Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
1.
J Neurosci ; 43(50): 8744-8755, 2023 12 13.
Article in English | MEDLINE | ID: mdl-37857485

ABSTRACT

Mammalian target of rapamycin (mTOR) pathway has emerged as a key molecular mechanism underlying memory processes. Although mTOR inhibition is known to block memory processes, it remains elusive whether and how an enhancement of mTOR signaling may improve memory processes. Here we found in male mice that the administration of VO-OHpic, an inhibitor of the phosphatase and tensin homolog (PTEN) that negatively modulates AKT-mTOR pathway, enhanced auditory fear memory for days and weeks, while it left short-term memory unchanged. Memory enhancement was associated with a long-lasting increase in immature-type dendritic spines of pyramidal neurons into the auditory cortex. The persistence of spine remodeling over time arose by the interplay between PTEN inhibition and memory processes, as VO-OHpic induced only a transient immature spine growth in the somatosensory cortex, a region not involved in long-term auditory memory. Both the potentiation of fear memories and increase in immature spines were hampered by rapamycin, a selective inhibitor of mTORC1. These data revealed that memory can be potentiated over time by the administration of a selective PTEN inhibitor. In addition to disclosing new information on the cellular mechanisms underlying long-term memory maintenance, our study provides new insights on the molecular processes that aid enhancing memories over time.SIGNIFICANCE STATEMENT The neuronal mechanisms that may help improve the maintenance of long-term memories are still elusive. The inhibition of mammalian-target of rapamycin (mTOR) signaling shows that this pathway plays a crucial role in synaptic plasticity and memory formation. However, whether its activation may strengthen long-term memory storage is unclear. We assessed the consequences of positive modulation of AKT-mTOR pathway obtained by VO-OHpic administration, a phosphatase and tensin homolog inhibitor, on memory retention and underlying synaptic modifications. We found that mTOR activation greatly enhanced memory maintenance for weeks by producing a long-lasting increase of immature-type dendritic spines in pyramidal neurons of the auditory cortex. These results offer new insights on the cellular and molecular mechanisms that can aid enhancing memories over time.


Subject(s)
Auditory Cortex , Proto-Oncogene Proteins c-akt , Male , Mice , Animals , Mechanistic Target of Rapamycin Complex 1/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Auditory Cortex/metabolism , Dendritic Spines/metabolism , Tensins/metabolism , Memory, Long-Term/physiology , TOR Serine-Threonine Kinases/metabolism , Memory, Short-Term/physiology , Sirolimus/pharmacology , Fear/physiology , Phosphoric Monoester Hydrolases/metabolism , Mammals
2.
Bioorg Chem ; 144: 107164, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38306824

ABSTRACT

Cancer spreading through metastatic processes is one of the major causes of tumour-related mortality. Metastasis is a complex phenomenon which involves multiple pathways ranging from cell metabolic alterations to changes in the biophysical phenotype of cells and tissues. In the search for new effective anti-metastatic agents, we modulated the chemical structure of the lead compound AA6, in order to find the structural determinants of activity, and to identify the cellular target responsible of the downstream anti-metastatic effects observed. New compounds synthesized were able to inhibit in vitro B16-F10 melanoma cell invasiveness, and one selected compound, CM365, showed in vivo anti-metastatic effects in a lung metastasis mouse model of melanoma. Septin-4 was identified as the most likely molecular target responsible for these effects. This study showed that CM365 is a promising molecule for metastasis prevention, remarkably effective alone or co-administered with drugs normally used in cancer therapy, such as paclitaxel.


Subject(s)
Lung Neoplasms , Melanoma, Experimental , Animals , Mice , Septins , Melanoma, Experimental/drug therapy , Melanoma, Experimental/pathology , Lung Neoplasms/drug therapy , Paclitaxel , Disease Models, Animal , Mice, Inbred C57BL
3.
Int J Mol Sci ; 24(5)2023 Feb 26.
Article in English | MEDLINE | ID: mdl-36901997

ABSTRACT

Platelets, traditionally known for their roles in hemostasis and coagulation, are the most prevalent blood component after erythrocytes (150,000-400,000 platelets/µL in healthy humans). However, only 10,000 platelets/µL are needed for vessel wall repair and wound healing. Increased knowledge of the platelet's role in hemostasis has led to many advances in understanding that they are crucial mediators in many other physiological processes, such as innate and adaptive immunity. Due to their multiple functions, platelet dysfunction is involved not only in thrombosis, mediating myocardial infarction, stroke, and venous thromboembolism, but also in several other disorders, such as tumors, autoimmune diseases, and neurodegenerative diseases. On the other hand, thanks to their multiple functions, nowadays platelets are therapeutic targets in different pathologies, in addition to atherothrombotic diseases; they can be used as an innovative drug delivery system, and their derivatives, such as platelet lysates and platelet extracellular vesicles (pEVs), can be useful in regenerative medicine and many other fields. The protean role of platelets, from the name of Proteus, a Greek mythological divinity who could take on different shapes or aspects, is precisely the focus of this review.


Subject(s)
Blood Platelets , Thrombosis , Humans , Blood Platelets/physiology , Hemostasis/physiology , Blood Coagulation , Adaptive Immunity
4.
Int J Mol Sci ; 24(3)2023 Feb 02.
Article in English | MEDLINE | ID: mdl-36769276

ABSTRACT

Activated T cells express the inducible T-cell co-stimulator (ICOS) that, upon binding to its ubiquitously expressed ligand (ICOSL), regulates the immune response and tissue repair. We sought to determine the effect of ICOS:ICOSL interaction on human M1 and M2 macrophages. M1 and M2 macrophages were polarized from monocyte-derived macrophages, and the effect of a soluble recombinant form of ICOS (ICOS-CH3) was assessed on cytokine production and cell migration. We show that ICOS-CH3 treatment increased the secretion of CCL3 and CCL4 in resting M1 and M2 cells. In LPS-treated M1 cells, ICOS-CH3 inhibited the secretion of TNF-α, IL-6, IL-10 and CCL4, while it increased that of IL-23. In contrast, M2 cells treated with LPS + IL4 displayed enhanced secretion of IL-6, IL-10, CCL3 and CCL4. In CCL7- or osteopontin-treated M1 cells, ICOS-CH3 boosted the migration rate of M1 cells while it decreased that of M2 cells. Finally, ß-Pix expression was upregulated in M1 cells and downregulated in M2 cells by treatment with ICOS-CH3. These findings suggest that ICOSL activation modulates the activity of human M1 and M2 cells, thereby eliciting an overall anti-inflammatory effect consistent with its role in promoting tissue repair.


Subject(s)
Interleukin-10 , Interleukin-6 , Humans , Inducible T-Cell Co-Stimulator Protein , Lipopolysaccharides/pharmacology , Macrophages
5.
Br J Haematol ; 196(6): 1369-1380, 2022 03.
Article in English | MEDLINE | ID: mdl-34954822

ABSTRACT

The inducible T-cell co-stimulator (ICOS) is a T-cell receptor that, once bound to ICOS ligand (ICOSL) expressed on several cell types including the B-cell lineage, plays a decisive role in adaptive immunity by regulating the interplay between B and T cells. In addition to its immunomodulatory functions, we have shown that ICOS/ICOSL signalling can inhibit the activity of osteoclasts, unveiling a novel mechanism of lymphocyte-bone cells interactions. ICOS and ICOSL can also be found as soluble forms, namely sICOS and sICOSL. Here we show that: (i) levels of sICOS and sICOSL are increased in multiple myeloma (MM) compared to monoclonal gammopathy of undetermined significance and smouldering MM; (ii) levels of sICOS and sICOSL variably correlate with several markers of tumour burden; and (iii) sICOS levels tend to be higher in Durie-Salmon stage II/III versus stage I MM and correlate with overall survival as an independent variable. Moreover, surface ICOS and ICOSL are expressed in both myeloma cells and normal plasma cells, where they probably regulate different functional stages. Finally, ICOSL triggering inhibits the migration of myeloma cell lines in vitro and the growth of ICOSL+ MOPC-21 myeloma cells in vivo. These results suggest that ICOS and ICOSL represent novel markers and therapeutic targets for MM.


Subject(s)
Multiple Myeloma , Humans , Inducible T-Cell Co-Stimulator Ligand/metabolism , Inducible T-Cell Co-Stimulator Protein/metabolism , Ligands , Multiple Myeloma/metabolism , T-Lymphocytes , Tumor Microenvironment
6.
Int J Mol Sci ; 23(13)2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35806368

ABSTRACT

BACKGROUND: ICOS and its ligand ICOSL are immune receptors whose interaction triggers bidirectional signals that modulate the immune response and tissue repair. AIM: The aim of this study was to assess the in vivo effects of ICOSL triggering by ICOS-Fc, a recombinant soluble form of ICOS, on skin wound healing. METHODS: The effect of human ICOS-Fc on wound healing was assessed, in vitro, and, in vivo, by skin wound healing assay using ICOS-/- and ICOSL-/- knockout (KO) mice and NOD-SCID-IL2R null (NSG) mice. RESULTS: We show that, in wild type mice, treatment with ICOS-Fc improves wound healing, promotes angiogenesis, preceded by upregulation of IL-6 and VEGF expression; increases the number of fibroblasts and T cells, whereas it reduces that of neutrophils; and increases the number of M2 vs. M1 macrophages. Fittingly, ICOS-Fc enhanced M2 macrophage migration, while it hampered that of M1 macrophages. ICOS-/- and ICOSL-/- KO, and NSG mice showed delayed wound healing, and treatment with ICOS-Fc improved wound closure in ICOS-/- and NSG mice. CONCLUSION: These data show that the ICOS/ICOSL network cooperates in tissue repair, and that triggering of ICOSL by ICOS-Fc improves cutaneous wound healing by increasing angiogenesis and recruitment of reparative macrophages.


Subject(s)
Immunoglobulin Fc Fragments , Inducible T-Cell Co-Stimulator Ligand , Inducible T-Cell Co-Stimulator Protein , Wound Healing , Animals , Immunoglobulin Fc Fragments/immunology , Immunoglobulin Fc Fragments/pharmacology , Inducible T-Cell Co-Stimulator Ligand/genetics , Inducible T-Cell Co-Stimulator Ligand/immunology , Inducible T-Cell Co-Stimulator Ligand/metabolism , Inducible T-Cell Co-Stimulator Protein/genetics , Inducible T-Cell Co-Stimulator Protein/immunology , Mice , Mice, Inbred NOD , Mice, Knockout , Mice, SCID , Recombinant Proteins/pharmacology , Wound Healing/drug effects
7.
Br J Haematol ; 193(2): 386-396, 2021 04.
Article in English | MEDLINE | ID: mdl-33618438

ABSTRACT

Up to 30% immune thrombocytopenia (ITP) patients achieve a sustained remission off-treatment (SROT) after discontinuation of thrombopoietin receptor agonists (TPO-RAs). Factors predictive of response are lacking. Patients aged ≥18 years with newly diagnosed or persistent ITP were treated with eltrombopag for 24 weeks. Primary end-point was SROT: the proportion of responders that were able to taper and discontinue eltrombopag maintaining the response during a period of observation (PO) of six months. Secondary end-points included the association between some immunological parameters (TPO serum levels, cytokines and lymphocyte subsets) and response. Fifty-one patients were evaluable. Primary end-point was achieved in 13/51 (25%) treated patients and 13/34 (38%) patients who started the tapering. Baseline TPO levels were not associated with response at week 24 nor with SROT. Higher baseline levels of IL-10, IL-4, TNF-α and osteopontin were negative factors predictive of response (P = 0·001, 0·008, 0·02 and 0·03 respectively). This study confirms that SROT is feasible for a proportion of ITP patients treated with eltrombopag. Some biological parameters were predictive of response.


Subject(s)
Benzoates/therapeutic use , Drug Tapering/statistics & numerical data , Hydrazines/therapeutic use , Purpura, Thrombocytopenic, Idiopathic/drug therapy , Pyrazoles/therapeutic use , Receptors, Thrombopoietin/agonists , Adult , Aged , Aged, 80 and over , Benzoates/administration & dosage , Benzoates/toxicity , Cytokines/immunology , Drug Tapering/methods , Female , Humans , Hydrazines/administration & dosage , Hydrazines/toxicity , Lymphocytes/immunology , Male , Middle Aged , Predictive Value of Tests , Prospective Studies , Purpura, Thrombocytopenic, Idiopathic/diagnosis , Pyrazoles/administration & dosage , Pyrazoles/toxicity , Receptors, Thrombopoietin/immunology , Remission Induction , Withholding Treatment/statistics & numerical data
8.
J Immunol ; 197(10): 3905-3916, 2016 11 15.
Article in English | MEDLINE | ID: mdl-27798154

ABSTRACT

Osteoblasts, osteocytes, and osteoclasts (OCs) are involved in the bone production and resorption, which are crucial in bone homeostasis. OC hyperactivation plays a role in the exaggerated bone resorption of diseases such as osteoporosis, rheumatoid arthritis, and osteolytic tumor metastases. This work stems from the finding that OCs can express B7h (ICOS-Ligand), which is the ligand of the ICOS T cell costimulatory molecule. Because recent reports have shown that, in endothelial, dendritic, and tumor cells, B7h triggering modulates several activities of these cells, we analyzed the effect of B7h triggering by recombinant ICOS-Fc on OC differentiation and function. The results showed that ICOS-Fc inhibits RANKL-mediated differentiation of human monocyte-derived OC-like cells (MDOCs) by inhibiting the acquirement of the OC morphology, the CD14- cathepsin K+ phenotype, and the expression of tartrate-resistant acid phosphatase, OSCAR, NFATc1, and DC-STAMP. Moreover, ICOS-Fc induces a reversible decrease in the sizes of cells and nuclei and cathepsin K expression in mature MDOCs. Finally, ICOS-Fc inhibits the osteolytic activities of MDOCs in vitro and the development of bone loss in ovariectomized or soluble RANKL-treated mice. These findings open a novel field in the pharmacological use of agonists and antagonists of the ICOS-B7h system.


Subject(s)
Cell Differentiation , Inducible T-Cell Co-Stimulator Ligand/metabolism , Osteoclasts/physiology , Animals , Cell Movement , Cells, Cultured , Humans , Inducible T-Cell Co-Stimulator Ligand/genetics , Inducible T-Cell Co-Stimulator Ligand/immunology , Inducible T-Cell Co-Stimulator Ligand/pharmacology , Inducible T-Cell Co-Stimulator Protein/genetics , Inducible T-Cell Co-Stimulator Protein/metabolism , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Mice , Monocytes/immunology , Monocytes/physiology , Osteoclasts/drug effects , Osteoclasts/immunology , Protein Engineering , RANK Ligand/antagonists & inhibitors , RANK Ligand/metabolism , Receptor Activator of Nuclear Factor-kappa B/metabolism , Receptors, Fc/genetics , Receptors, Fc/immunology , Recombinant Fusion Proteins/pharmacology , Tartrate-Resistant Acid Phosphatase/immunology
9.
Int J Mol Sci ; 19(2)2018 Jan 24.
Article in English | MEDLINE | ID: mdl-29364157

ABSTRACT

AIM: To develop an innovative delivery system for temozolomide (TMZ) in solid lipid nanoparticles (SLN), which has been preliminarily investigated for the treatment of melanoma. MATERIALS AND METHODS: SLN-TMZ was obtained through fatty acid coacervation. Its pharmacological effects were assessed and compared with free TMZ in in vitro and in vivo models of melanoma and glioblastoma. RESULTS: Compared to the standard free TMZ, SLN-TMZ exerted larger effects, when cell proliferation of melanoma cells, and neoangiogeneis were evaluated. SLN-TMZ also inhibited growth and vascularization of B16-F10 melanoma in C57/BL6 mice, without apparent toxic effects. CONCLUSION: SLN could be a promising strategy for the delivery of TMZ, allowing an increased stability of the drug and thereby its employment in the treatment of aggressive malignacies.


Subject(s)
Dacarbazine/analogs & derivatives , Melanoma/pathology , Nanoparticles , Animals , Biomarkers , Cell Line, Tumor , Dacarbazine/administration & dosage , Dacarbazine/chemistry , Disease Models, Animal , Drug Stability , Female , Humans , Immunohistochemistry , Melanoma/drug therapy , Melanoma/metabolism , Melanoma, Experimental , Mice , Molecular Structure , Nanoparticles/chemistry , Nanoparticles/ultrastructure , Neoplastic Stem Cells , Temozolomide
10.
Br J Haematol ; 176(2): 258-267, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27391055

ABSTRACT

A defective switching off of the immune response is involved in several autoimmune diseases. This switching off involves Fas-mediated apoptosis, perforin-mediated fratricide of activated lymphocytes, and the suppressive activity of regulatory T (Treg) cells. These mechanisms are altered in autoimmune lymphoproliferative syndrome that often displays autoimmune thrombocytopenia. The aim of this research was to evaluate these mechanisms in adult patients with primary immune thrombocytopenia (ITP), compared with healthy controls. The results show that a substantial subgroup of the ITP patients displayed a defective Fas function; most of them displayed decreased Fas expression in T cells activated in vitro. Moreover, ITP patients displayed an increased frequency of rare missense variations of the PRF1 gene and decreased levels of Treg. Immunological analysis showed that levels of Interleukin (IL)10 and IL17 were decreased and marginal zone B cells were increased. Moreover, myeloid and plasmacytoid dendritic cells were decreased in ITP patients. In conclusion, in adult ITP patients, several mechanisms involved in shutting off the immune response are defective and several immunological parameters are dysregulated; these alterations may play a role in the clinical heterogeneity of the disease.


Subject(s)
Perforin/genetics , Purpura, Thrombocytopenic, Idiopathic/immunology , fas Receptor/metabolism , Adolescent , Adult , Aged , Aged, 80 and over , B-Lymphocytes/pathology , Dendritic Cells/pathology , Female , Humans , Interleukin-10/metabolism , Interleukin-17/metabolism , Male , Middle Aged , Mutation, Missense , Myeloid Cells/pathology , Purpura, Thrombocytopenic, Idiopathic/pathology , T-Lymphocytes, Regulatory/pathology , Young Adult , fas Receptor/physiology
11.
Blood ; 123(8): 1178-86, 2014 Feb 20.
Article in English | MEDLINE | ID: mdl-24363402

ABSTRACT

In autoimmune/lymphoproliferative syndrome (ALPS), defective Fas death receptor function causes lymphadenomegaly/splenomegaly, the expansion of T-cell receptor αß(+) CD4/CD8 double-negative T cells, and frequent development of hematologic autoimmunity. Dianzani autoimmune lymphoproliferative disease (DALD) has a similar phenotype but lacks the expansion of double-negative T cells. This work shows that patients with ALPS and DALD have high serum levels of interleukin 17A (IL-17A), IL-17F, and IL-17AF, which are involved in several autoimmune diseases, and that their T cells show increased secretion of these cytokines upon activation in vitro. The following data indicate that these cytokines may contribute to ALPS and DALD: (1) recombinant IL-17A and IL-17F significantly inhibit Fas-induced cell death in Fas-sensitive T cells from healthy donors; (2) this inhibitory effect is also induced by the patients' serum and is reversed by anti-IL-17A antibodies; (3) IL-17A neutralization substantially increases Fas-induced cell death in T cells from ALPS and DALD patients in vitro; and (4) treatment with anti-IL-17A antibodies ameliorates the autoimmune manifestations and, at a lesser extent, the lymphoproliferative phenotype and prolongs survival in MRLlpr/lpr mice, which are an animal model of ALPS. These data suggest that IL-17A and IL-17F could be targeted therapeutically to improve Fas function in ALPS and DALD.


Subject(s)
Apoptosis/immunology , Autoimmune Lymphoproliferative Syndrome/immunology , Interleukin-17/immunology , T-Lymphocytes/cytology , Animals , Antibodies, Neutralizing/immunology , Autoimmune Lymphoproliferative Syndrome/pathology , Cells, Cultured , Child , Child, Preschool , Female , Humans , Immunization, Passive , Immunophenotyping , Interleukin-17/blood , Male , Mice , Mice, Inbred MRL lpr , Phenotype , Receptors, Antigen, T-Cell, alpha-beta/genetics , Receptors, Antigen, T-Cell, alpha-beta/immunology , T-Lymphocytes/immunology , Young Adult
12.
J Immunol ; 192(10): 4921-31, 2014 May 15.
Article in English | MEDLINE | ID: mdl-24729612

ABSTRACT

Vascular endothelial cells (ECs) and several cancer cells express B7h, which is the ligand of the ICOS T cell costimulatory molecule. We have previously shown that B7h triggering via a soluble form of ICOS (ICOS-Fc) inhibits the adhesion of polymorphonuclear and tumor cell lines to HUVECs; thus, we suggested that ICOS-Fc may act as an anti-inflammatory and antitumor agent. Because cancer cell migration and angiogenesis are crucial for metastasis dissemination, the aim of this work was to evaluate the effect of ICOS-Fc on the migration of cancer cells and ECs. ICOS-Fc specifically inhibited the migration of HUVECs, human dermal lymphatic ECs, and the HT29, HCT116, PC-3, HepG2, JR8, and M14 tumor cell lines expressing high levels of B7h, whereas it was ineffective in the RPMI7932, PCF-2, LM, and BHT-101 cell lines expressing low levels of B7h. Furthermore, ICOS-Fc downmodulated hepatocyte growth factor facilitated the epithelial-to-mesenchymal transition in HepG2 cells. Moreover, ICOS-Fc downmodulated the phosphorylation of focal adhesion kinase and the expression of ß-Pix in both HUVECs and tumor cell lines. Finally, treatment with ICOS-Fc inhibited the development of lung metastases upon injection of NOD-SCID-IL2Rγnull mice with CF-PAC1 cells, as well as C57BL/6 mice with B16-F10 cells. Therefore, the B7h-ICOS interaction may modulate the spread of cancer metastases, which suggests the novel use of ICOS-Fc as an immunomodulatory drug. However, in the B16-F10-metastasized lungs, ICOS-Fc also increased IL-17A/RORc and decreased IL-10/Foxp3 expression, which indicates that it also exerts positive effects on the antitumor immune response.


Subject(s)
Cell Movement/immunology , Inducible T-Cell Co-Stimulator Ligand/immunology , Lung Neoplasms/immunology , Animals , Hep G2 Cells , Heterografts , Human Umbilical Vein Endothelial Cells , Humans , Immunoglobulin Fc Fragments/genetics , Immunoglobulin Fc Fragments/immunology , Inducible T-Cell Co-Stimulator Ligand/genetics , Inducible T-Cell Co-Stimulator Protein/genetics , Inducible T-Cell Co-Stimulator Protein/immunology , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lung Neoplasms/secondary , Mice , Mice, Inbred NOD , Mice, SCID , Neoplasm Metastasis , Neoplasm Transplantation , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/immunology , Recombinant Fusion Proteins/pharmacology
14.
J Immunol ; 190(3): 1125-34, 2013 Feb 01.
Article in English | MEDLINE | ID: mdl-23275603

ABSTRACT

B7h, expressed by several cell types, binds ICOS expressed by activated T cells. We have previously shown that B7h triggering by ICOS-Fc inhibits human endothelial cell adhesiveness. This work investigated the effect of ICOS-Fc on human monocyte-derived dendritic cells (DCs). We found that DCs matured with LPS in the presence of ICOS-Fc (mDCs(ICOS)) produced greater amounts of IL-23 and IL-10, and promoted a higher secretion of IL-17A and IL-17F in MLCs than did those DCs matured with LPS alone (mDCs). Moreover, mDCs(ICOS) pulsed with the keyhole limpet hemocyanin Ag during the maturation phase were better stimulators of Ag-specific MHC class I-, but not class II-restricted T cells than mDCs. This was probably due to promotion of cross-presentation because it was not detected when the Flu-MA(58-66) Ag was directly loaded on already matured DCs and mDCs(ICOS). Finally, ICOS-Fc inhibited the adhesion of both immature DCs and mDCs to vascular and lymphoid endothelial cells, their migratory activity, and the expression of the Rac-1 activator ß-Pix involved in cell motility. These data suggest that B7h stimulation modulates DC function with effects on their maturation and recruitment into tissues. This opens a novel view on the use of interactors of the ICOS:B7h system as immunomodulatory drugs.


Subject(s)
Dendritic Cells/drug effects , Inducible T-Cell Co-Stimulator Ligand/immunology , Inducible T-Cell Co-Stimulator Protein/immunology , Antigen Presentation/drug effects , Cell Adhesion/drug effects , Cell Differentiation/drug effects , Cell Movement/drug effects , Cells, Cultured/cytology , Cells, Cultured/immunology , Dendritic Cells/cytology , Dendritic Cells/immunology , Guanine Nucleotide Exchange Factors/biosynthesis , Guanine Nucleotide Exchange Factors/genetics , HLA-A2 Antigen/immunology , Hemocyanins/pharmacology , Human Umbilical Vein Endothelial Cells/cytology , Humans , Immunoglobulin Fc Fragments/immunology , Immunoglobulin G/immunology , Inducible T-Cell Co-Stimulator Protein/genetics , Inducible T-Cell Co-Stimulator Protein/metabolism , Lipopolysaccharides/pharmacology , Lymphocyte Activation/drug effects , Lymphocyte Activation/immunology , Lymphocyte Culture Test, Mixed , Monocytes/cytology , Recombinant Fusion Proteins/pharmacology , Rho Guanine Nucleotide Exchange Factors , Signal Transduction/drug effects
15.
Hum Mol Genet ; 20(6): 1182-96, 2011 Mar 15.
Article in English | MEDLINE | ID: mdl-21212100

ABSTRACT

Rett syndrome (RTT) is a neurodevelopmental disorder with no efficient treatment that is caused in the majority of cases by mutations in the gene methyl-CpG binding-protein 2 (MECP2). RTT becomes manifest after a period of apparently normal development and causes growth deceleration, severe psychomotor impairment and mental retardation. Effective animal models for RTT are available and show morphofunctional abnormalities of synaptic connectivity. However, the molecular consequences of MeCP2 disruption leading to neuronal and synaptic alterations are not known. Protein synthesis regulation via the mammalian target of the rapamycin (mTOR) pathway is crucial for synaptic organization, and its disruption is involved in a number of neurodevelopmental diseases. We investigated the phosphorylation of the ribosomal protein (rp) S6, whose activation is highly dependent from mTOR activity. Immunohistochemistry showed that rpS6 phosphorylation is severely affected in neurons across the cortical areas of Mecp2 mutants and that this alteration precedes the severe symptomatic phase of the disease. Moreover, we found a severe defect of the initiation of protein synthesis in the brain of presymptomatic Mecp2 mutant that was not restricted to a specific subset of transcripts. Finally, we provide evidence for a general dysfunction of the Akt/mTOR, but not extracellular-regulated kinase, signaling associated with the disease progression in mutant brains. Our results indicate that defects in the AKT/mTOR pathway are responsible for the altered translational control in Mecp2 mutant neurons and disclosed a novel putative biomarker of the pathological process. Importantly, this study provides a novel context of therapeutic interventions that can be designed to successfully restrain or ameliorate the development of RTT.


Subject(s)
Down-Regulation , Oncogene Protein v-akt/metabolism , Protein Biosynthesis , Rett Syndrome/metabolism , Signal Transduction , TOR Serine-Threonine Kinases/metabolism , Animals , Disease Models, Animal , Humans , Methyl-CpG-Binding Protein 2/genetics , Methyl-CpG-Binding Protein 2/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Neurons/metabolism , Oncogene Protein v-akt/genetics , Rett Syndrome/genetics , TOR Serine-Threonine Kinases/genetics
16.
Cytokine ; 64(1): 322-30, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23778031

ABSTRACT

ICOS and CD28 are expressed by T cells and are involved in costimulation of cytokine production in T helper (TH) cells. ICOS binds B7h expressed by several cell types, whereas CD28 binds B7.1 and B7.2 expressed by activated antigen presenting cells. This work investigated the role of B7h and B7.1 in TH17 and TH9 cell differentiation by assessing activity of recombinant B7h-Fc and B7.1-Fc on human naïve TH cells activated in the presence of different combinations of exogenous cytokines. In the presence of TGF-ß1 and IL-1ß (TH17 promoting condition), B7h-Fc was more effective than B7.1-Fc in inducing IL-17A and IL-10 secretion, whereas B7.1-Fc was more effective in inducing IL-17F. Dual costimulation with B7h-Fc and B7.1-Fc displayed an intermediate pattern with predominance of IL-17F over IL-17A, secretion of high levels of IL-10, and secretion of IL-9 levels lower than those induced by B7.1-Fc alone. In the presence of TGF-ß1 and IL-4 (TH9 promoting condition), B7h-Fc induced IL-17A only, whereas B7.1-Fc induced also IL-17F, IL-10, and high levels of IL-9. Experiments on memory TH cells showed that B7h-Fc mainly supported secretion of IL-17A and IL-10, whereas B7.1-Fc supported secretion of IL-17A, IL-17F, IL-10, and IL-9. These data indicate that B7h and B7.1 play different roles in modulation of TH17 and TH9 differentiation. This plasticity might be important in the immune response to pathogens and tumors, and in the development of autoimmune diseases, and should be taken in consideration in designing of immunotherapeutic protocols triggering ICOS or CD28.


Subject(s)
B7-1 Antigen/pharmacology , Inducible T-Cell Co-Stimulator Ligand/pharmacology , Interleukin-10/biosynthesis , Interleukin-17/biosynthesis , Interleukin-9/biosynthesis , Recombinant Proteins/pharmacology , T-Lymphocytes, Helper-Inducer/drug effects , CD28 Antigens/immunology , CD28 Antigens/metabolism , Cell Differentiation , Humans , Inducible T-Cell Co-Stimulator Protein/metabolism , Interleukin-1beta/metabolism , Leukocytes, Mononuclear/metabolism , Lymphocyte Activation/immunology , T-Lymphocytes, Helper-Inducer/immunology , Th17 Cells/metabolism , Transforming Growth Factor beta1/metabolism
17.
Biomedicines ; 11(4)2023 Apr 08.
Article in English | MEDLINE | ID: mdl-37189745

ABSTRACT

Monogenic autoimmune disorders represent an important tool to understand the mechanisms behind central and peripheral immune tolerance. Multiple factors, both genetic and environmental, are known to be involved in the alteration of the immune activation/immune tolerance homeostasis typical of these disorders, making it difficult to control the disease. The latest advances in genetic analysis have contributed to a better and more rapid diagnosis, although the management remains confined to the treatment of clinical manifestations, as there are limited studies on rare diseases. Recently, the correlation between microbiota composition and the onset of autoimmune disorders has been investigated, thus opening up new perspectives on the cure of monogenic autoimmune diseases. In this review, we will summarize the main genetic features of both organ-specific and systemic monogenic autoimmune diseases, reporting on the available literature data on microbiota alterations in these patients.

18.
Pharmaceutics ; 15(6)2023 Jun 20.
Article in English | MEDLINE | ID: mdl-37376219

ABSTRACT

Chronic inflammation contributes to the pathogenesis of many diseases, including apparently unrelated conditions such as metabolic disorders, cardiovascular diseases, neurodegenerative diseases, osteoporosis, and tumors, but the use of conventional anti-inflammatory drugs to treat these diseases is generally not very effective given their adverse effects. In addition, some alternative anti-inflammatory medications, such as many natural compounds, have scarce solubility and stability, which are associated with low bioavailability. Therefore, encapsulation within nanoparticles (NPs) may represent an effective strategy to enhance the pharmacological properties of these bioactive molecules, and poly lactic-co-glycolic acid (PLGA) NPs have been widely used because of their high biocompatibility and biodegradability and possibility to finely tune erosion time, hydrophilic/hydrophobic nature, and mechanical properties by acting on the polymer's composition and preparation technique. Many studies have been focused on the use of PLGA-NPs to deliver immunosuppressive treatments for autoimmune and allergic diseases or to elicit protective immune responses, such as in vaccination and cancer immunotherapy. By contrast, this review is focused on the use of PLGA NPs in preclinical in vivo models of other diseases in which a key role is played by chronic inflammation or unbalance between the protective and reparative phases of inflammation, with a particular focus on intestinal bowel disease; cardiovascular, neurodegenerative, osteoarticular, and ocular diseases; and wound healing.

19.
Pharmaceutics ; 15(3)2023 Mar 02.
Article in English | MEDLINE | ID: mdl-36986675

ABSTRACT

This work presents a computational model to study the degradation behavior of polyester-based three-dimensional (3D) functionalized scaffolds for bone regeneration. As a case study, we investigated the behavior of a 3D-printed scaffold presenting a functionalized surface with ICOS-Fc, a bioactive protein able to stimulate bone regeneration and healing, inhibiting osteoclast activity. The aim of the model was to optimize the scaffold design to control its degradation and thus the release of grafted protein over time and space. Two different scenarios were considered: (i) a scaffold without macroporosity presenting a functionalized external surface; and (ii) a scaffold presenting an internal functionalized macroporous architecture with open channels to locally deliver the degradation products.

20.
Biomolecules ; 13(1)2023 01 02.
Article in English | MEDLINE | ID: mdl-36671479

ABSTRACT

Vertebral compression fractures are typical of osteoporosis and their treatment can require the injection of a cement through a minimally invasive procedure to restore vertebral body height. This study reports the development of an injectable calcium sulphate-based composite cement able to stimulate bone regeneration while inhibiting osteoclast bone resorption. To this aim, different types of strontium-containing mesoporous glass particles (Sr-MBG) were added to calcium sulphate powder to impart a pro-osteogenic effect, and the influence of their size and textural features on the cement properties was investigated. Anti-osteoclastogenic properties were conferred by incorporating into poly(lactic-co-glycolic)acid (PLGA) nanoparticles, a recombinant protein able to inhibit osteoclast activity (i.e., ICOS-Fc). Radiopaque zirconia nanoparticles (ZrO2) were also added to the formulation to visualize the cement injection under fluoroscopy. The measured cement setting times were suitable for the clinical practice, and static mechanical testing determined a compressive strength of ca. 8 MPa, comparable to that of human vertebral bodies. In vitro release experiments indicated a sustained release of ICOS-Fc and Sr2+ ions up to 28 days. Overall, the developed cement is promising for the treatment of vertebral compression fractures and has the potential to stimulate bone regeneration while releasing a biomolecule able to limit bone resorption.


Subject(s)
Bone Resorption , Fractures, Compression , Spinal Fractures , Humans , Fractures, Compression/drug therapy , Spinal Fractures/drug therapy , Calcium Sulfate , Bone Cements/pharmacology , Bone Cements/therapeutic use , Inducible T-Cell Co-Stimulator Protein
SELECTION OF CITATIONS
SEARCH DETAIL