ABSTRACT
In this study, chloroquine resinates were prepared at a 1:1 (w:w) drug-to-resin ratio using the batch method with polacrilex (PC), sodium polystyrene sulfonate (SPS), and polacrilin potassium (PP) ion exchange resins (IER). The influence of drug/resin ratio and pH of the medium on drug loading efficiency was explored. UV-VIS spectrophotometric analysis showed that SPS resin had high loading efficiency for chloroquine diphosphate (CLP), above 89%, regardless of the pH. PP resin was more effective at pH 5.0 (90.68%) than at pH 1.0 (2.09%), and PC resin had only 27.63% of CLP loading efficiency. CLP complexation with IER yielded amorphous mixtures according to results from differential scanning calorimetry (DSC) and X-ray powder diffraction (XRPD), thus indicating drug-resin interaction. The taste masking efficiency was evaluated with in vitro methods using an adapted dissolution test and an electronic tongue system. During dissolution tests, SPS released only 1.0% of CLP after 300 s, while PP released over 10% after 90 s in simulated saliva solution. The electronic tongue distinguished the samples containing CLP, resins, and resinates by using multidimensional projection techniques that indicated an effective drug taste masking. In an accelerated stability study, the drug contents did not decrease in chloroquine resinates, and there was no physical degradation of the resinates after 60 days. Using chloroquine resinates therefore represents a novel way to evaluate taste masking in vitro which is relevant for the early formulation development process.
Subject(s)
Ion Exchange Resins , Taste , Administration, Oral , Child , Chloroquine , Feasibility Studies , HumansABSTRACT
The assessment of drug taste is crucial for pediatric treatments so that formulations can be developed to enhance their effectiveness. In this study, in vivo and in vitro methods were applied to evaluate the taste of tablets of three drugs administered to children without taste-masking excipients to treat tropical diseases, namely artesunate-mefloquine (ASMQ), praziquantel (PZQ), and benznidazole (BNZ). In the first method, a model of rat palatability was adapted with recirculation to ensure sample dispersion, and the data were analyzed using ANOVA (single factor, 95%). The taste assessment results (in vivo) indicated an aversion to the three medicines, denoted by the animals retracting themselves to the bottom of the box after the first contact with the drugs. For the placebo samples, the animals behaved normally, indicating that taste perception was acceptable. The second method was based on the in vitro analysis of capacitance data from a homemade impedimetric electronic tongue. Consistent with the in vivo taste assessment results, the data points obtained with PZQ, ASMQ, and BNZ were far away from those of their placebos in a map built with the multidimensional projection technique referred to as Interactive Document Mapping (IDMAP). A combined analysis of the results with the two methods allowed us to confirm the bitterness of the three drugs, also pointing to electronic tongues as a promising tool to replace in vivo palatability tests.
Subject(s)
Mefloquine , Praziquantel , Animals , Artesunate , Child , Humans , Nitroimidazoles , Rats , Tablets , TasteABSTRACT
This study aimed to examine the adhesion of glibenclamide 5 mg tablets to the tools of compression machines. This problem is not commonly reported in the literature, since it is considered as tacit knowledge. The starting point was the implementation of three technical alternatives: changing the parameters of compression, evaluating the humidity of the powder blend and the manufacturer of the lubricant magnesium stearate. The adhesion was directly related to the characteristics of magnesium stearate from different manufacturers, and the feasibility of evaluating powder flow characteristics by different techniques that are not routinely followed in various pharmaceutical companies. In vitro dissolution tests showed that the magnesium stearate manufacturer can influence on the dissolution profile of glibenclamide tablets. This study presented various aspects of tablet adhesion to compression machine punches. Troubleshooting approaches can be, most of times, conducted based on previous experience, or an experimental research needs to be implemented in order to have confident results.
ABSTRACT
For the last 40 years, praziquantel has been the standard treatment for schistosomiasis, a neglected parasitic disease affecting more than 250 million people worldwide. However, there is no suitable paediatric formulation on the market, leading to off-label use and the splitting of commercial tablets for adults. In this study, we use a recently available technology, direct powder extrusion (DPE) three-dimensional printing (3DP), to prepare paediatric Printlets™ (3D printed tablets) of amorphous solid dispersions of praziquantel with Kollidon® VA 64 and surfactants (Span™ 20 or Kolliphor® SLS). Printlets were successfully printed from both pellets and powders obtained from extrudates by hot melt extrusion (HME). In vitro dissolution studies showed a greater than four-fold increase in praziquantel release, due to the formation of amorphous solid dispersions. In vitro palatability data indicated that the printlets were in the range of praziquantel tolerability, highlighting the taste masking capabilities of this technology without the need for additional taste masking excipients. This work has demonstrated the possibility of 3D printing tablets using pellets or powder forms obtained by HME, avoiding the use of filaments in fused deposition modelling 3DP. Moreover, the main formulation hurdles of praziquantel, such as low drug solubility, inadequate taste, and high and variable dose requirements, can be overcome using this technology.