Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Opt Express ; 21(4): 4396-404, 2013 Feb 25.
Article in English | MEDLINE | ID: mdl-23481973

ABSTRACT

In this work a novel approach in synchronization of electrooptic sampling systems for the ultra-broadband characterization of active mm-wave and THz devices is presented. The relative time jitter between sampled circuit and probing electrooptic head is eliminated by using a femtosecond laser system both as the generator of CW driving the device under test as well as the impulsively probing element. Previous ultra-broadband approaches were applicable to passive components driven by THz impulses, only. The presented system is more generally applicable to active mm-wave and THz components driven by conventional CW electronic sources. Broadband analysis on silicon nonlinear transmission line elements up to a frequency of 300 GHz is presented in order to illustrate the capabilities of the concept.


Subject(s)
Lasers , Signal Processing, Computer-Assisted/instrumentation , Telecommunications/instrumentation , Terahertz Radiation , Equipment Design , Equipment Failure Analysis , Sample Size
2.
Opt Express ; 19(27): 26382-93, 2011 Dec 19.
Article in English | MEDLINE | ID: mdl-22274222

ABSTRACT

In the present paper we describe a high-power tunable solid-state dye laser setup that offers peak output power up to 800 mW around 575 nm with excellent long-time power stability and low noise level. The spectral width of the laser emission is less than 3 GHz and can be tuned over more than 30 nm. A nearly circular mode profile is achieved with an M(2) better than 1.4. The device can be integrated in a compact housing (dimensions are 60 × 40 × 20 cm(3)). The limitation of long-time power stability is mainly given by photo decomposition of organic dye molecules. These processes are analyzed in detail via spatially resolved micro-imaging and spectroscopic studies.


Subject(s)
Coloring Agents/chemistry , Computer-Aided Design , Lasers , Energy Transfer , Equipment Design , Equipment Failure Analysis
3.
Opt Lett ; 30(18): 2357-9, 2005 Sep 15.
Article in English | MEDLINE | ID: mdl-16196318

ABSTRACT

Unprecedented optical control of the surface plasmon polariton assisted transmission of terahertz radiation through subwavelength apertures is rendered possible by carrier-induced changes to the dielectric properties of a semiconductor grating. Although the study presented is static, the extension of our approach to dynamic switching and tuning is deemed straightforward, opening the way for the realization of ultrafast surface plasmon based devices.

4.
Opt Lett ; 29(14): 1680-2, 2004 Jul 15.
Article in English | MEDLINE | ID: mdl-15309858

ABSTRACT

We demonstrate that the extraordinary transmission of terahertz radiation through semiconductor gratings of subwavelength apertures can be switched completely by varying the temperature. The enhanced transmission, which is due to the resonant tunneling of surface plasmon polaritons that can be excited in semiconductors at terahertz frequencies, is controlled by thermally modifying the density of free carriers. The transmission through metal gratings cannot be switched in the same way since the carrier density is temperature independent. Thus semiconductors offer an interesting alternative to metals in enhancing the transmission of electromagnetic radiation.

5.
Phys Rev Lett ; 93(25): 256804, 2004 Dec 17.
Article in English | MEDLINE | ID: mdl-15697927

ABSTRACT

We present time-domain measurements of terahertz surface plasmon polaritons (SPPs) propagating on gratings structured on silicon surfaces. Using single-cycle pulses of terahertz radiation to excite SPPs in a broad frequency range, we observe that the efficient SPPs scattering on the semiconductor periodic structure introduces significant dispersion and modifies the SPPs propagation. A stop gap, or a frequency range where SPPs are Bragg reflected, is formed by the structure. This gap depends strongly on the Si doping density and type. The resonant scattering at the edge of the gap reduces the group velocity by more than a factor of 2. The measurements show a good agreement with our numerical calculations based on the reduced Rayleigh equation.

SELECTION OF CITATIONS
SEARCH DETAIL