Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Country/Region as subject
Language
Journal subject
Affiliation country
Publication year range
1.
New Phytol ; 242(2): 444-452, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38396304

ABSTRACT

Stomatal closure under high VPDL (leaf to air vapour pressure deficit) is a primary means by which plants prevent large excursions in transpiration rate and leaf water potential (Ψleaf) that could lead to tissue damage. Yet, the drivers of this response remain controversial. Changes in Ψleaf appear to drive stomatal VPDL response, but many argue that dynamic changes in soil-to-leaf hydraulic conductance (Ks-l) make an important contribution to this response pathway, even in well-hydrated soils. Here, we examined whether the regulation of whole plant stomatal conductance (gc) in response to typical changes in daytime VPDL is influenced by dynamic changes in Ks-l. We use well-watered plants of two species with contrasting ecological and physiological features: the herbaceous Arabidopsis thaliana (ecotype Columbia-0) and the dry forest conifer Callitris rhomboidea. The dynamics of Ks-l and gc were continuously monitored by combining concurrent in situ measurements of Ψleaf using an open optical dendrometer and whole plant transpiration using a balance. Large changes in VPDL were imposed to induce stomatal closure and observe the impact on Ks-l. In both species, gc was observed to decline substantially as VPDL increased, while Ks-l remained stable. Our finding suggests that stomatal regulation of transpiration is not contingent on a decrease in Ks-l. Static Ks-l provides a much simpler explanation for transpiration control in hydrated plants and enables simplified modelling and new methods for monitoring plant water use in the field.


Subject(s)
Arabidopsis , Arabidopsis/metabolism , Soil , Plant Leaves/physiology , Plant Stomata/physiology , Water/metabolism , Plant Transpiration/physiology
2.
Plant Cell Environ ; 47(4): 1160-1170, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38108586

ABSTRACT

Increased drought conditions impact tree health, negatively disrupting plant water transport which, in turn, affects plant growth and survival. Persistent drought legacy effects have been documented in many diverse ecosystems, yet we still lack a mechanistic understanding of the physiological processes limiting tree recovery after drought. Tackling this question, we exposed saplings of a common Australian evergreen tree (Eucalyptus viminalis) to a cycle of drought and rewatering, seeking evidence for a link between the spread of xylem cavitation within the crown and the degree of photosynthetic recovery postdrought. Individual leaves experiencing >35% vein cavitation quickly died but this did not translate to a rapid overall canopy damage. Rather, whole canopies showed a gradual decline in mean postdrought gas exchange rates as water stress increased. This gradual loss of canopy function postdrought was due to a significant variation in cavitation vulnerability of leaves within canopies leading to diversity in the capacity of leaves within a single crown to recover function after drought. These results from the evergreen E. viminalis emphasise the importance of within-crown variation in xylem vulnerability as a central character regulating the dynamics of canopy death and the severity of drought legacy through time.


Subject(s)
Droughts , Ecosystem , Australia , Plant Leaves/physiology , Trees , Xylem/physiology
SELECTION OF CITATIONS
SEARCH DETAIL