Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 158
Filter
Add more filters

Publication year range
1.
Cell Mol Life Sci ; 81(1): 75, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38315424

ABSTRACT

Autosomal dominant variants in LRP10 have been identified in patients with Lewy body diseases (LBDs), including Parkinson's disease (PD), Parkinson's disease-dementia (PDD), and dementia with Lewy bodies (DLB). Nevertheless, there is little mechanistic insight into the role of LRP10 in disease pathogenesis. In the brains of control individuals, LRP10 is typically expressed in non-neuronal cells like astrocytes and neurovasculature, but in idiopathic and genetic cases of PD, PDD, and DLB, it is also present in α-synuclein-positive neuronal Lewy bodies. These observations raise the questions of what leads to the accumulation of LRP10 in Lewy bodies and whether a possible interaction between LRP10 and α-synuclein plays a role in disease pathogenesis. Here, we demonstrate that wild-type LRP10 is secreted via extracellular vesicles (EVs) and can be internalised via clathrin-dependent endocytosis. Additionally, we show that LRP10 secretion is highly sensitive to autophagy inhibition, which induces the formation of atypical LRP10 vesicular structures in neurons in human-induced pluripotent stem cells (iPSC)-derived brain organoids. Furthermore, we show that LRP10 overexpression leads to a strong induction of monomeric α-synuclein secretion, together with time-dependent, stress-sensitive changes in intracellular α-synuclein levels. Interestingly, patient-derived astrocytes carrying the c.1424 + 5G > A LRP10 variant secrete aberrant high-molecular-weight species of LRP10 in EV-free media fractions. Finally, we show that this truncated patient-derived LRP10 protein species (LRP10splice) binds to wild-type LRP10, reduces LRP10 wild-type levels, and antagonises the effect of LRP10 on α-synuclein levels and distribution. Together, this work provides initial evidence for a possible functional role of LRP10 in LBDs by modulating intra- and extracellular α-synuclein levels, and pathogenic mechanisms linked to the disease-associated c.1424 + 5G > A LRP10 variant, pointing towards potentially important disease mechanisms in LBDs.


Subject(s)
Lewy Body Disease , Parkinson Disease , Humans , alpha-Synuclein/metabolism , Parkinson Disease/pathology , Lewy Body Disease/genetics , Lewy Body Disease/metabolism , Lewy Body Disease/pathology , Lewy Bodies/metabolism , Brain/metabolism , LDL-Receptor Related Proteins/metabolism
2.
Acta Neuropathol ; 147(1): 67, 2024 04 06.
Article in English | MEDLINE | ID: mdl-38581586

ABSTRACT

Transcription factor EB (TFEB) is a master regulator of genes involved in the maintenance of autophagic and lysosomal homeostasis, processes which have been implicated in the pathogenesis of GBA-related and sporadic Parkinson's disease (PD), and dementia with Lewy bodies (DLB). TFEB activation results in its translocation from the cytosol to the nucleus. Here, we investigated TFEB subcellular localization and its relation to intracellular alpha-synuclein (aSyn) accumulation in post-mortem human brain of individuals with either incidental Lewy body disease (iLBD), GBA-related PD/DLB (GBA-PD/DLB) or sporadic PD/DLB (sPD/DLB), compared to control subjects. We analyzed nigral dopaminergic neurons using high-resolution confocal and stimulated emission depletion (STED) microscopy and semi-quantitatively scored the TFEB subcellular localization patterns. We observed reduced nuclear TFEB immunoreactivity in PD/DLB patients compared to controls, both in sporadic and GBA-related cases, as well as in iLBD cases. Nuclear depletion of TFEB was more pronounced in neurons with Ser129-phosphorylated (pSer129) aSyn accumulation in all groups. Importantly, we observed previously-unidentified TFEB-immunopositive perinuclear clusters in human dopaminergic neurons, which localized at the Golgi apparatus. These TFEB clusters were more frequently observed and more severe in iLBD, sPD/DLB and GBA-PD/DLB compared to controls, particularly in pSer129 aSyn-positive neurons, but also in neurons lacking detectable aSyn accumulation. In aSyn-negative cells, cytoplasmic TFEB clusters were more frequently observed in GBA-PD/DLB and iLBD patients, and correlated with reduced GBA enzymatic activity as well as increased Braak LB stage. Altered TFEB distribution was accompanied by a reduction in overall mRNA expression levels of selected TFEB-regulated genes, indicating a possible early dysfunction of lysosomal regulation. Overall, we observed cytoplasmic TFEB retention and accumulation at the Golgi in cells without apparent pSer129 aSyn accumulation in iLBD and PD/DLB patients. This suggests potential TFEB impairment at the early stages of cellular disease and underscores TFEB as a promising therapeutic target for synucleinopathies.


Subject(s)
Lewy Body Disease , Humans , alpha-Synuclein/metabolism , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Brain/pathology , Dopaminergic Neurons/metabolism , Lewy Bodies/pathology , Lewy Body Disease/pathology
3.
Brain ; 146(4): 1496-1510, 2023 04 19.
Article in English | MEDLINE | ID: mdl-36073231

ABSTRACT

The protein phosphatase 2A complex (PP2A), the major Ser/Thr phosphatase in the brain, is involved in a number of signalling pathways and functions, including the regulation of crucial proteins for neurodegeneration, such as alpha-synuclein, tau and LRRK2. Here, we report the identification of variants in the PTPA/PPP2R4 gene, encoding a major PP2A activator, in two families with early-onset parkinsonism and intellectual disability. We carried out clinical studies and genetic analyses, including genome-wide linkage analysis, whole-exome sequencing, and Sanger sequencing of candidate variants. We next performed functional studies on the disease-associated variants in cultured cells and knock-down of ptpa in Drosophila melanogaster. We first identified a homozygous PTPA variant, c.893T>G (p.Met298Arg), in patients from a South African family with early-onset parkinsonism and intellectual disability. Screening of a large series of additional families yielded a second homozygous variant, c.512C>A (p.Ala171Asp), in a Libyan family with a similar phenotype. Both variants co-segregate with disease in the respective families. The affected subjects display juvenile-onset parkinsonism and intellectual disability. The motor symptoms were responsive to treatment with levodopa and deep brain stimulation of the subthalamic nucleus. In overexpression studies, both the PTPA p.Ala171Asp and p.Met298Arg variants were associated with decreased PTPA RNA stability and decreased PTPA protein levels; the p.Ala171Asp variant additionally displayed decreased PTPA protein stability. Crucially, expression of both variants was associated with decreased PP2A complex levels and impaired PP2A phosphatase activation. PTPA orthologue knock-down in Drosophila neurons induced a significant impairment of locomotion in the climbing test. This defect was age-dependent and fully reversed by L-DOPA treatment. We conclude that bi-allelic missense PTPA variants associated with impaired activation of the PP2A phosphatase cause autosomal recessive early-onset parkinsonism with intellectual disability. Our findings might also provide new insights for understanding the role of the PP2A complex in the pathogenesis of more common forms of neurodegeneration.


Subject(s)
Intellectual Disability , Parkinsonian Disorders , Animals , Brain/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Intellectual Disability/genetics , Parkinsonian Disorders/genetics , Protein Phosphatase 2/genetics , Protein Phosphatase 2/metabolism , Phosphoprotein Phosphatases/metabolism
4.
Mov Disord ; 38(7): 1127-1142, 2023 07.
Article in English | MEDLINE | ID: mdl-37156737

ABSTRACT

BACKGROUND: More than 200 years after James Parkinsondescribed a clinical syndrome based on his astute observations, Parkinson's disease (PD) has evolved into a complex entity, akin to the heterogeneity of other complex human syndromes of the central nervous system such as dementia, motor neuron disease, multiple sclerosis, and epilepsy. Clinicians, pathologists, and basic science researchers evolved arrange of concepts andcriteria for the clinical, genetic, mechanistic, and neuropathological characterization of what, in their best judgment, constitutes PD. However, these specialists have generated and used criteria that are not necessarily aligned between their different operational definitions, which may hinder progress in solving the riddle of the distinct forms of PD and ultimately how to treat them. OBJECTIVE: This task force has identified current in consistencies between the definitions of PD and its diverse variants in different domains: clinical criteria, neuropathological classification, genetic subtyping, biomarker signatures, and mechanisms of disease. This initial effort for "defining the riddle" will lay the foundation for future attempts to better define the range of PD and its variants, as has been done and implemented for other heterogeneous neurological syndromes, such as stroke and peripheral neuropathy. We strongly advocate for a more systematic and evidence-based integration of our diverse disciplines by looking at well-defined variants of the syndrome of PD. CONCLUSION: Accuracy in defining endophenotypes of "typical PD" across these different but interrelated disciplines will enable better definition of variants and their stratification in therapeutic trials, a prerequisite for breakthroughs in the era of precision medicine. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Parkinson Disease , Humans , Parkinson Disease/genetics , Syndrome , Biomarkers , Forecasting , Central Nervous System/pathology
5.
Mov Disord ; 38(8): 1527-1535, 2023 08.
Article in English | MEDLINE | ID: mdl-37310233

ABSTRACT

BACKGROUND: There is growing clinical and research utilization of genetic testing in Parkinson's disease (PD), including direct-to-consumer testing. OBJECTIVES: The aim is to determine the international landscape of genetic testing in PD to inform future worldwide recommendations. METHODS: A web-based survey assessing current practices, concerns, and barriers to genetic testing and counseling was administered to the International Parkinson and Movement Disorders Society membership. RESULTS: Common hurdles across sites included cost and access to genetic testing, and counseling, as well as education on genetic counseling. Region-dependent differences in access to and availability of testing and counseling were most notable in Africa. High-income countries also demonstrated heterogeneity, with European nations more likely to have genetic testing covered through insurance than Pan-American and Asian countries. CONCLUSIONS: This survey highlights not only diversity of barriers in different regions but also the shared and highly actionable needs for improved education and access to genetic counseling and testing for PD worldwide. © 2023 International Parkinson and Movement Disorder Society.


Subject(s)
Parkinson Disease , Humans , Parkinson Disease/diagnosis , Parkinson Disease/genetics , Parkinson Disease/psychology , Genetic Testing , Counseling
6.
Mov Disord ; 38(8): 1384-1396, 2023 08.
Article in English | MEDLINE | ID: mdl-37365908

ABSTRACT

Genetic testing for persons with Parkinson's disease is becoming increasingly common. Significant gains have been made regarding genetic testing methods, and testing is becoming more readily available in clinical, research, and direct-to-consumer settings. Although the potential utility of clinical testing is expanding, there are currently no proven gene-targeted therapies, but clinical trials are underway. Furthermore, genetic testing practices vary widely, as do knowledge and attitudes of relevant stakeholders. The specter of testing mandates financial, ethical, and physician engagement, and there is a need for guidelines to help navigate the myriad of challenges. However, to develop guidelines, gaps and controversies need to be clearly identified and analyzed. To this end, we first reviewed recent literature and subsequently identified gaps and controversies, some of which were partially addressed in the literature, but many of which are not well delineated or researched. Key gaps and controversies include: (1) Is genetic testing appropriate in symptomatic and asymptomatic individuals without medical actionability? (2) How, if at all, should testing vary based on ethnicity? (3) What are the long-term outcomes of consumer- and research-based genetic testing in presymptomatic PD? (4) What resources are needed for clinical genetic testing, and how is this impacted by models of care and cost-benefit considerations? Addressing these issues will help facilitate the development of consensus and guidelines regarding the approach and access to genetic testing and counseling. This is also needed to guide a multidisciplinary approach that accounts for cultural, geographic, and socioeconomic factors in developing testing guidelines. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Parkinson Disease , Humans , Parkinson Disease/diagnosis , Parkinson Disease/genetics , Genetic Testing
7.
Ann Neurol ; 89(3): 485-497, 2021 03.
Article in English | MEDLINE | ID: mdl-33236446

ABSTRACT

OBJECTIVE: The study was undertaken to identify a monogenic cause of early onset, generalized dystonia. METHODS: Methods consisted of genome-wide linkage analysis, exome and Sanger sequencing, clinical neurological examination, brain magnetic resonance imaging, and protein expression studies in skin fibroblasts from patients. RESULTS: We identified a heterozygous variant, c.388G>A, p.Gly130Arg, in the eukaryotic translation initiation factor 2 alpha kinase 2 (EIF2AK2) gene, segregating with early onset isolated generalized dystonia in 5 patients of a Taiwanese family. EIF2AK2 sequencing in 191 unrelated patients with unexplained dystonia yielded 2 unrelated Caucasian patients with an identical heterozygous c.388G>A, p.Gly130Arg variant, occurring de novo in one case, another patient carrying a different heterozygous variant, c.413G>C, p.Gly138Ala, and one last patient, born from consanguineous parents, carrying a third, homozygous variant c.95A>C, p.Asn32Thr. These 3 missense variants are absent from gnomAD, and are located in functional domains of the encoded protein. In 3 patients, additional neurological manifestations were present, including intellectual disability and spasticity. EIF2AK2 encodes a kinase (protein kinase R [PKR]) that phosphorylates eukaryotic translation initiation factor 2 alpha (eIF2α), which orchestrates the cellular stress response. Our expression studies showed abnormally enhanced activation of the cellular stress response, monitored by PKR-mediated phosphorylation of eIF2α, in fibroblasts from patients with EIF2AK2 variants. Intriguingly, PKR can also be regulated by PRKRA (protein interferon-inducible double-stranded RNA-dependent protein kinase activator A), the product of another gene causing monogenic dystonia. INTERPRETATION: We identified EIF2AK2 variants implicated in early onset generalized dystonia, which can be dominantly or recessively inherited, or occur de novo. Our findings provide direct evidence for a key role of a dysfunctional eIF2α pathway in the pathogenesis of dystonia. ANN NEUROL 2021;89:485-497.


Subject(s)
Dystonic Disorders/genetics , Fibroblasts/metabolism , eIF-2 Kinase/genetics , Adolescent , Adult , Age of Onset , Asian People , Brain/diagnostic imaging , Child , Child, Preschool , Dystonic Disorders/metabolism , Dystonic Disorders/physiopathology , Female , Genome-Wide Association Study , Humans , Infant , Magnetic Resonance Imaging , Male , Middle Aged , Mutation, Missense , Pedigree , White People , Exome Sequencing , Young Adult , eIF-2 Kinase/metabolism
8.
EMBO J ; 36(10): 1392-1411, 2017 05 15.
Article in English | MEDLINE | ID: mdl-28331029

ABSTRACT

Presynaptic terminals are metabolically active and accrue damage through continuous vesicle cycling. How synapses locally regulate protein homeostasis is poorly understood. We show that the presynaptic lipid phosphatase synaptojanin is required for macroautophagy, and this role is inhibited by the Parkinson's disease mutation R258Q. Synaptojanin drives synaptic endocytosis by dephosphorylating PI(4,5)P2, but this function appears normal in SynaptojaninRQ knock-in flies. Instead, R258Q affects the synaptojanin SAC1 domain that dephosphorylates PI(3)P and PI(3,5)P2, two lipids found in autophagosomal membranes. Using advanced imaging, we show that SynaptojaninRQ mutants accumulate the PI(3)P/PI(3,5)P2-binding protein Atg18a on nascent synaptic autophagosomes, blocking autophagosome maturation at fly synapses and in neurites of human patient induced pluripotent stem cell-derived neurons. Additionally, we observe neurodegeneration, including dopaminergic neuron loss, in SynaptojaninRQ flies. Thus, synaptojanin is essential for macroautophagy within presynaptic terminals, coupling protein turnover with synaptic vesicle cycling and linking presynaptic-specific autophagy defects to Parkinson's disease.


Subject(s)
Autophagosomes/metabolism , Autophagy , Nerve Tissue Proteins/metabolism , Phosphoric Monoester Hydrolases/metabolism , Presynaptic Terminals/enzymology , Presynaptic Terminals/metabolism , Amino Acid Substitution , Animals , Autophagy-Related Proteins/analysis , Cells, Cultured , Drosophila , Humans , Membrane Proteins/analysis , Mutation, Missense , Nerve Tissue Proteins/genetics , Parkinson Disease/pathology , Phosphatidylinositol Phosphates/metabolism , Phosphoric Monoester Hydrolases/genetics
9.
Acta Neuropathol ; 142(1): 117-137, 2021 07.
Article in English | MEDLINE | ID: mdl-33913039

ABSTRACT

Loss-of-function variants in the low-density lipoprotein receptor-related protein 10 (LRP10) gene have been associated with autosomal-dominant Parkinson's disease (PD), PD dementia, and dementia with Lewy bodies (DLB). Moreover, LRP10 variants have been found in individuals diagnosed with progressive supranuclear palsy and amyotrophic lateral sclerosis. Despite this genetic evidence, little is known about the expression and function of LRP10 protein in the human brain under physiological or pathological conditions. To better understand how LRP10 variants lead to neurodegeneration, we first performed an in-depth characterisation of LRP10 expression in post-mortem brains and human-induced pluripotent stem cell (iPSC)-derived astrocytes and neurons from control subjects. In adult human brain, LRP10 is mainly expressed in astrocytes and neurovasculature but undetectable in neurons. Similarly, LRP10 is highly expressed in iPSC-derived astrocytes but cannot be observed in iPSC-derived neurons. In astrocytes, LRP10 is present at trans-Golgi network, plasma membrane, retromer, and early endosomes. Interestingly, LRP10 also partially co-localises and interacts with sortilin-related receptor 1 (SORL1). Furthermore, although LRP10 expression and localisation in the substantia nigra of most idiopathic PD and DLB patients and LRP10 variant carriers diagnosed with PD or DLB appeared unchanged compared to control subjects, significantly enlarged LRP10-positive vesicles were detected in a patient carrying the LRP10 p.Arg235Cys variant. Last, LRP10 was detected in Lewy bodies (LB) at late maturation stages in brains from idiopathic PD and DLB patients and in LRP10 variant carriers. In conclusion, high LRP10 expression in non-neuronal cells and undetectable levels in neurons of control subjects indicate that LRP10-mediated pathogenicity is initiated via cell non-autonomous mechanisms, potentially involving the interaction of LRP10 with SORL1 in vesicle trafficking pathways. Together with the specific pattern of LRP10 incorporation into mature LBs, these data support an important mechanistic role for disturbed vesicle trafficking and loss of LRP10 function in neurodegenerative diseases.


Subject(s)
Brain/metabolism , LDL-Receptor Related Proteins/genetics , Lewy Bodies/metabolism , Lewy Body Disease/metabolism , Membrane Transport Proteins/genetics , Parkinson Disease/metabolism , Adult , Aged , Astrocytes/metabolism , Astrocytes/transplantation , Brain/cytology , Brain/pathology , Genetic Variation , Humans , Induced Pluripotent Stem Cells/transplantation , Lewy Bodies/pathology , Lewy Body Disease/pathology , Middle Aged , Neurodegenerative Diseases/pathology , Neurons/transplantation , Parkinson Disease/pathology
10.
Mov Disord ; 36(7): 1499-1510, 2021 07.
Article in English | MEDLINE | ID: mdl-34396589

ABSTRACT

This Movement Disorder Society Genetic mutation database Systematic Review focuses on monogenic atypical parkinsonism with mutations in the ATP13A2, DCTN1, DNAJC6, FBXO7, SYNJ1, and VPS13C genes. We screened 673 citations and extracted genotypic and phenotypic data for 140 patients (73 families) from 77 publications. In an exploratory fashion, we applied an automated classification procedure via an ensemble of bootstrap-aggregated ("bagged") decision trees to distinguish these 6 forms of monogenic atypical parkinsonism and found a high accuracy of 86.5% (95%CI, 86.3%-86.7%) based on the following 10 clinical variables: age at onset, spasticity and pyramidal signs, hypoventilation, decreased body weight, minimyoclonus, vertical gaze palsy, autonomic symptoms, other nonmotor symptoms, levodopa response quantification, and cognitive decline. Comparing monogenic atypical with monogenic typical parkinsonism using 2063 data sets from Movement Disorder Society Genetic mutation database on patients with SNCA, LRRK2, VPS35, Parkin, PINK1, and DJ-1 mutations, the age at onset was earlier in monogenic atypical parkinsonism (24 vs 40 years; P = 1.2647 × 10-12) and levodopa response less favorable than in patients with monogenic typical presentations (49% vs 93%). In addition, we compared monogenic to nonmonogenic atypical parkinsonism using data from 362 patients with progressive supranuclear gaze palsy, corticobasal degeneration, multiple system atrophy, or frontotemporal lobar degeneration. Although these conditions share many clinical features with the monogenic atypical forms, they can typically be distinguished based on their later median age at onset (64 years; IQR, 57-70 years). In conclusion, age at onset, presence of specific signs, and degree of levodopa response inform differential diagnostic considerations and genetic testing indications in atypical forms of parkinsonism. © 2021 International Parkinson and Movement Disorder Society.


Subject(s)
Parkinson Disease , Parkinsonian Disorders , Genotype , Humans , Levodopa , Parkinsonian Disorders/genetics , Phenotype
11.
Mov Disord ; 35(11): 2106-2111, 2020 11.
Article in English | MEDLINE | ID: mdl-32658388

ABSTRACT

BACKGROUND: Variants in GBA are the most common genetic risk factor for Parkinson's disease (PD). The impact of different variants on the PD clinical spectrum is still unclear. OBJECTIVES: We determined the frequency of GBA-related PD in Italy and correlated GBA variants with motor and nonmotor features and their occurrence over time. METHODS: Sanger sequencing of the whole GBA gene was performed. Variants were classified as mild, severe, complex, and risk. ß-glucocerebrosidase activity was measured. The Kaplan-Meier method and Cox proportional hazard regression models were performed. RESULTS: Among 874 patients with PD, 36 variants were detected in 14.3%, including 20.4% early onset. Patients with GBA-PD had earlier and more frequent occurrence of several nonmotor symptoms. Patients with severe and complex GBA-PD had the highest burden of symptoms and a higher risk of hallucinations and cognitive impairment. Complex GBA-PD had the lowest ß-glucocerebrosidase activity. CONCLUSIONS: GBA-PD is highly prevalent in Italy. Different types of mutations underlie distinct phenotypic profiles. © 2020 International Parkinson and Movement Disorder Society.


Subject(s)
Parkinson Disease , Dissection , Genotype , Glucosylceramidase/genetics , Humans , Italy/epidemiology , Mutation/genetics , Parkinson Disease/epidemiology , Parkinson Disease/genetics , Phenotype
12.
Mov Disord ; 35(9): 1667-1674, 2020 09.
Article in English | MEDLINE | ID: mdl-32618053

ABSTRACT

BACKGROUND: The most common genetic risk factor for Parkinson's disease known is a damaging variant in the GBA1 gene. The entire GBA1 gene has rarely been studied in a large cohort from a single population. The objective of this study was to assess the entire GBA1 gene in Parkinson's disease from a single large population. METHODS: The GBA1 gene was assessed in 3402 Dutch Parkinson's disease patients using next-generation sequencing. Frequencies were compared with Dutch controls (n = 655). Family history of Parkinson's disease was compared in carriers and noncarriers. RESULTS: Fifteen percent of patients had a GBA1 nonsynonymous variant (including missense, frameshift, and recombinant alleles), compared with 6.4% of controls (OR, 2.6; P < 0.001). Eighteen novel variants were detected. Variants previously associated with Gaucher's disease were identified in 5.0% of patients compared with 1.5% of controls (OR, 3.4; P < 0.001). The rarely reported complex allele p.D140H + p.E326K appears to likely be a Dutch founder variant, found in 2.4% of patients and 0.9% of controls (OR, 2.7; P = 0.012). The number of first-degree relatives (excluding children) with Parkinson's disease was higher in p.D140H + p.E326K carriers (5.6%, 21 of 376) compared with p.E326K carriers (2.9%, 29 of 1014); OR, 2.0; P = 0.022, suggestive of a dose effect for different GBA1 variants. CONCLUSIONS: Dutch Parkinson's disease patients display one of the largest frequencies of GBA1 variants reported so far, consisting in large part of the mild p.E326K variant and the more severe Dutch p.D140H + p.E326K founder allele. © 2020 The Authors. Movement Disorders published by Wiley Periodicals LLC. on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Gaucher Disease , Parkinson Disease , Child , Glucosylceramidase/genetics , Humans , Mutation/genetics , Netherlands/epidemiology , Parkinson Disease/genetics
13.
Mol Psychiatry ; 24(5): 757-771, 2019 05.
Article in English | MEDLINE | ID: mdl-29302076

ABSTRACT

Schizophrenia is highly heritable, yet its underlying pathophysiology remains largely unknown. Among the most well-replicated findings in neurobiological studies of schizophrenia are deficits in myelination and white matter integrity; however, direct etiological genetic and cellular evidence has thus far been lacking. Here, we implement a family-based approach for genetic discovery in schizophrenia combined with functional analysis using induced pluripotent stem cells (iPSCs). We observed familial segregation of two rare missense mutations in Chondroitin Sulfate Proteoglycan 4 (CSPG4) (c.391G > A [p.A131T], MAF 7.79 × 10-5 and c.2702T > G [p.V901G], MAF 2.51 × 10-3). The CSPG4A131T mutation was absent from the Swedish Schizophrenia Exome Sequencing Study (2536 cases, 2543 controls), while the CSPG4V901G mutation was nominally enriched in cases (11 cases vs. 3 controls, P = 0.026, OR 3.77, 95% CI 1.05-13.52). CSPG4/NG2 is a hallmark protein of oligodendrocyte progenitor cells (OPCs). iPSC-derived OPCs from CSPG4A131T mutation carriers exhibited abnormal post-translational processing (P = 0.029), subcellular localization of mutant NG2 (P = 0.007), as well as aberrant cellular morphology (P = 3.0 × 10-8), viability (P = 8.9 × 10-7), and myelination potential (P = 0.038). Moreover, transfection of healthy non-carrier sibling OPCs confirmed a pathogenic effect on cell survival of both the CSPG4A131T (P = 0.006) and CSPG4V901G (P = 3.4 × 10-4) mutations. Finally, in vivo diffusion tensor imaging of CSPG4A131T mutation carriers demonstrated a reduction of brain white matter integrity compared to unaffected sibling and matched general population controls (P = 2.2 × 10-5). Together, our findings provide a convergence of genetic and functional evidence to implicate OPC dysfunction as a candidate pathophysiological mechanism of familial schizophrenia.


Subject(s)
Chondroitin Sulfate Proteoglycans/genetics , Membrane Proteins/genetics , Oligodendrocyte Precursor Cells/metabolism , Schizophrenia/genetics , Adult , Antigens/genetics , Cell Differentiation/physiology , Chondroitin Sulfate Proteoglycans/metabolism , Diffusion Tensor Imaging , Family , Female , Humans , Induced Pluripotent Stem Cells/metabolism , Male , Membrane Proteins/metabolism , Mutation/genetics , Oligodendrocyte Precursor Cells/physiology , Oligodendroglia/metabolism , Pedigree , Proteoglycans/genetics , Schizophrenia/metabolism , White Matter/metabolism
14.
Mov Disord ; 33(11): 1814-1819, 2018 11.
Article in English | MEDLINE | ID: mdl-30398675

ABSTRACT

BACKGROUND: The genetic bases of PD in sub-Saharan African (SSA) populations remain poorly characterized, and analysis of SSA families with PD might lead to the discovery of novel disease-related genes. OBJECTIVES: To investigate the clinical features and identify the disease-causing gene in a black South African family with 3 members affected by juvenile-onset parkinsonism and intellectual disability. METHODS: Clinical evaluation, neuroimaging studies, whole-exome sequencing, homozygosity mapping, two-point linkage analysis, and Sanger sequencing of candidate variants. RESULT: A homozygous 28-nucleotide frameshift deletion in the PTRHD1 coding region was identified in the 3 affected family members and linked to the disease with genome-wide significant evidence. PTRHD1 was recently nominated as the disease-causing gene in two Iranian families, each containing 2 siblings with similar phenotypes and homozygous missense mutations. CONCLUSION: Together with the previous reports, we provide conclusive evidence that loss-of-function mutations in PTRHD1 cause autosomal-recessive juvenile parkinsonism and intellectual disability. © 2018 International Parkinson and Movement Disorder Society.


Subject(s)
Family Health , Intellectual Disability/genetics , Membrane Proteins/genetics , Mitochondrial Proteins/genetics , Mutation/genetics , Parkinsonian Disorders/genetics , Adult , Africa South of the Sahara , DNA Mutational Analysis , Female , Humans , Intellectual Disability/complications , Male , Parkinsonian Disorders/complications
15.
Ann Neurol ; 79(2): 244-56, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26528954

ABSTRACT

OBJECTIVE: DNAJC6 mutations were recently described in two families with autosomal recessive juvenile parkinsonism (onset age < 11), prominent atypical signs, poor or absent response to levodopa, and rapid progression (wheelchair-bound within ∼10 years from onset). Here, for the first time, we report DNAJC6 mutations in early-onset Parkinson's disease (PD). METHODS: The DNAJC6 open reading frame was analyzed in 274 patients with early-onset sporadic or familial PD. Selected variants were followed up by cosegregation, homozygosity mapping, linkage analysis, whole-exome sequencing, and protein studies. RESULTS: We identified two families with different novel homozygous DNAJC6 mutations segregating with PD. In each family, the DNAJC6 mutation was flanked by long runs of homozygosity within highest linkage peaks. Exome sequencing did not detect additional pathogenic variants within the linkage regions. In both families, patients showed severely decreased steady-state levels of the auxilin protein in fibroblasts. We also identified a sporadic patient carrying two rare noncoding DNAJC6 variants possibly effecting RNA splicing. All these cases fulfilled the criteria for a clinical diagnosis of early-onset PD, had symptoms onset in the third-to-fifth decade, and slow disease progression. Response to dopaminergic therapies was prominent, but, in some patients, limited by psychiatric side effects. The phenotype overlaps that of other monogenic forms of early-onset PD. INTERPRETATION: Our findings delineate a novel form of hereditary early-onset PD. Screening of DNAJC6 is warranted in all patients with early-onset PD compatible with autosomal recessive inheritance. Our data provide further evidence for the involvement of synaptic vesicles endocytosis and trafficking in PD pathogenesis.


Subject(s)
Auxilins/metabolism , Fibroblasts/metabolism , HSP40 Heat-Shock Proteins/genetics , Parkinsonian Disorders/genetics , Adolescent , Adult , Age of Onset , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Mutation , Parkinsonian Disorders/metabolism , Phenotype , Young Adult
16.
Mov Disord ; 32(8): 1159-1162, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28568905

ABSTRACT

Mutations in the transmembrane protein 230 (TMEM230) gene were recently identified in a large Canadian pedigree and 7 smaller Chinese families, nominating TMEM230 as the third gene causing a Mendelian form of late onset Parkinson's disease (PD) with typical Lewy-body pathology (after synuclein alpha (SNCA) and leucine rich repeat kinase 2 (LRRK2)). The protein encoded by TMEM230 remains largely uncharacterized, but initial evidence points to roles in the trafficking of recycling vesicles, retromers, and endosomes, suggesting intriguing links to the pathways targeted by other PD-causing genes. The focus on family-based studies is gaining new momentum in the next-generation sequencing era, for the discovery of further, high-penetrance (medically relevant) genetic variants in PD. However, at this junction, important aspects of the TMEM230 story remain unclear, such as the prevalence of these mutations in the Chinese and other populations of the world, the penetrance of the mutations, and even their mode of inheritance. The first replication studies among Chinese and White PD patients have been largely negative. Furthermore, much more work remains ahead to elucidate the mechanisms by which these mutations might lead to neuronal cell death, alpha-synuclein pathology, and parkinsonism. © 2017 International Parkinson and Movement Disorder Society.


Subject(s)
Membrane Proteins/genetics , Mutation/genetics , Parkinson Disease/etiology , Parkinson Disease/genetics , Humans
20.
Am J Med Genet B Neuropsychiatr Genet ; 174(3): 214-219, 2017 Apr.
Article in English | MEDLINE | ID: mdl-27260655

ABSTRACT

Affective psychoses are a group of severe psychiatric disorders, including schizoaffective disorder and bipolar I disorder, together affecting ∼1% of the population. Despite their high heritability, the molecular genetics and neurobiology of affective psychosis remain largely elusive. Here, we describe the identification of a structural genetic variant segregating with affective psychosis in a family with multiple members suffering from bipolar I disorder or schizoaffective disorder, bipolar type. A balanced translocation involving chromosomes 6 and 15 was detected by karyotyping and fluorescence in-situ hybridization (FISH). Using whole-genome sequencing, we rapidly delineated the translocation breakpoints as corresponding intragenic events disrupting BCL2L10 and PNLDC1. These data warrant further consideration for BCL2L10 and PNLDC1 as novel candidates for affective psychosis. © 2016 The Authors. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics Published by Wiley Periodicals, Inc.


Subject(s)
Affective Disorders, Psychotic/genetics , Proto-Oncogene Proteins c-bcl-2/genetics , Adult , Bipolar Disorder/genetics , Chromosomes, Human, Pair 15/genetics , Chromosomes, Human, Pair 6/genetics , Cytogenetics/methods , Exoribonucleases , Female , Humans , In Situ Hybridization, Fluorescence , Karyotyping , Male , Pedigree , Proto-Oncogene Proteins c-bcl-2/metabolism , Psychotic Disorders/genetics , Schizophrenia/genetics , Sequence Analysis, DNA , Translocation, Genetic/genetics
SELECTION OF CITATIONS
SEARCH DETAIL