RESULTS: We did not find any variant associated with breast cancer-specific mortality at P < 5 × 10-8. For ER-positive disease, the most significantly associated variant was chr7:rs4717568 (BFDP = 7%, P = 1.28 × 10-7, hazard ratio [HR] = 0.88, 95% confidence interval [CI] = 0.84-0.92); the closest gene is AUTS2. For ER-negative disease, the most significant variant was chr7:rs67918676 (BFDP = 11%, P = 1.38 × 10-7, HR = 1.27, 95% CI = 1.16-1.39); located within a long intergenic non-coding RNA gene (AC004009.3), close to the HOXA gene cluster. CONCLUSIONS: We uncovered germline variants on chromosome 7 at BFDP < 15% close to genes for which there is biological evidence related to breast cancer outcome. However, the paucity of variants associated with mortality at genome-wide significance underpins the challenge in providing genetic-based individualised prognostic information for breast cancer patients.


Subject(s)
Breast Neoplasms/genetics , Breast Neoplasms/mortality , Bayes Theorem , Breast Neoplasms/metabolism , Chromosomes, Human, Pair 7 , Female , Genetic Variation , Genome-Wide Association Study , Humans , Prognosis , Proportional Hazards Models , Receptors, Estrogen/genetics , Receptors, Estrogen/metabolism , White People/genetics
16.
Breast Cancer Res Treat ; 174(1): 55-63, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30456437

ABSTRACT

PURPOSE: The human epidermal growth factor receptor 2 (ERBB2) may harbour somatic mutations that drive breast tumorigenesis. Here, we study prevalence, tumour characteristics and disease outcome of ERBB2 mutations in a large unselected cohort of metastatic breast cancer (mBC) patients. METHODS: We retrospectively included all mBC patients with sufficient primary breast tumour, diagnosed between 2000 and 2015 (n = 775). Genomic DNA was subjected to a targeted-resequencing assay to identify hotspot mutations in exon 8, 17, 19, 20, and 21 of ERBB2. We studied demographics, tumour characteristics, median distant disease-free survival (DDFS), using a time-to-event analysis and time to progression (TTP) and overall survival (OS) upon metastasis, using Kaplan-Meier and log-rank statistics to assess differences between ERBB2-mutation statuses. RESULTS: ERBB2 mutations were observed in 1.8% of the samples (13/721). Patient and tumour characteristics were independent of ERBB2 mutations. Luminal ERBB2-mutated (ERBB2mut+) cases (n = 5) had a shorter DDFS than ERBB2mut- cases (median DDFS 0.8 vs. > 4.0 years, p = 0.02). ER-positive ERBB2mut+ patients who received an aromatase inhibitor (AI) as first-line treatment (stage IV disease) had a worse TTP vs. ERBB2mut- patients (n = 3 vs. 156; median TTP 103 vs. 311 days, p = 0.04). OS for all subtypes was lower for ERBB2mut+ vs. ERBB2mut- cases (n = 11 vs. 669; median OS 1.1 vs. 2.3 years, p = 0.46). CONCLUSION: ERBB2mut+ are rare in patients in whom mBC developed and no evidence was found for an association with specific types of BC or patient characteristics, although outcomes of ERBB2mut+ carriers might be worse. The latter, however, needs to be validated in larger populations.


Subject(s)
Breast Neoplasms/genetics , Breast Neoplasms/pathology , Receptor, ErbB-2/genetics , Adult , Aged , Breast Neoplasms/mortality , Disease-Free Survival , Female , Humans , Kaplan-Meier Estimate , Middle Aged , Mutation , Retrospective Studies , Treatment Outcome
17.
Hum Mutat ; 39(5): 729-741, 2018 05.
Article in English | MEDLINE | ID: mdl-29460995

ABSTRACT

Although the spliceogenic nature of the BRCA2 c.68-7T > A variant has been demonstrated, its association with cancer risk remains controversial. In this study, we accurately quantified by real-time PCR and digital PCR (dPCR), the BRCA2 isoforms retaining or missing exon 3. In addition, the combined odds ratio for causality of the variant was estimated using genetic and clinical data, and its associated cancer risk was estimated by case-control analysis in 83,636 individuals. Co-occurrence in trans with pathogenic BRCA2 variants was assessed in 5,382 families. Exon 3 exclusion rate was 4.5-fold higher in variant carriers (13%) than controls (3%), indicating an exclusion rate for the c.68-7T > A allele of approximately 20%. The posterior probability of pathogenicity was 7.44 × 10-115 . There was neither evidence for increased risk of breast cancer (OR 1.03; 95% CI 0.86-1.24) nor for a deleterious effect of the variant when co-occurring with pathogenic variants. Our data provide for the first time robust evidence of the nonpathogenicity of the BRCA2 c.68-7T > A. Genetic and quantitative transcript analyses together inform the threshold for the ratio between functional and altered BRCA2 isoforms compatible with normal cell function. These findings might be exploited to assess the relevance for cancer risk of other BRCA2 spliceogenic variants.


Subject(s)
BRCA2 Protein/genetics , Genetic Variation , Models, Genetic , RNA Splicing/genetics , BRCA2 Protein/metabolism , Base Sequence , Calibration , Cell Line , Exons/genetics , Female , Genetic Predisposition to Disease , Humans , Mitomycin/pharmacology , RNA, Messenger/genetics , RNA, Messenger/metabolism
18.
Part Fibre Toxicol ; 15(1): 11, 2018 02 09.
Article in English | MEDLINE | ID: mdl-29426343

ABSTRACT

BACKGROUND: Subtle DNA methylation alterations mediated by carbon nanotubes (CNTs) exposure might contribute to pathogenesis and disease susceptibility. It is known that both multi-walled carbon nanotubes (MWCNTs) and single-walled carbon nanotubes (SWCNTs) interact with nucleus. Such, nuclear-CNT interaction may affect the DNA methylation effects. In order to understand the epigenetic toxicity, in particular DNA methylation alterations, of SWCNTs and short MWCNTs, we performed global/genome-wide, gene-specific DNA methylation and RNA-expression analyses after exposing human bronchial epithelial cells (16HBE14o- cell line). In addition, the presence of CNTs on/in the cell nucleus was evaluated in a label-free way using femtosecond pulsed laser microscopy. RESULTS: Generally, a higher number of SWCNTs, compared to MWCNTs, was deposited at both the cellular and nuclear level after exposure. Nonetheless, both CNT types were in physical contact with the nuclei. While particle type dependency was noticed for the identified genome-wide and gene-specific alterations, no global DNA methylation alteration on 5-methylcytosine (5-mC) sites was observed for both CNTs. After exposure to MWCNTs, 2398 genes were hypomethylated (at gene promoters), and after exposure to SWCNTs, 589 CpG sites (located on 501 genes) were either hypo- (N = 493 CpG sites) or hypermethylated (N = 96 CpG sites). Cells exposed to MWCNTs exhibited a better correlation between gene promoter methylation and gene expression alterations. Differentially methylated and expressed genes induced changes (MWCNTs > SWCNTs) at different cellular pathways, such as p53 signalling, DNA damage repair and cell cycle. On the other hand, SWCNT exposure showed hypermethylation on functionally important genes, such as SKI proto-oncogene (SKI), glutathione S-transferase pi 1 (GTSP1) and shroom family member 2 (SHROOM2) and neurofibromatosis type I (NF1), which the latter is both hypermethylated and downregulated. CONCLUSION: After exposure to both types of CNTs, epigenetic alterations may contribute to toxic or repair response. Moreover, our results suggest that the observed differences in the epigenetic response depend on particle type and differential CNT-nucleus interactions.


Subject(s)
Bronchi/drug effects , Cell Nucleus/drug effects , DNA Methylation/drug effects , Epigenesis, Genetic/drug effects , Epithelial Cells/drug effects , Nanotubes, Carbon/toxicity , Bronchi/metabolism , Cell Line , Cell Nucleus/metabolism , Cell Survival/drug effects , Epithelial Cells/metabolism , Genome-Wide Association Study , Humans , Nanotubes, Carbon/chemistry , Particle Size , Proto-Oncogene Mas , Structure-Activity Relationship , Surface Properties
19.
Br J Cancer ; 116(1): 58-65, 2017 01 03.
Article in English | MEDLINE | ID: mdl-27884016

ABSTRACT

BACKGROUND: Tumour budding, described as the presence of single cells or small clusters of up to five tumour cells at the invasive margin, is established as a prognostic marker in colorectal carcinoma. In the present study, we aimed to investigate the molecular signature of tumour budding cells and the corresponding tumour bulk. METHODS: Tumour bulk and budding areas were microdissected and processed for RNA-sequencing. As little RNA was obtained from budding cells, a special low-input mRNA library preparation protocol was used. Gene expression profiles of budding as compared with tumour bulk were investigated for established EMT signatures, consensus molecular subtype (CMS), gene set enrichment and pathway analysis. RESULTS: A total of 296 genes were differentially expressed with an FDR <0.05 and a twofold change between tumour bulk and budding regions. Genes that were upregulated in the budding signature were mainly involved in cell migration and survival while downregulated genes were important for cell proliferation. Supervised clustering according to an established EMT gene signature categorised budding regions as EMT-positive, whereas tumour bulk was considered EMT-negative. Furthermore, a shift from CMS2 (epithelial) to CMS4 (mesenchymal) was observed as tumour cells transit from the tumour bulk to the budding regions. CONCLUSIONS: Tumour budding regions are characterised by a phenotype switch compared with the tumour bulk, involving the acquisition of migratory characteristics and a decrease in cell proliferation. In particular, most tumour budding signatures were EMT-positive and switched from an epithelial subtype (CMS2) in the tumour bulk to a mesenchymal subtype (CMS4) in budding cells.


Subject(s)
Cell Division/genetics , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Epithelial-Mesenchymal Transition/genetics , Genes, Switch/genetics , Transcriptome , Adult , Aged , Aged, 80 and over , Cell Proliferation/genetics , Colorectal Neoplasms/metabolism , Female , Gene Expression Profiling , Humans , Male , Margins of Excision , Middle Aged , Neoplasm Invasiveness , Phenotype , Tissue Array Analysis
20.
J Pathol ; 236(4): 457-66, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25850943

ABSTRACT

Multifocal breast cancer (MFBC), defined as multiple synchronous unilateral lesions of invasive breast cancer, is relatively frequent and has been associated with more aggressive features than unifocal cancer. Here, we aimed to investigate the genomic heterogeneity between MFBC lesions sharing similar histopathological parameters. Characterization of different lesions from 36 patients with ductal MFBC involved the identification of non-silent coding mutations in 360 protein-coding genes (171 tumour and 36 matched normal samples). We selected only patients with lesions presenting the same grade, ER, and HER2 status. Mutations were classified as 'oncogenic' in the case of recurrent substitutions reported in COSMIC or truncating mutations affecting tumour suppressor genes. All mutations identified in a given patient were further interrogated in all samples from that patient through deep resequencing using an orthogonal platform. Whole-genome rearrangement screen was further conducted in 8/36 patients. Twenty-four patients (67%) had substitutions/indels shared by all their lesions, of which 11 carried the same mutations in all lesions, and 13 had lesions with both common and private mutations. Three-quarters of those 24 patients shared oncogenic variants. The remaining 12 patients (33%) did not share any substitution/indels, with inter-lesion heterogeneity observed for oncogenic mutation(s) in genes such as PIK3CA, TP53, GATA3, and PTEN. Genomically heterogeneous lesions tended to be further apart in the mammary gland than homogeneous lesions. Genome-wide analyses of a limited number of patients identified a common somatic background in all studied MFBCs, including those with no mutation in common between the lesions. To conclude, as the number of molecular targeted therapies increases and trials driven by genomic screening are ongoing, our findings highlight the presence of genomic inter-lesion heterogeneity in one-third, despite similar pathological features. This implies that deeper molecular characterization of all MFBC lesions is warranted for the adequate management of those cancers.


Subject(s)
Biomarkers, Tumor/genetics , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Carcinoma, Ductal, Breast/genetics , Carcinoma, Ductal, Breast/pathology , Carcinoma, Intraductal, Noninfiltrating/genetics , Carcinoma, Intraductal, Noninfiltrating/pathology , Mutation , Neoplasms, Multiple Primary/genetics , Neoplasms, Multiple Primary/pathology , Adult , Aged , Biomarkers, Tumor/analysis , Breast Neoplasms/chemistry , Carcinoma, Ductal, Breast/chemistry , Carcinoma, Intraductal, Noninfiltrating/chemistry , DNA Mutational Analysis , Female , Genetic Predisposition to Disease , Genome-Wide Association Study , High-Throughput Nucleotide Sequencing , Humans , Middle Aged , Neoplasm Grading , Neoplasms, Multiple Primary/chemistry , Phenotype , Predictive Value of Tests , Receptor, ErbB-2/analysis , Receptors, Estrogen/analysis , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL