Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
Add more filters

Publication year range
1.
Nat Immunol ; 16(1): 67-74, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25419628

ABSTRACT

Immune responses are tightly regulated to ensure efficient pathogen clearance while avoiding tissue damage. Here we report that Setdb2 was the only protein lysine methyltransferase induced during infection with influenza virus. Setdb2 expression depended on signaling via type I interferons, and Setdb2 repressed expression of the gene encoding the neutrophil attractant CXCL1 and other genes that are targets of the transcription factor NF-κB. This coincided with occupancy by Setdb2 at the Cxcl1 promoter, which in the absence of Setdb2 displayed diminished trimethylation of histone H3 Lys9 (H3K9me3). Mice with a hypomorphic gene-trap construct of Setdb2 exhibited increased infiltration of neutrophils during sterile lung inflammation and were less sensitive to bacterial superinfection after infection with influenza virus. This suggested that a Setdb2-mediated regulatory crosstalk between the type I interferons and NF-κB pathways represents an important mechanism for virus-induced susceptibility to bacterial superinfection.


Subject(s)
Histone-Lysine N-Methyltransferase/immunology , NF-kappa B/immunology , Orthomyxoviridae Infections/immunology , Orthomyxoviridae/immunology , Pneumonia/immunology , Superinfection/immunology , Animals , Chemokine CXCL1/immunology , Disease Susceptibility , Female , Interferon Type I/immunology , Male , Mice, Inbred C57BL , Mice, Knockout , Oligonucleotide Array Sequence Analysis , Orthomyxoviridae Infections/enzymology , Orthomyxoviridae Infections/virology , Pneumonia/enzymology , Pneumonia/virology , RNA/chemistry , RNA/genetics , Real-Time Polymerase Chain Reaction , Specific Pathogen-Free Organisms , Superinfection/enzymology , Superinfection/microbiology
2.
Proc Natl Acad Sci U S A ; 120(25): e2219790120, 2023 06 20.
Article in English | MEDLINE | ID: mdl-37307450

ABSTRACT

Dendritic cells (DCs) orchestrate immune responses by presenting antigenic peptides on major histocompatibility complex (MHC) molecules to T cells. Antigen processing and presentation via MHC I rely on the peptide-loading complex (PLC), a supramolecular machinery assembled around the transporter associated with antigen processing (TAP), which is the peptide transporter in the endoplasmic reticulum (ER) membrane. We studied antigen presentation in human DCs by isolating monocytes from blood and differentiating them into immature and mature DCs. We uncovered that during DC differentiation and maturation, additional proteins are recruited to the PLC, including B-cell receptor-associated protein 31 (BAP31), vesicle-associated membrane protein-associated protein A (VAPA), and extended synaptotagmin-1 (ESYT1). We demonstrated that these ER cargo export and contact site-tethering proteins colocalize with TAP and are within 40 nm proximity of the PLC, suggesting that the antigen processing machinery is located near ER exit- and membrane contact sites. While CRISPR/Cas9-mediated deletion of TAP and tapasin significantly reduced MHC I surface expression, single-gene deletions of the identified PLC interaction partners revealed a redundant role of BAP31, VAPA, and ESYT1 in MHC I antigen processing in DCs. These data highlight the dynamics and plasticity of PLC composition in DCs that previously was not recognized by the analysis of cell lines.


Subject(s)
Major Histocompatibility Complex , Peptides , Humans , Antigen Presentation , Dendritic Cells , Histocompatibility Antigens Class I , Synaptotagmins
3.
Immunol Rev ; 306(1): 137-163, 2022 03.
Article in English | MEDLINE | ID: mdl-34859450

ABSTRACT

Dendritic cells (DCs) are crucial for the appropriate initiation of adaptive immune responses. During inflammation, DCs capture antigens, mature, and migrate to lymphoid tissues to present foreign material to naïve T cells. These cells get activated and differentiate either into pathogen-specific cytotoxic CD8+ T cells that destroy infected cells or into CD4+ T helper cells that, among other effector functions, orchestrate antibody production by B cells. DC-mediated antigen presentation is equally important in non-inflammatory conditions. Here, DCs mediate induction of tolerance by presenting self-antigens or harmless environmental antigens and induce differentiation of regulatory T cells or inactivation of self-reactive immune cells. Detailed insights into the biology of DCs are, therefore, crucial for the development of novel vaccines as well as the prevention of autoimmune diseases. As in many other life science areas, our understanding of DC biology would be extremely restricted without bioimaging, a compilation of methods that visualize biological processes. Spatiotemporal tracking of DCs relies on various imaging tools, which not only enable insights into their positioning and migration within tissues or entire organs but also allow visualization of subcellular and molecular processes. This review aims to provide an overview of the imaging toolbox and to provide examples of diverse imaging techniques used to obtain fundamental insights into DC biology.


Subject(s)
CD8-Positive T-Lymphocytes , Dendritic Cells , Antigen Presentation , Humans , Immune Tolerance , T-Lymphocytes, Cytotoxic
4.
Proc Natl Acad Sci U S A ; 118(28)2021 07 13.
Article in English | MEDLINE | ID: mdl-34162739

ABSTRACT

Severe acute respiratory syndrome (SARS) coronavirus 2 (SARS-CoV-2) has emerged as the infectious agent causing the pandemic coronavirus disease 2019 (COVID-19) with dramatic consequences for global human health and economics. Previously, we reached clinical evaluation with our vector vaccine based on modified vaccinia virus Ankara (MVA) against the Middle East respiratory syndrome coronavirus (MERS-CoV), which causes an infection in humans similar to SARS and COVID-19. Here, we describe the construction and preclinical characterization of a recombinant MVA expressing full-length SARS-CoV-2 spike (S) protein (MVA-SARS-2-S). Genetic stability and growth characteristics of MVA-SARS-2-S, plus its robust expression of S protein as antigen, make it a suitable candidate vaccine for industrial-scale production. Vaccinated mice produced S-specific CD8+ T cells and serum antibodies binding to S protein that neutralized SARS-CoV-2. Prime-boost vaccination with MVA-SARS-2-S protected mice sensitized with a human ACE2-expressing adenovirus from SARS-CoV-2 infection. MVA-SARS-2-S is currently being investigated in a phase I clinical trial as aspirant for developing a safe and efficacious vaccine against COVID-19.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19 Vaccines/immunology , COVID-19/prevention & control , Spike Glycoprotein, Coronavirus/immunology , Animals , COVID-19 Vaccines/standards , Dose-Response Relationship, Immunologic , Humans , Mice , Mice, Inbred BALB C , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics , T-Lymphocytes , Vaccination , Vaccinia virus
5.
Eur J Immunol ; 52(2): 356-359, 2022 02.
Article in English | MEDLINE | ID: mdl-34870322

ABSTRACT

Sera of vaccines were assessed by surrogate virus neutralization tests for their capacity to neutralize the SARS-CoV-2 Delta variant. Homologous prime-boost immunization with Moderna's Spikevax as well as heterologous immunization with AstraZeneca's Vaxzevria followed by Moderna's Spikevax were identified as highly potent vaccination regimens for the induction of Delta-neutralizing antibodies.


Subject(s)
Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19 Vaccines/administration & dosage , COVID-19/blood , SARS-CoV-2/metabolism , Vaccination , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , COVID-19/prevention & control , Female , Humans , Male , SARS-CoV-2/immunology
6.
Int J Mol Sci ; 23(3)2022 Feb 01.
Article in English | MEDLINE | ID: mdl-35163611

ABSTRACT

Adaptive T-cell immunotherapy holds great promise for the successful treatment of leukemia, as well as other types of cancers. More recently, it was also shown to be an effective treatment option for chronic virus infections in immunosuppressed patients. Autologous or allogeneic T cells used for immunotherapy are usually genetically modified to express novel T-cell or chimeric antigen receptors. The production of such cells was significantly simplified with the CRISPR/Cas system, allowing for the deletion or insertion of novel genes at specific locations within the genome. In this review, we describe recent methodological breakthroughs that were important for the conduction of these genetic modifications, summarize crucial points to be considered when conducting such experiments, and highlight the potential pitfalls of these approaches.


Subject(s)
CRISPR-Cas Systems , Gene Editing/methods , Immunotherapy , T-Lymphocytes , Humans
7.
Molecules ; 27(3)2022 Feb 03.
Article in English | MEDLINE | ID: mdl-35164298

ABSTRACT

Certain macrolide antibiotics, azithromycin included, possess anti-inflammatory properties that are considered fundamental for their efficacy in the treatment of chronic inflammatory diseases, such as diffuse pan-bronchiolitis and cystic fibrosis. In this study, we disclose a novel azithromycin analog obtained via Barton-McCombie oxidation during which an unprecedented epimerization on the cladinose sugar occurs. Its structure was thoroughly investigated using NMR spectroscopy and compared to the natural epimer, revealing how the change in configuration of one single stereocenter (out of 16) profoundly diminished the antimicrobial activity through spatial manipulation of ribosome binding epitopes. At the same time, the anti-inflammatory properties of parent macrolide were retained, as demonstrated by inhibition of LPS- and cigarette-smoke-induced pulmonary inflammation. Not surprisingly, the compound has promising developable properties including good oral bioavailability and a half-life that supports once-daily dosing. This novel anti-inflammatory candidate has significant potential to fill the gap in existing anti-inflammatory agents and broaden treatment possibilities.


Subject(s)
Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Azithromycin/analogs & derivatives , Azithromycin/pharmacology , Animals , Anti-Bacterial Agents/chemical synthesis , Anti-Inflammatory Agents/chemical synthesis , Azithromycin/chemical synthesis , Bacteria/drug effects , Bacterial Infections/drug therapy , Cells, Cultured , Humans , Macrolides/chemical synthesis , Macrolides/chemistry , Macrolides/pharmacology , Mice, Inbred BALB C , Models, Molecular , Oxidation-Reduction , Pneumonia/drug therapy
8.
Drug Chem Toxicol ; 38(3): 272-7, 2015.
Article in English | MEDLINE | ID: mdl-25109225

ABSTRACT

Although inhaled glucocorticoids are known to have systemic effects on bone metabolism, there is little comparative information on their relative potencies. The effects of three standard glucocorticoids in causing changes in bone metabolism and growth, therefore, were investigated in relation to other systemic effects in the rat. Given to male Sprague-Dawley rats, 4.5-5.5 weeks old, subcutaneously (s.c.), at doses of 0.3-10 mg/kg daily for 7 days, beclomethasone dipropionate, prednisolone and ciclesonide all dose-dependently inhibited thymus body mass index (BMI) (by 57%, 44% and 76% at 3 mg/kg). Ciclesonide, potently and prednisolone, less effectively, also repressed femoral bone growth (by 41% and 18% at 10 mg/kg), significantly reducing body weight gain (both by 100% at 10 mg/kg), and serum concentrations of acid phosphatase (ACP) and tartarate resistant acid phosphatase (TRACP) (by >30% at 10 mg/kg); both increased serum glucose and triglycerides levels. Serum alkaline phosphatase (ALP) was not affected. Beclomethasone dipropionate had little or no effect on these additional variables. In conclusion, ciclesonide showed pronounced bone growth inhibiting activity after s.c. administration to the rat while other two glucocorticoids showed differences in activity on bone metabolism. However, this model is sufficiently sensitive and specific for testing the effect of glucocorticoids on bone metabolism.


Subject(s)
Beclomethasone/toxicity , Bone Development/drug effects , Femur/drug effects , Glucocorticoids/toxicity , Prednisolone/toxicity , Pregnenediones/toxicity , Acid Phosphatase/blood , Animals , Biomarkers/blood , Dose-Response Relationship, Drug , Femur/growth & development , Femur/metabolism , Femur/pathology , Isoenzymes/blood , Male , Organ Size , Rats, Sprague-Dawley , Tartrate-Resistant Acid Phosphatase , Thymus Gland/drug effects , Thymus Gland/pathology , Weight Gain/drug effects
9.
Pulm Pharmacol Ther ; 27(1): 44-51, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24090641

ABSTRACT

Recurrent relapses of allergic lung inflammation in asthmatics may lead to airway remodeling and lung damage. We tested the efficacy of tiotropium bromide, a selective long-acting, muscarinic receptor antagonist as an adjunct therapy in relapses of allergic asthma in mice. We compared the effectiveness of local intranasal administration of tiotropium and dexamethasone in acute and relapsing allergic asthma in BALB/c mice. Although tiotropium at low doses is a potent bronchodilator, we tested higher doses to determine effectiveness on inflammation and mucus hypersecretion. A 5-day course of twice daily intranasal tiotropium or dexamethasone (1 mg/kg (b.w.)) suppressed airway eosinophils by over 87% during disease initiation and 88% at relapse compared to vehicle alone. Both drugs were comparable in their capacity to suppress airway and parenchymal inflammation and mucus hypersecretion, though tiotropium was better than dexamethasone at reducing mucus secretion during disease relapse. Despite treatment with either drug, serum antigen-specific IgE or IgG1 antibody titres remained unchanged. Our study indicates that tiotropium at higher doses than required for bronchodilation, effectively suppresses inflammation and mucus hypersecretion in the lungs and airways of mice during the initiation and relapse of asthma. Tiotropium is currently not approved for use in asthma. Clinical studies have to demonstrate the efficacy of tiotropium in this respiratory disease.


Subject(s)
Asthma/drug therapy , Bronchodilator Agents/pharmacology , Dexamethasone/pharmacology , Scopolamine Derivatives/pharmacology , Airway Remodeling/drug effects , Animals , Anti-Inflammatory Agents/administration & dosage , Anti-Inflammatory Agents/pharmacology , Asthma/immunology , Asthma/physiopathology , Bronchodilator Agents/administration & dosage , Disease Models, Animal , Dose-Response Relationship, Drug , Eosinophils/metabolism , Female , Immunoglobulin E/immunology , Immunoglobulin G/immunology , Mice , Mice, Inbred BALB C , Mucus/metabolism , Recurrence , Scopolamine Derivatives/administration & dosage , Tiotropium Bromide
10.
Curr Opin Immunol ; 82: 102307, 2023 06.
Article in English | MEDLINE | ID: mdl-36996701

ABSTRACT

Cytomegaloviruses (CMVs) possess exquisite mechanisms enabling colonization, replication, and release allowing spread to new hosts. Moreover, they developed ways to escape the control of the host immune responses and hide latently within the host cells. Here, we outline studies that visualized individual CMV-infected cells using reporter viruses. These investigations provided crucial insights into all steps of CMV infection and mechanisms the host's immune response struggles to control it. Uncovering complex viral and cellular interactions and underlying molecular as well as immunological mechanisms are a prerequisite for the development of novel therapeutic interventions for successful treatment of CMV-related pathologies in neonates and transplant patients.


Subject(s)
Cytomegalovirus Infections , Infant, Newborn , Humans , Cytomegalovirus , Immunity
11.
Front Cell Infect Microbiol ; 13: 1259822, 2023.
Article in English | MEDLINE | ID: mdl-37854858

ABSTRACT

Background and aims: Modified Vaccinia virus Ankara (MVA) represents a promising vaccine vector for respiratory administration to induce protective lung immunity including tertiary lymphoid structure, the bronchus-associated lymphoid tissue (BALT). However, MVA expressing the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Spike protein (MVA-SARS-2-S) required prime-boost administration to induce high titers of anti-Spike antibodies in serum and bronchoalveolar lavage (BAL). As the addition of adjuvants enables efficient tailoring of the immune responses even to live vaccines, we tested whether Toll-like receptor (TLR)-agonists affect immune responses induced by a single dose of intranasally applied MVA-SARS-2-S. Methods: We intranasally immunized C57BL/6 mice with MVA-SARS-2-S vaccine in the presence of either TLR3 agonist polyinosinic polycytidylic acid [poly(I:C)], TLR4 agonist bacterial lipopolysaccharide (LPS) from Escherichia coli, or TLR9 agonist CpG oligodeoxynucleotide (CpG ODN) 1826. At different time-points after immunization, we analyzed induced immune responses using flow cytometry, immunofluorescent microscopy, and ELISA. Results: TLR agonists had profound effects on MVA-SARS-2-S-induced immune responses. At day 1 post intranasal application, the TLR4 agonist significantly affected MVA-induced activation of dendritic cells (DCs) within the draining bronchial lymph nodes, increasing the ratio of CD11b+CD86+ to CD103+CD86+ DCs. Nevertheless, the number of Spike-specific CD8+ T cells within the lungs at day 12 after vaccination was increased in mice that received MVA-SARS-2-S co-administered with TLR3 but not TLR4 agonists. TLR9 agonist did neither significantly affect MVA-induced DC activation nor the induction of Spike-specific CD8+ T cells but reduced both number and size of bronchus-associated lymphoid tissue. Surprisingly, the addition of all TLR agonists failed to boost the levels of Spike-specific antibodies in serum and bronchoalveolar lavage. Conclusions: Our study indicates a potential role of TLR-agonists as a tool to modulate immune responses to live vector vaccines. Particularly TLR3 agonists hold a promise to potentiate MVA-induced cellular immune responses. On the other hand, additional research is necessary to identify optimal combinations of agonists that could enhance MVA-induced humoral responses.


Subject(s)
COVID-19 , Vaccines , Animals , Mice , SARS-CoV-2 , Administration, Intranasal , CD8-Positive T-Lymphocytes , Toll-Like Receptor 3 , Toll-Like Receptor 4 , Toll-Like Receptor 9 , Mice, Inbred C57BL , COVID-19/prevention & control , Vaccinia virus , Adjuvants, Immunologic , Antibodies, Viral
12.
Cell Rep ; 42(6): 112597, 2023 06 27.
Article in English | MEDLINE | ID: mdl-37289588

ABSTRACT

Murine cytomegalovirus (MCMV) infection of macrophages relies on MCMV-encoded chemokine 2 (MCK2), while infection of fibroblasts occurs independently of MCK2. Recently, MCMV infection of both cell types was found to be dependent on cell-expressed neuropilin 1. Using a CRISPR screen, we now identify that MCK2-dependent infection requires MHC class Ia/ß-2-microglobulin (B2m) expression. Further analyses reveal that macrophages expressing MHC class Ia haplotypes H-2b and H-2d, but not H-2k, are susceptible to MCK2-dependent infection with MCMV. The importance of MHC class I expression for MCK2-dependent primary infection and viral dissemination is highlighted by experiments with B2m-deficient mice, which lack surface expression of MHC class I molecules. In those mice, intranasally administered MCK2-proficient MCMV mimics infection patterns of MCK2-deficient MCMV in wild-type mice: it does not infect alveolar macrophages and subsequently fails to disseminate into the salivary glands. Together, these data provide essential knowledge for understanding MCMV-induced pathogenesis, tissue targeting, and virus dissemination.


Subject(s)
Cytomegalovirus Infections , Muromegalovirus , Mice , Animals , Histocompatibility Antigens Class I , Macrophages , Salivary Glands , Mice, Inbred BALB C
13.
Front Immunol ; 14: 1166589, 2023.
Article in English | MEDLINE | ID: mdl-37215123

ABSTRACT

Since early 2022, various Omicron variants have dominated the SARS-CoV-2 pandemic in most countries. All Omicron variants are B-cell immune escape variants, and antibodies induced by first-generation COVID-19 vaccines or by infection with earlier SARS-CoV-2 variants largely fail to protect individuals from Omicron infection. In the present study, we investigated the effect of Omicron infections in triple-vaccinated and in antigen-naive individuals. We show that Omicron breakthrough infections occurring 2-3.5 months after the third vaccination restore B-cell and T-cell immune responses to levels similar to or higher than those measured 14 days after the third vaccination, including the induction of Omicron-neutralizing antibodies. Antibody responses in breakthrough infection derived mostly from cross-reacting B cells, initially induced by vaccination, whereas Omicron infections in antigen-naive individuals primarily generated B cells binding to the Omicron but not the Wuhan spike protein. Although antigen-naive individuals mounted considerable T-cell responses after infection, B-cell responses were low, and neutralizing antibodies were frequently below the limit of detection. In summary, the detection of Omicron-associated B-cell responses in primed and in antigen-naive individuals supports the application of Omicron-adapted COVID-19 vaccines, but calls into question their suitability if they also contain/encode antigens of the original Wuhan virus.


Subject(s)
COVID-19 , Humans , COVID-19 Vaccines , SARS-CoV-2 , Antibodies, Neutralizing , Breakthrough Infections
14.
Cell Genom ; 3(2): 100232, 2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36474914

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection causes severe COVID-19 in some patients and mild COVID-19 in others. Dysfunctional innate immune responses have been identified to contribute to COVID-19 severity, but the key regulators are still unknown. Here, we present an integrative single-cell multi-omics analysis of peripheral blood mononuclear cells from hospitalized and convalescent COVID-19 patients. In classical monocytes, we identified genes that were potentially regulated by differential chromatin accessibility. Then, sub-clustering and motif-enrichment analyses revealed disease condition-specific regulation by transcription factors and their targets, including an interaction between C/EBPs and a long-noncoding RNA LUCAT1, which we validated through loss-of-function experiments. Finally, we investigated genetic risk variants that exhibit allele-specific open chromatin (ASoC) in COVID-19 patients and identified a SNP rs6800484-C, which is associated with lower expression of CCR2 and may contribute to higher viral loads and higher risk of COVID-19 hospitalization. Altogether, our study highlights the diverse genetic and epigenetic regulators that contribute to COVID-19.

15.
Front Immunol ; 13: 863039, 2022.
Article in English | MEDLINE | ID: mdl-35359969

ABSTRACT

Evaluating long-term protection against SARS-CoV-2 variants of concern in convalescing individuals is of high clinical relevance. In this prospective study of a cohort of 46 SARS-CoV-2 patients infected with the Wuhan strain of SARS-CoV-2 we longitudinally analyzed changes in humoral and cellular immunity upon early and late convalescence. Antibody neutralization capacity was measured by surrogate virus neutralization test and cellular responses were investigated with 31-colour spectral flow cytometry. Spike-specific, isotype-switched B cells developed already during the disease phase, showed a memory phenotype and did not decrease in numbers even during late convalescence. Otherwise, no long-lasting perturbations of the immune compartment following COVID-19 clearance were observed. During convalescence anti-Spike (S1) IgG antibodies strongly decreased in all patients. We detected neutralizing antibodies against the Wuhan strain as well as the Alpha and Delta but not against the Beta, Gamma or Omicron variants for up to 7 months post COVID-19. Furthermore, correlation analysis revealed a strong association between sera anti-S1 IgG titers and their neutralization capacity against the Wuhan strain as well as Alpha and Delta. Overall, our data suggest that even 7 month after the clearance of COVID-19 many patients possess a protective layer of immunity, indicated by the persistence of Spike-specific memory B cells and by the presence of neutralizing antibodies against the Alpha and Delta variants. However, lack of neutralizing antibodies against the Beta, Gamma and Omicron variants even during the peak response is of major concern as this indicates viral evasion of the humoral immune response.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Convalescence , Humans , Immunity, Humoral , Immunoglobulin G , Prospective Studies , Spike Glycoprotein, Coronavirus/genetics
16.
Nat Commun ; 13(1): 4872, 2022 08 18.
Article in English | MEDLINE | ID: mdl-35982040

ABSTRACT

Heterologous prime/boost vaccination with a vector-based approach (ChAdOx-1nCov-19, ChAd) followed by an mRNA vaccine (e.g. BNT162b2, BNT) has been reported to be superior in inducing protective immunity compared to repeated application of the same vaccine. However, data comparing immunity decline after homologous and heterologous vaccination as well as effects of a third vaccine application after heterologous ChAd/BNT vaccination are lacking. Here we show longitudinal monitoring of ChAd/ChAd (n = 41) and ChAd/BNT (n = 88) vaccinated individuals and the impact of a third vaccination with BNT. The third vaccination greatly augments waning anti-spike IgG but results in only moderate increase in spike-specific CD4 + and CD8 + T cell numbers in both groups, compared to cell frequencies already present after the second vaccination in the ChAd/BNT group. More importantly, the third vaccination efficiently restores neutralizing antibody responses against the Alpha, Beta, Gamma, and Delta variants of the virus, but neutralizing activity against the B.1.1.529 (Omicron) variant remains severely impaired. In summary, inferior SARS-CoV-2 specific immune responses following homologous ChAd/ChAd vaccination can be compensated by heterologous BNT vaccination, which might influence the choice of vaccine type for subsequent vaccination boosts.


Subject(s)
COVID-19 , Antibodies, Neutralizing , Antibodies, Viral , Antibody Formation , BNT162 Vaccine , COVID-19/prevention & control , Humans , SARS-CoV-2 , Vaccination , Vaccines, Synthetic , mRNA Vaccines
17.
iScience ; 25(3): 103965, 2022 Mar 18.
Article in English | MEDLINE | ID: mdl-35281736

ABSTRACT

To identify cellular mechanisms responsible for pressure overload triggered heart failure, we isolated cardiomyocytes, endothelial cells, and fibroblasts as most abundant cell types from mouse hearts in the subacute and chronic stages after transverse aortic constriction (TAC) and performed RNA-sequencing. We detected highly cell-type specific transcriptional responses with characteristic time courses and active intercellular communication. Cardiomyocytes after TAC exerted an early and sustained upregulation of inflammatory and matrix genes and a concomitant suppression of metabolic and ion channel genes. Fibroblasts, in contrast, showed transient early upregulation of inflammatory and matrix genes and downregulation of angiogenesis genes, but sustained induction of cell cycle and ion channel genes during TAC. Endothelial cells transiently induced cell cycle and extracellular matrix genes early after TAC, but exerted a long-lasting upregulation of inflammatory genes. As we found that matrix production by multiple cell types triggers pathological cellular responses, it might serve as a future therapeutic target.

18.
Respir Res ; 12: 114, 2011 Aug 25.
Article in English | MEDLINE | ID: mdl-21867534

ABSTRACT

Atopic asthma is a chronic inflammatory pulmonary disease characterised by recurrent episodes of wheezy, laboured breathing with an underlying Th2 cell-mediated inflammatory response in the airways. It is currently treated and, more or less, controlled depending on severity, with bronchodilators e.g. long-acting beta agonists and long-acting muscarinic antagonists or anti-inflammatory drugs such as corticosteroids (inhaled or oral), leukotriene modifiers, theophyline and anti-IgE therapy. Unfortunately, none of these treatments are curative and some asthmatic patients do not respond to intense anti-inflammatory therapies. Additionally, the use of long-term oral steroids has many undesired side effects. For this reason, novel and more effective drugs are needed. In this review, we focus on the CD4+ Th2 cells and their products as targets for the development of new drugs to add to the current armamentarium as adjuncts or as potential stand-alone treatments for allergic asthma. We argue that in early disease, the reduction or elimination of allergen-specific Th2 cells will reduce the consequences of repeated allergic inflammatory responses such as lung remodelling without causing generalised immunosuppression.


Subject(s)
Asthma/immunology , Asthma/therapy , Hypersensitivity/therapy , Th2 Cells/immunology , Adrenal Cortex Hormones/therapeutic use , Adrenergic beta-Agonists/therapeutic use , Animals , Anti-Asthmatic Agents/therapeutic use , Anti-Inflammatory Agents/therapeutic use , Asthma/pathology , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/pathology , Genetic Therapy/methods , Humans , Hypersensitivity/immunology , Hypersensitivity/pathology , Th2 Cells/drug effects , Th2 Cells/metabolism , Treatment Outcome
19.
Cell Mol Immunol ; 18(2): 398-414, 2021 02.
Article in English | MEDLINE | ID: mdl-33408345

ABSTRACT

Signaling via interleukin-2 receptor (IL-2R) is a requisite for regulatory T (Treg) cell identity and function. However, it is not completely understood to what degree IL-2R signaling is required for Treg cell homeostasis, lineage stability and function in both resting and inflammatory conditions. Here, we characterized a spontaneous mutant mouse strain endowed with a hypomorphic Tyr129His variant of CD25, the α-chain of IL-2R, which resulted in diminished receptor expression and reduced IL-2R signaling. Under noninflammatory conditions, Cd25Y129H mice harbored substantially lower numbers of peripheral Treg cells with stable Foxp3 expression that prevented the development of spontaneous autoimmune disease. In contrast, Cd25Y129H Treg cells failed to efficiently induce immune suppression and lost lineage commitment in a T-cell transfer colitis model, indicating that unimpaired IL-2R signaling is critical for Treg cell function in inflammatory environments. Moreover, single-cell RNA sequencing of Treg cells revealed that impaired IL-2R signaling profoundly affected the balance of central and effector Treg cell subsets. Thus, partial loss of IL-2R signaling differentially interferes with the maintenance, heterogeneity, and suppressive function of the Treg cell pool.


Subject(s)
Colitis/immunology , Forkhead Transcription Factors/metabolism , Interleukin-2 Receptor alpha Subunit/metabolism , Mutation , T-Lymphocytes, Regulatory/immunology , Animals , Colitis/metabolism , Colitis/pathology , Female , Forkhead Transcription Factors/genetics , Homeostasis , Immunosuppression Therapy , Interleukin-2/metabolism , Interleukin-2 Receptor alpha Subunit/genetics , Male , Mice , Mice, Inbred C57BL , Signal Transduction
20.
Front Immunol ; 12: 721738, 2021.
Article in English | MEDLINE | ID: mdl-34456929

ABSTRACT

Here, we described the case of a B cell-deficient patient after CD19 CAR-T cell therapy for refractory B cell Non-Hodgkin Lymphoma with protracted coronavirus disease 2019 (COVID-19). For weeks, this patient only inefficiently contained the virus while convalescent plasma transfusion correlated with virus clearance. Interestingly, following convalescent plasma therapy natural killer cells matured and virus-specific T cells expanded, presumably allowing virus clearance and recovery from the disease. Our findings, thus, suggest that convalescent plasma therapy can activate cellular immune responses to clear SARS-CoV-2 infections. If confirmed in larger clinical studies, these data could be of general importance for the treatment of COVID-19 patients.


Subject(s)
B-Lymphocytes , COVID-19/immunology , COVID-19/therapy , Immunologic Deficiency Syndromes/immunology , Immunotherapy, Adoptive , Killer Cells, Natural/immunology , T-Lymphocytes/immunology , B-Lymphocytes/immunology , COVID-19/complications , Female , Humans , Immunization, Passive , Immunoglobulins, Intravenous , Immunologic Deficiency Syndromes/complications , Lymphocyte Activation , Lymphopoiesis , SARS-CoV-2 , Viral Load , COVID-19 Serotherapy
SELECTION OF CITATIONS
SEARCH DETAIL