Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
Environ Microbiol ; 21(9): 3379-3391, 2019 Sep.
Article in English | MEDLINE | ID: mdl-30963697

ABSTRACT

Sinorhizobium meliloti synthesizes a linear mixed-linkage (1 → 3)(1 → 4)-ß-d-glucan (ML ß-glucan, MLG) in response to high levels of cyclic diguanylate (c-di-GMP). Two proteins BgsA and BgsB are required for MLG synthesis, BgsA being the glucan synthase which is activated upon c-di-GMP binding to its C-terminal domain. Here we report that the product of bgrR (SMb20447) is a diguanylate cyclase (DGC) that provides c-di-GMP for the synthesis of MLG by BgsA. bgrR is the first gene of a hexacistronic bgrRSTUWV operon, likely encoding a partner-switching regulatory network where BgrR is the final target. Using different approaches, we have determined that the products of genes bgrU (containing a putative PP2C serine phosphatase domain) and bgrW (with predicted kinase effector domain), modulate the phosphorylation status and the activity of the STAS domain protein BgrV. We propose that unphosphorylated BgrV inhibits BgrR DGC activity, perhaps through direct protein-protein interactions as established for other partner switchers. A bgrRSTUWV operon coexists with MLG structural bgsBA genes in many rhizobial genomes but is also present in some MLG non-producers, suggesting a role of this partner-switching system in other processes besides MLG biosynthesis.

2.
Mol Plant Microbe Interact ; 28(7): 811-24, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25675256

ABSTRACT

Sinorhizobium fredii HH103 is a fast-growing rhizobial strain infecting a broad range of legumes including both American and Asiatic soybeans. In this work, we present the sequencing and annotation of the HH103 genome (7.25 Mb), consisting of one chromosome and six plasmids and representing the structurally most complex sinorhizobial genome sequenced so far. Comparative genomic analyses of S. fredii HH103 with strains USDA257 and NGR234 showed that the core genome of these three strains contains 4,212 genes (61.7% of the HH103 genes). Synteny plot analysis revealed that the much larger chromosome of USDA257 (6.48 Mb) is colinear to the HH103 (4.3 Mb) and NGR324 chromosomes (3.9 Mb). An additional region of the USDA257 chromosome of about 2 Mb displays similarity to plasmid pSfHH103e. Remarkable differences exist between HH103 and NGR234 concerning nod genes, flavonoid effect on surface polysaccharide production, and quorum-sensing systems. Furthermore a number of protein secretion systems have been found. Two genes coding for putative type III-secreted effectors not previously described in S. fredii, nopI and gunA, have been located on the HH103 genome. These differences could be important to understand the different symbiotic behavior of S. fredii strains HH103, USDA257, and NGR234 with soybean.


Subject(s)
Genome, Bacterial , Glycine max/microbiology , Sinorhizobium fredii/genetics , Genes, Bacterial , Molecular Sequence Data , Nitrogen Fixation/genetics , Plant Roots/microbiology , Polysaccharides, Bacterial/genetics , Quorum Sensing , Sinorhizobium fredii/physiology , Symbiosis/genetics
3.
Plants (Basel) ; 12(4)2023 Feb 09.
Article in English | MEDLINE | ID: mdl-36840125

ABSTRACT

On the eve of the 100th anniversary of Dr. Warington's discovery of boron (B) as a nutrient essential for higher plants, "boronists" have struggled to demonstrate a role beyond its structural function in cell walls dimerizing pectin molecules of rhamnogalacturonan II (RGII). In this regard, B deficiency has been associated with a plethora of symptoms in plants that include macroscopic symptoms like growth arrest and cell death and biochemical or molecular symptoms that include changes in cell wall pore size, apoplast acidification, or a steep ROS production that leads to an oxidative burst. Aiming to shed light on B functions in plant biology, we proposed here a unifying model integrating the current knowledge about B function(s) in plants to explain why B deficiency can cause such remarkable effects on plant growth and development, impacting crop productivity. In addition, based on recent experimental evidence that suggests the existence of different B ligands other than RGII in plant cells, namely glycolipids, and glycoproteins, we proposed an experimental pipeline to identify putative missing ligands and to determine how they would integrate into the above-mentioned model.

4.
J Bacteriol ; 194(6): 1617-8, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22374952

ABSTRACT

Sinorhizobium fredii HH103 is a fast-growing rhizobial strain that is able to nodulate legumes that develop determinate nodules, e.g., soybean, and legumes that form nodules of the indeterminate type. Here we present the genome of HH103, which consists of one chromosome and five plasmids with a total size of 7.22 Mb.


Subject(s)
DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Genome, Bacterial , Sinorhizobium fredii/genetics , Chromosomes, Bacterial , Molecular Sequence Data , Plasmids , Sequence Analysis, DNA , Sinorhizobium fredii/isolation & purification , Sinorhizobium fredii/physiology , Glycine max/microbiology , Symbiosis
5.
Plant Cell Environ ; 33(12): 2112-20, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20636489

ABSTRACT

The capacity to bind to biomolecules is considered to be the basis for any physiological role of boron (B). Legume arabinogalactan protein-extensin (AGPE), a major component of the infection thread matrix of legume nodules is a potential B-ligand. Therefore, its role in infection threads development was investigated in Pisum sativum grown under B deficiency. Using the AGPE-specific antibody MAC265, immunochemical analysis revealed that a 175 kDa MAC265 antigen was abundant in +B but much weaker in -B nodule extracts. A B-dependent complex involving AGPE and rhamnogalacturonan II (RGII) could be co-purified using anti-RGII antiserum. Following fractionation of -B nodules, MAC265 antigens were mostly associated with the bacterial pellet. Immunogold staining confirmed that AGPE was closely associated with the surface of rhizobia in the lumen of threads in -B nodules whereas in +B nodules, AGPE was separated from the bacterial surface by a sheath of capsular polysaccharide. Interestingly, colonies of rhizobia grown in free-living culture without B developed low capsule production. Therefore, we propose that B could be important for apical growth of infection threads by strengthening thread wall through a B-dependent AGPE-RGII interaction and by promoting bacterial advance through a B-dependent production of a stable rhizobial capsule that prevents AGPE attachment.


Subject(s)
Borates/metabolism , Pisum sativum/microbiology , Polysaccharides, Bacterial/metabolism , Rhizobium leguminosarum/metabolism , Root Nodules, Plant/microbiology , Glycoproteins/metabolism , Mucoproteins/metabolism , Pisum sativum/metabolism , Pectins/metabolism , Plant Proteins/metabolism , Plant Root Nodulation , Root Nodules, Plant/metabolism , Symbiosis
6.
Plant Cell Environ ; 33(6): 1039-48, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20132519

ABSTRACT

Boron (B) is an essential nutrient for N(2)-fixing legume-rhizobia symbioses, and the capacity of borate ions to bind and stabilize biomolecules is the basis of any B function. We used a borate-binding-specific resin and immunostaining techniques to identify B ligands important for the development of Pisum sativum-Rhizobium leguminosarum 3841 symbiotic nodules. arabinogalactan-extensin (AGPE), recognized by MAC 265 antibody, appeared heavily bound to the resin in extracts derived from B-sufficient, but not from B-deficient nodules. MAC 265 stained the infection threads and the extracellular matrix of cortical cells involved in the oxygen diffusion barrier. In B-deprived nodules, immunolocalization of MAC 265 antigens was significantly reduced. Leghaemoglobin (Lb) concentration largely decreased in B-deficient nodules. The absence of MAC 203 antigens in B-deficient nodules suggests a high internal oxygen concentration, as this antibody detects an epitope on the lipopolysaccharide (LPS) of bacteroids typically expressed in micro-aerobically grown R. leguminosarum 3841. However, B-deprived nodules did not accumulate oxidized lipids and proteins, and revealed a decrease in the activity of the major antioxidant enzyme ascorbate peroxidase (APX). Therefore, B deficiency reduced the stability of nodule macromolecules important for rhizobial infection, and for regulation of oxygen concentration, resulting in non-functional nodules, but did not appear to induce oxidative damage in low-B nodules.


Subject(s)
Boron/metabolism , Oxygen/metabolism , Pisum sativum/metabolism , Pisum sativum/microbiology , Rhizobium leguminosarum/physiology , Root Nodules, Plant/metabolism , Root Nodules, Plant/microbiology , Ascorbate Peroxidases , Boron/deficiency , Cytosol/enzymology , Electrophoresis, Polyacrylamide Gel , Gene Expression Regulation, Plant , Ligands , Pisum sativum/enzymology , Pisum sativum/genetics , Peroxidases/metabolism , RNA, Plant/genetics , RNA, Plant/isolation & purification , RNA, Plant/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Root Nodules, Plant/genetics , Subcellular Fractions/metabolism
7.
Can J Microbiol ; 55(10): 1145-52, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19935886

ABSTRACT

Megaplasmid pSymB of the nitrogen-fixing symbiont Sinorhizobium meliloti, implicated in adaptation to hyperosmotic stress, contains 11 gene clusters that apparently encode surface polysaccharides. However, only 2 of these clusters, containing the exo and exp genes, have been associated with the synthesis of the acidic exopolysaccharides succinoglycan and galactoglucan, respectively. The functions of the other 9 clusters remain unsolved. The involvement of one of those regions, pSymB cluster 3, on surface polysaccharide synthesis and its possible implication in osmoadaptation were investigated. In silico analysis of cluster 3 showed that it putatively encodes for the synthesis and transport of a methylated surface polysaccharide. Mutants affected in this cluster were symbiotically effective but showed defects in growth under saline and nonsaline osmotic stress. The gene SMb21071, encoding a putative initiating glycosyltransferase, is transcriptionally induced under hyperosmotic conditions. Sodium dodecyl sulfate - polyacrylamide gel electrophoresis and silver staining showed that osmotic stresses changed the profiles of surface polysaccharides of wild-type and mutants strains in different ways. The overall results suggest that cluster 3 is important for growth under saline stress and essential for growth under nonsaline hyperosmotic stress, and it appears to be implicated in maintaining and (or) modifying surface polysaccharides in response to osmotic stress.


Subject(s)
Genes, Bacterial , Polysaccharides, Bacterial/metabolism , Sinorhizobium meliloti/genetics , Sinorhizobium meliloti/metabolism , Adaptation, Physiological/genetics , Base Sequence , Cell Membrane/metabolism , DNA, Bacterial/genetics , Glycosyltransferases/genetics , Glycosyltransferases/metabolism , Multigene Family , Mutation , Osmolar Concentration , Osmotic Pressure , Plasmids/genetics , Polysaccharides, Bacterial/chemistry , Polysaccharides, Bacterial/genetics
8.
J Plant Physiol ; 243: 153058, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31715490

ABSTRACT

Boron (B) deficiency affects the development of Pisum sativum nodules and Arabidopsis thaliana root meristems. Both organs show an alteration of cell differentiation that result in the development of tumor-like structures. The fact that B in plants is not only able to interact with components of the cell wall but also with membrane-associated glycoconjugates, led us to analyze changes in high mannose type N-glycans (HMNG). The affinoblots with concanavalin A revealed alterations in the N-glycosylation pattern during early development of nodules and roots under B deprivation. Besides, there is increasing evidence of a B role in animal physiology that brought us to investigate the impact of B deficiency on Danio rerio (zebrafish) development. When B deficiency was induced prior to early cleavage stages, embryos developed as an abnormal undifferentiated mass of cells. Additionally, when B was removed at post-hatching, larvae undergo aberrant organogenesis. Resembling the phenomenon described in plants, alteration of the N-glycosylation pattern occurred in B-deficient zebrafish larvae prior to organogenesis. Overall, these results support a common function of B in plants and animals associated with glycosylation that might be important for cell signaling and cell fate determination during development.


Subject(s)
Arabidopsis/growth & development , Boron/deficiency , Organogenesis, Plant/drug effects , Pisum sativum/growth & development , Polysaccharides/metabolism , Zebrafish/growth & development , Animals , Arabidopsis/metabolism , Glycosylation , Mannose/metabolism , Pisum sativum/metabolism , Plant Roots/growth & development , Plant Roots/metabolism , Root Nodules, Plant/growth & development , Root Nodules, Plant/metabolism , Zebrafish/metabolism
9.
Plant Sci ; 270: 176-189, 2018 May.
Article in English | MEDLINE | ID: mdl-29576071

ABSTRACT

Significant advances have been made in the last years trying to identify regulatory pathways that control plant responses to boron (B) deficiency. Still, there is a lack of a deep understanding of how they act regulating growth and development under B limiting conditions. Here, we analyzed the impact of B deficit on cell division leading to root apical meristem (RAM) disorganization. Our results reveal that inhibition of cell proliferation under the regulatory control of cytokinins (CKs) is an early event contributing to root growth arrest under B deficiency. An early recovery of QC46:GUS expression after transferring B-deficient seedlings to control conditions revealed a role of B in the maintenance of QC identity whose loss under deficiency occurred at later stages of the stress. Additionally, the D-type cyclin CYCD3 overexpressor and triple mutant cycd3;1-3 were used to evaluate the effect on mitosis inhibition at the G1-S boundary. Overall, this study supports the hypothesis that meristem activity is inhibited by B deficiency at early stages of the stress as it does cell elongation. Likewise, distinct regulatory mechanisms seem to take place depending on the severity of the stress. The results presented here are key to better understand early signaling responses under B deficiency.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/physiology , Boron/deficiency , Cyclins/genetics , Cytokinins/metabolism , Plant Growth Regulators/metabolism , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis Proteins/metabolism , Boron/metabolism , Cell Proliferation , Cyclins/metabolism , Gene Expression , Genes, Reporter , Meristem/genetics , Meristem/growth & development , Meristem/physiology , Mitosis , Mutation , Plant Roots/genetics , Plant Roots/growth & development , Plant Roots/physiology , Plants, Genetically Modified , Seedlings/genetics , Seedlings/growth & development , Seedlings/physiology , Signal Transduction
10.
PeerJ ; 6: e4442, 2018.
Article in English | MEDLINE | ID: mdl-29576944

ABSTRACT

Quinoa cultivation has been expanded around the world in the last decade and is considered an exceptional crop with the potential of contributing to food security worldwide. The exceptional nutritional value of quinoa seeds relies on their high protein content, their amino acid profile that includes a good balance of essential amino acids, the mineral composition and the presence of antioxidants and other important nutrients such as fiber or vitamins. Although several studies have pointed to the influence of different environmental stresses in certain nutritional components little attention has been paid to the effect of the agroecological context on the nutritional properties of the seeds what may strongly impact on the consumer food's quality. Thus, aiming to evaluate the effect of the agroecological conditions on the nutritional profile of quinoa seeds we analyzed three quinoa cultivars (Salcedo-INIA, Titicaca and Regalona) at different locations (Spain, Peru and Chile). The results revealed that several nutritional parameters such as the amino acid profile, the protein content, the mineral composition and the phytate amount in the seeds depend on the location and cultivar while other parameters such as saponin or fiber were more stable across locations. Our results support the notion that nutritional characteristics of seeds may be determined by seed's origin and further analysis are needed to define the exact mechanisms that control the changes in the seeds nutritional properties.

12.
Mol Plant Microbe Interact ; 15(1): 54-9, 2002 Jan.
Article in English | MEDLINE | ID: mdl-11843303

ABSTRACT

When grown under standard conditions, Sinorhizobium meliloti EFB1 simultaneously produces two acidic exopolysaccharides, succinoglycan and galactoglucan, yielding very mucoid colonies. In this strain, MucR is essential for galactoglucan synthesis. A mutation in the mucS gene resulted in less mucoid colonies than in the wild-type EFB1. This mucS- strain was complemented to the wild-type phenotype by the cloned mucS gene, indicating that mucS is necessary for a wild-type level of galactoglucan production. Reverse transcription-polymerase chain reaction analysis of exp genes, which encode the pathway for galactoglucan production, in EFB1 and in the mutants affected in mucS, mucR, and both genes simultaneously, showed that MucS is a transcriptional activator of the exp genes but does not affect its own transcription. Furthermore, MucR is necessary for mucS transcriptional activation. As introduction of a cloned mucS gene in a mucR- strain yielded colonies less mucoid than the wild type, MucR could also activate exp genes transcription through other pathways. Deletion analysis of the expE promoter showed a region important for transcription and MucS activation. This region, containing a palindrome, is present in the putative expA, expC, expD, and expE promoters but not in the mucS promoter, suggesting that it is the target for MucS. A mucR-mucS- mutant, which does not produce galactoglucan, was impaired in competitive nodulation of alfalfa in soil microcosms, indicating another possible role for this exopolysaccharide in symbiosis.


Subject(s)
Bacterial Proteins/metabolism , Fungal Proteins/metabolism , Galactans , Gene Expression Regulation, Bacterial , Glucans , Polysaccharides, Bacterial/genetics , Repressor Proteins , Sinorhizobium meliloti/genetics , Trans-Activators/metabolism , Transcription Factors , Base Sequence , Cloning, Molecular , DNA Primers , Escherichia coli/genetics , Gene Deletion , Genetic Complementation Test , Mutagenesis , Restriction Mapping , Reverse Transcriptase Polymerase Chain Reaction , Sequence Alignment , Sequence Homology, Nucleic Acid
13.
Mol Plant Microbe Interact ; 17(2): 216-23, 2004 Feb.
Article in English | MEDLINE | ID: mdl-14964535

ABSTRACT

Samples of Rhizobium bacteroids isolated from pea nodule symbiosomes reacted positively with a monoclonal antibody recognizing N-linked glycan epitopes on plant glycoproteins associated with the peribacteroid membrane and peribacteroid fluid. An antiserum recognizing the symbiosomal lectin-like glycoprotein PsNLEC-1 also reacted positively. Samples of isolated bacteroids also reacted with an antibody recognizing a glycolipid component of the peribacteroid membrane and plasma membrane. Bacterial cells derived from free-living cultures then were immobilized on nitrocellulose sheets and tested for their ability to associate with components of plant extracts derived from nodule fractionation. A positive antibody-staining reaction indicated that both PsNLEC-1 and membrane glycolipid had become associated with the bacterial surface. A range of rhizobial strains with mutants affecting cell surface polysaccharides all showed similar interactions with PsNLEC-1 and associated plant membranes, with the exception of strain B659 (a deep-rough lipopolysaccharide mutant of Rhizobium leguminosarum). However, the presence of a capsule of extracellular polysaccharide apparently prevented interactions between rhizobial cells and these plant components. The importance of a close association between peribacteroid membranes, PsNLEC-1, and the bacterial surface is discussed in the context of symbiosome development.


Subject(s)
Bacterial Physiological Phenomena , Pisum sativum/microbiology , Rhizobium leguminosarum/physiology , Bacterial Proteins/physiology , Cell Membrane/physiology , Genotype , Lipopolysaccharides , Movement , Mutation , Rhizobium leguminosarum/genetics , Sinorhizobium meliloti/genetics , Sinorhizobium meliloti/physiology , Symbiosis
15.
Physiol Plant ; 115(4): 563-570, 2002 Aug.
Article in English | MEDLINE | ID: mdl-12121462

ABSTRACT

The essentiality of boron (B) for nitrogen fixation in heterocystous cyanobacteria and rhizobial symbioses has been widely established. However, nothing is known about the possible involvement of the micronutrient in actinorhizal symbioses. Therefore, the effect of boron (B) deficiency on the establishment of the Discaria trinervis-Frankia BCU110501 symbiosis was investigated. Nodulation was diminished in B-deficient D. trinervis or in plants inoculated with Frankia grown in the absence of B. These poorly nodulated plants showed a reduction of shoot and root weight and small size. Because depletion of the micronutrient during growth of the actinomycete altered the infection capacity of Frankia, we also studied growth, structure and nitrogen fixation of free-living Frankia BCU110501. Growth was delayed in B-deficient BAP media (+N cultures), and completely inhibited in B-deprived N-free BAP media (-N cultures), suggesting that B is required to enhance growth of Frankia and essential for the development of nitrogen fixing activity. Ultrastructural study of B-deficient cells showed an alteration of filament walls both in +N and especially in -N cultures, indicating a possible role of the microelement in the maintenance of these structures. Moreover, the stability of vesicle envelopes was impaired in the absence of B and, hence, nitrogenase occurrence and nitrogen fixation were totally absent. The results show that B is required for both partners to establish an effective symbiosis.

16.
Plant Physiol Biochem ; 42(11): 907-12, 2004 Dec.
Article in English | MEDLINE | ID: mdl-15694285

ABSTRACT

It is now more than 80 years since boron was convincingly demonstrated to be essential for normal growth of higher plants. However, its biochemical role is not well understood at the moment. Several recent reviews propose that B is implicated in three main processes: keeping cell wall structure, maintaining membrane function, and supporting metabolic activities. However, in the absence of conclusive evidence, the primary role of boron in plants remains elusive. Besides plants, growth of specific bacteria, such as heterocystous cyanobacteria and the recently reported actinomycetes of the genus Frankia, requires B, particularly for the stability of the envelopes that control the access of the nitrogenase-poisoning oxygen when they grow under N2-fixing conditions. Likewise, a role for B for animal embryogenesis and other developmental processes is being established. Finally, a new feature of the role of boron comes from signaling mechanisms for communication among bacteria and among legumes and rhizobia leading to N2-fixing symbiosis, and it is possible that new roles for B, based on its special chemistry and its interaction with Ca would appear in the world of signal transduction pathways. In conclusion, the diversity of roles played by B might indicate that either the micronutrient is involved in numerous processes or that its deficiency has a pleiotropic effect. The arising question is why such an element? Since all of the roles clearly established for B are related to its capacity to form diester bridges between cis-hydroxyl-containing molecules, we propose that the main reason for B essentiality is the stabilization of molecules with cis-diol groups turning them effective, irrespectively of their function.


Subject(s)
Boron/chemistry , Cell Wall/chemistry , Nitrogen Fixation/physiology , Plants/chemistry , Symbiosis/physiology , Calcium/chemistry , Cell Wall/physiology , Frankia/chemistry , Frankia/physiology , Rhizobium/chemistry , Rhizobium/physiology , Signal Transduction/physiology
17.
J Plant Physiol ; 160(12): 1493-7, 2003 Dec.
Article in English | MEDLINE | ID: mdl-14717443

ABSTRACT

Nodules developed in Pisum sativum L. cv. Argona inoculated with Rhizobium leguminosarum bv. viciae 3841 and growing under saline conditions (75 mmol/L NaCl) are non functional and had abnormal structure. The infected cells contained a low amount of endophytic bacteria, compared to treatments without salt. Addition of B (up to 55.8 micromol/L) and Ca2+ (up to 2.72 mmol/L) increased bacterial population of host plant cells in salt-stressed nodules. Furthermore, symbiosomes developed inside the nodules from salt treated plants presented a degraded peribacteroid membrane. This effect was also prevented by combined addition of B and Ca2+. Given the importance of both nutrients in cell wall structure, the pectin fraction was studied by electron microscopy and immunological methods. Salt stress produced cells with walls dramatically altered or even degraded in several zones. Pectin polysaccharides, detected by JIM 5 monoclonal antibody, increased in cells under salinity. These effects resembled typical effects of B-deficiency reactions in cell walls, and the increase of both Ca2+ and especially B also prevented these alterations.


Subject(s)
Boron/pharmacology , Calcium/pharmacology , Pisum sativum/growth & development , Rhizobium leguminosarum/growth & development , Sodium Chloride/pharmacology , Symbiosis/drug effects , Cell Wall/drug effects , Cell Wall/ultrastructure , Microscopy, Electron , Pisum sativum/drug effects , Pisum sativum/microbiology , Pectins/metabolism , Plant Roots/drug effects , Plant Roots/growth & development , Plant Roots/microbiology , Rhizobium leguminosarum/drug effects , Symbiosis/physiology
18.
Plant Physiol Biochem ; 77: 117-21, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24589475

ABSTRACT

The development of Arabidopsis thaliana was dramatically altered within few hours following boron (B) deprivation. This effect was particularly evident in the apical root meristem. The essentiality of boron in plants has been clearly linked to its structural role in the cell wall, however the diversity and rapidity alterations of plant organogenesis when the micronutrient is absent suggest that B deficiency could also affect gene regulation during plant development. Therefore, the effect of B deficiency on cell elongation, apical root meristem cell division, and early differentiation of root tissues was investigated in A. thaliana seedlings. Dark-growth experiments indicated that hypocotyl elongation was inhibited 2 days after removing B, but apical root growth ceased almost immediately following B deprivation. Detection of cycline B1 by GUS staining of a promoter-reporter construct revealed that low B led to a reduced zone of cell division. The expression of CRE1/WOL/AHK4, encoding an integral membrane protein with histidine kinase domain that mediates cytokinin signaling and root xylem differentiation, was inhibited under B deficiency resulting in arrested xylem development at the protoxylem stage. Because the transition from cell division to cell differentiation in apical root meristems is controlled by cytokinins, this result support the hypothesis that signaling mechanisms during cell differentiation and organogenesis are highly sensitive to B deficiency, and together with previous reports that link the micronutrient with auxin or ethylene control of root architecture, suggests that B could play a role in regulation of hormone mediated early plant development signaling.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Boron/deficiency , Cytokinins/metabolism , Meristem/growth & development , Organogenesis, Plant , Plant Roots/metabolism , Protein Kinases/metabolism , Receptors, Cell Surface/metabolism , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis Proteins/genetics , Boron/metabolism , Cell Differentiation , Cell Division , Cell Wall , Cytokinins/genetics , Gene Expression Regulation, Plant , Genes, Plant , Meristem/metabolism , Organogenesis, Plant/genetics , Plant Roots/growth & development , Protein Kinases/genetics , Receptors, Cell Surface/genetics , Signal Transduction , Xylem/growth & development
19.
Phytochemistry ; 106: 55-60, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25092228

ABSTRACT

Boron (B) is an essential nutrient for heterocystous cyanobacteria growing under diazotrophic conditions. Under B-deficient conditions, the heterocyst envelope is highly disorganized, and the glycolipid layer is predominantly lost. Therefore, we examined whether B is implicated in the regulation of synthesis or processing and/or stability of glycolipids in Anabaena PCC 7120. RT-PCR analysis indicated that the expression of hglE was not significantly changed under B deficiency, suggesting that the synthesis of glycolipids during heterocyst formation was not compromised. In contrast, the overexpression of devB and hepA, encoding a glycolipid and a carbohydrate transporter, respectively, results in the instability of the envelope under B-deficient conditions. The capacity of borate to bind and stabilize molecules is considered the basis of any B biological function. Using a borate-binding-specific resin and thin layer chromatography, we detected the glycolipids that interact with B. Several heterocyst-specific glycolipids were detected as putative B ligands, suggesting a role for B in stabilizing the heterocyst envelope. Moreover, the glycolipids of Anabaena growing in non-diazotrophic conditions were also detected as putative B ligands. Although B is not essential for Anabaena under non-N2-fixing conditions, the presence of this micronutrient increased the tolerance of Anabaena to detergent treatment, salinity and hyperosmotic conditions. Taken together, the results of the present experiment suggest a beneficial role for B in environmental adaptation. Furthermore, we discuss the nutrient requirement for living organisms growing in nature and not under laboratory conditions.


Subject(s)
Anabaena/physiology , Boron/chemistry , Gene Expression Regulation, Bacterial , Glycolipids/chemistry , Adaptation, Physiological , Anabaena/chemistry , Cell Membrane/physiology , Genes, Bacterial , Stress, Physiological
20.
J Biotechnol ; 155(1): 11-9, 2011 Aug 20.
Article in English | MEDLINE | ID: mdl-21458507

ABSTRACT

Glycine max (soybean) plants can be nodulated by fast-growing rhizobial strains of the genus Sinorhizobium as well as by slow-growing strains clustered in the genus Bradyrhizobium. Fast-growing rhizobia strains with different soybean cultivar specificities have been isolated from Chinese soils and from other geographical regions. Most of these strains have been clustered into the species Sinorhizobium fredii. The S. fredii strain HH103 was isolated from soils of Hubei province, Central China and was first described in 1985. This strain is capable to nodulate American and Asiatic soybean cultivars and many other different legumes and is so far the best studied fast-growing soybean-nodulating strain. Additionally to the chromosome S. fredii HH103 carries five indigenous plasmids. The largest plasmid (pSfrHH103e) harbours genes for the production of diverse surface polysaccharides, such as exopolysaccharides (EPS), lipopolysaccharides (LPS), and capsular polysaccharides (KPS). The second largest plasmid (pSfrHH103d) is a typical symbiotic plasmid (pSym), carrying nodulation and nitrogen fixation genes. The present mini review focuses on symbiotic properties of S. fredii HH103, in particular on nodulation and surface polysaccharides aspects. The model strain S. fredii HH103 was chosen for genomic sequencing, which is currently in progress. First analyses of the draft genome sequence revealed an extensive synteny between the chromosomes of S. fredii HH103 and Rhizobium sp. NGR234.


Subject(s)
Genome, Bacterial , Sinorhizobium fredii/physiology , Bacterial Proteins/genetics , Bacterial Proteins/physiology , Genomics/methods , Sinorhizobium fredii/genetics , Glycine max/microbiology , Symbiosis/genetics , Symbiosis/physiology
SELECTION OF CITATIONS
SEARCH DETAIL