ABSTRACT
Understanding the impact of splicing and nonsense variants on RNA is crucial for the resolution of variant classification as well as their suitability for precision medicine interventions. This is primarily enabled through RNA studies involving transcriptomics followed by targeted assays using RNA isolated from clinically accessible tissues (CATs) such as blood or skin of affected individuals. Insufficient disease gene expression in CATs does however pose a major barrier to RNA based investigations, which we show is relevant to 1,436 Mendelian disease genes. We term these "silent" Mendelian genes (SMGs), the largest portion (36%) of which are associated with neurological disorders. We developed two approaches to induce SMG expression in human dermal fibroblasts (HDFs) to overcome this limitation, including CRISPR-activation-based gene transactivation and fibroblast-to-neuron transdifferentiation. Initial transactivation screens involving 40 SMGs stimulated our development of a highly multiplexed transactivation system culminating in the 6- to 90,000-fold induction of expression of 20/20 (100%) SMGs tested in HDFs. Transdifferentiation of HDFs directly to neurons led to expression of 193/516 (37.4%) of SMGs implicated in neurological disease. The magnitude and isoform diversity of SMG expression following either transactivation or transdifferentiation was comparable to clinically relevant tissues. We apply transdifferentiation and/or gene transactivation combined with short- and long-read RNA sequencing to investigate the impact that variants in USH2A, SCN1A, DMD, and PAK3 have on RNA using HDFs derived from affected individuals. Transactivation and transdifferentiation represent rapid, scalable functional genomic solutions to investigate variants impacting SMGs in the patient cell and genomic context.
Subject(s)
Cell Transdifferentiation , Fibroblasts , Neurons , Transcriptional Activation , Humans , Cell Transdifferentiation/genetics , Fibroblasts/metabolism , Fibroblasts/cytology , Neurons/metabolism , Neurons/cytology , RNA/genetics , RNA/metabolism , CRISPR-Cas SystemsABSTRACT
We have previously reported that pathogenic variants in a key metabolite repair enzyme NAXD cause a lethal neurodegenerative condition triggered by episodes of fever in young children. However, the clinical and genetic spectrum of NAXD deficiency is broadening as our understanding of the disease expands and as more cases are identified. Here, we report the oldest known individual succumbing to NAXD-related neurometabolic crisis, at 32 years of age. The clinical deterioration and demise of this individual were likely triggered by mild head trauma. This patient had a novel homozygous NAXD variant [NM_001242882.1:c.441+3A>G:p.?] that induces the mis-splicing of the majority of NAXD transcripts, leaving only trace levels of canonically spliced NAXD mRNA, and protein levels below the detection threshold by proteomic analysis. Accumulation of damaged NADH, the substrate of NAXD, could be detected in the fibroblasts of the patient. In agreement with prior anecdotal reports in paediatric patients, niacin-based treatment also partly alleviated some clinical symptoms in this adult patient. The present study extends our understanding of NAXD deficiency by uncovering shared mitochondrial proteomic signatures between the adult and our previously reported paediatric NAXD cases, with reduced levels of respiratory complexes I and IV as well as the mitoribosome, and the upregulation of mitochondrial apoptotic pathways. Importantly, we highlight that head trauma in adults, in addition to paediatric fever or illness, may precipitate neurometabolic crises associated with pathogenic NAXD variants.
Subject(s)
Brain Concussion , Brain Diseases, Metabolic , Hydro-Lyases , Adult , Child , Child, Preschool , Humans , Hydro-Lyases/metabolism , Mitochondria/metabolism , NAD/metabolism , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/metabolism , Proteomics , Brain Concussion/complications , Brain Concussion/genetics , Brain Diseases, Metabolic/etiology , Brain Diseases, Metabolic/geneticsABSTRACT
PURPOSE: Genetic variants causing aberrant premessenger RNA splicing are increasingly being recognized as causal variants in genetic disorders. In this study, we devise standardized practices for polymerase chain reaction (PCR)-based RNA diagnostics using clinically accessible specimens (blood, fibroblasts, urothelia, biopsy). METHODS: A total of 74 families with diverse monogenic conditions (31% prenatal-congenital onset, 47% early childhood, and 22% teenage-adult onset) were triaged into PCR-based RNA testing, with comparative RNA sequencing for 19 cases. RESULTS: Informative RNA assay data were obtained for 96% of cases, enabling variant reclassification for 75% variants that can be used for genetic counseling (71%), to inform clinical care (32%) and prenatal counseling (41%). Variant-associated mis-splicing was highly reproducible for 28 cases with samples from ≥2 affected individuals or heterozygotes and 10 cases with ≥2 biospecimens. PCR amplicons encompassing another segregated heterozygous variant was vital for clinical interpretation of 22 of 79 variants to phase RNA splicing events and discern complete from partial mis-splicing. CONCLUSION: RNA diagnostics enabled provision of a genetic diagnosis for 64% of recruited cases. PCR-based RNA diagnostics has capacity to analyze 81.3% of clinically significant genes, with long amplicons providing an advantage over RNA sequencing to phase RNA splicing events. The Australasian Consortium for RNA Diagnostics (SpliceACORD) provide clinically-endorsed, standardized protocols and recommendations for interpreting RNA assay data.
Subject(s)
RNA Splicing , RNA , Adolescent , Adult , Child, Preschool , Humans , Mutation , RNA/genetics , RNA Splicing/genetics , Sequence Analysis, RNA , Exome SequencingABSTRACT
BACKGROUND: In the clinical setting, identification of the genetic cause in patients with early-onset dementia (EOD) is challenging due to multiple types of genetic tests required to arrive at a diagnosis. Whole-genome sequencing (WGS) has the potential to serve as a single diagnostic platform, due to its superior ability to detect common, rare and structural genetic variation. METHODS: WGS analysis was performed in 50 patients with EOD. Point mutations, small insertions/deletions, as well as structural variants (SVs) and short tandem repeats (STRs), were analysed. An Alzheimer's disease (AD)-related polygenic risk score (PRS) was calculated in patients with AD. RESULTS: Clinical genetic diagnosis was achieved in 7 of 50 (14%) of the patients, with a further 8 patients (16%) found to have established risk factors which may have contributed to their EOD. Two pathogenic variants were identified through SV analysis. No expanded STRs were found in this study cohort, but a blinded analysis with a positive control identified a C9orf72 expansion accurately. Approximately 37% (7 of 19) of patients with AD had a PRS equivalent to >90th percentile risk. DISCUSSION: WGS acts as a single genetic test to identify different types of clinically relevant genetic variations in patients with EOD. WGS, if used as a first-line clinical diagnostic test, has the potential to increase the diagnostic yield and reduce time to diagnosis for EOD.
ABSTRACT
Rapid genomic diagnosis programs are transforming rare disease diagnosis in acute pediatrics. A ventilated newborn with cerebellar hypoplasia underwent rapid exome sequencing (75 h), identifying a novel homozygous ASNS splice-site variant (NM_133436.3:c.1476+1G>A) of uncertain significance. Rapid ASNS splicing studies using blood-derived messenger RNA from the family trio confirmed a consistent pattern of abnormal splicing induced by the variant (cryptic 5' splice-site or exon 12 skipping) with absence of normal ASNS splicing in the proband. Splicing studies reported within 10 days led to reclassification of c.1476+1G>A as pathogenic at age 27 days. Intensive care was redirected toward palliation. Cost analyses for the neonate and his undiagnosed, similarly affected deceased sibling, demonstrate that early diagnosis reduced hospitalization costs by AU$100,828. We highlight the diagnostic benefits of adjunct RNA testing to confirm the pathogenicity of splicing variants identified via rapid genomic testing pipelines for precision and preventative medicine.
Subject(s)
Aspartate-Ammonia Ligase/deficiency , Carbon-Nitrogen Ligases with Glutamine as Amide-N-Donor/genetics , RNA Splicing , Amino Acid Sequence , Critical Illness , Exons , Female , Humans , Infant, Newborn , Male , Pedigree , RNA Splice Sites , Exome SequencingABSTRACT
We present eight families with arthrogryposis multiplex congenita and myopathy bearing a TTN intron 213 extended splice-site variant (NM_001267550.1:c.39974-11T>G), inherited in trans with a second pathogenic TTN variant. Muscle-derived RNA studies of three individuals confirmed mis-splicing induced by the c.39974-11T>G variant; in-frame exon 214 skipping or use of a cryptic 3' splice-site effecting a frameshift. Confounding interpretation of pathogenicity is the absence of exons 213-217 within the described skeletal muscle TTN N2A isoform. However, RNA-sequencing from 365 adult human gastrocnemius samples revealed that 56% specimens predominantly include exons 213-217 in TTN transcripts (inclusion rate ≥66%). Further, RNA-sequencing of five fetal muscle samples confirmed that 4/5 specimens predominantly include exons 213-217 (fifth sample inclusion rate 57%). Contractures improved significantly with age for four individuals, which may be linked to decreased expression of pathogenic fetal transcripts. Our study extends emerging evidence supporting a vital developmental role for TTN isoforms containing metatranscript-only exons.
Subject(s)
Alternative Splicing , Arthrogryposis/diagnosis , Arthrogryposis/genetics , Connectin/genetics , Genes, Recessive , Genetic Predisposition to Disease , Muscular Diseases/diagnosis , Muscular Diseases/genetics , Child , Child, Preschool , Female , Genetic Association Studies , Humans , Infant , Male , Mutation , Pedigree , Phenotype , RadiographyABSTRACT
The ubiquitous calpains, calpain-1 and -2, play important roles in Ca2+-dependent membrane repair. Mechanically active tissues like skeletal muscle are particularly reliant on mechanisms to repair and remodel membrane injury, such as those caused by eccentric damage. We demonstrate that calpain-1 and -2 are master effectors of Ca2+-dependent repair of mechanical plasma membrane scrape injuries, although they are dispensable for repair/removal of small wounds caused by pore-forming agents. Using CRISPR gene-edited human embryonic kidney 293 (HEK293) cell lines, we established that loss of both calpains-1 and -2 (CAPNS1-/-) virtually ablates Ca2+-dependent repair of mechanical scrape injuries but does not affect injury or recovery from perforation by streptolysin-O or saponin. In contrast, cells with targeted knockout of either calpain-1 (CAPN1-/-) or -2 (CAPN2-/-) show near-normal repair of mechanical injuries, inferring that both calpain-1 and calpain-2 are equally capable of conducting the cascade of proteolytic cleavage events to reseal a membrane injury, including that of the known membrane repair agent dysferlin. A severe muscular dystrophy in a murine model with skeletal muscle knockout of Capns1 highlights vital roles for calpain-1 and/or -2 for health and viability of skeletal muscles not compensated for by calpain-3 (CAPN3). We propose that the dystrophic phenotype relates to loss of maintenance of plasma membrane/cytoskeletal networks by calpains-1 and -2 in response to directed and dysfunctional Ca2+-signaling, pathways hyperstimulated in the context of membrane injury. With CAPN1 variants associated with spastic paraplegia, a severe dystrophy observed with muscle-specific loss of calpain-1 and -2 activity identifies CAPN2 and CAPNS1 as plausible candidate neuromuscular disease genes.
Subject(s)
Calpain/deficiency , Cell Membrane/enzymology , Muscle, Skeletal/enzymology , Muscular Dystrophies, Limb-Girdle/enzymology , Muscular Dystrophy, Animal/enzymology , Animals , Bacterial Proteins/pharmacology , Calcium Signaling , Calpain/genetics , Cell Membrane/drug effects , Cell Membrane/pathology , Disease Models, Animal , Dysferlin/deficiency , Dysferlin/genetics , Female , HEK293 Cells , Humans , Male , Mice, Knockout , Muscle, Skeletal/pathology , Muscular Dystrophies, Limb-Girdle/genetics , Muscular Dystrophies, Limb-Girdle/pathology , Muscular Dystrophy, Animal/genetics , Muscular Dystrophy, Animal/pathology , Saponins/pharmacology , Severity of Illness Index , Streptolysins/pharmacologyABSTRACT
OBJECTIVE: Comprehensive clinical characterization of congenital titinopathy to facilitate diagnosis and management of this important emerging disorder. METHODS: Using massively parallel sequencing we identified 30 patients from 27 families with 2 pathogenic nonsense, frameshift and/or splice site TTN mutations in trans. We then undertook a detailed analysis of the clinical, histopathological and imaging features of these patients. RESULTS: All patients had prenatal or early onset hypotonia and/or congenital contractures. None had ophthalmoplegia. Scoliosis and respiratory insufficiency typically developed early and progressed rapidly, whereas limb weakness was often slowly progressive, and usually did not prevent independent walking. Cardiac involvement was present in 46% of patients. Relatives of 2 patients had dilated cardiomyopathy. Creatine kinase levels were normal to moderately elevated. Increased fiber size variation, internalized nuclei and cores were common histopathological abnormalities. Cap-like regions, whorled or ring fibers, and mitochondrial accumulations were also observed. Muscle magnetic resonance imaging showed gluteal, hamstring and calf muscle involvement. Western blot analysis showed a near-normal sized titin protein in all samples. The presence of 2 mutations predicted to impact both N2BA and N2B cardiac isoforms appeared to be associated with greatest risk of cardiac involvement. One-third of patients had 1 mutation predicted to impact exons present in fetal skeletal muscle, but not included within the mature skeletal muscle isoform transcript. This strongly suggests developmental isoforms are involved in the pathogenesis of this congenital/early onset disorder. INTERPRETATION: This detailed clinical reference dataset will greatly facilitate diagnostic confirmation and management of patients, and has provided important insights into disease pathogenesis. Ann Neurol 2018;83:1105-1124.
Subject(s)
Cardiomyopathy, Dilated/congenital , Connectin/genetics , Muscle Proteins/genetics , Muscle, Skeletal/pathology , Female , Humans , Male , Mutation/genetics , Phenotype , Protein Isoforms/geneticsABSTRACT
A male neonate presented with severe weakness, hypotonia, contractures and congenital scoliosis. Skeletal muscle specimens showed marked atrophy and degeneration of fast fibers with striking nemaline rods and hypertrophy of slow fibers that were ultrastructurally normal. A neuromuscular gene panel identified a homozygous essential splice variant in TNNT3 (chr11:1956150G > A, NM_006757.3:c.681+1G > A). TNNT3 encodes skeletal troponin-Tfast and is associated with autosomal dominant distal arthrogryposis. TNNT3 has not previously been associated with nemaline myopathy (NM), a rare congenital myopathy linked to defects in proteins associated with thin filament structure and regulation. cDNA studies confirmed pathogenic consequences of the splice variant, eliciting exon-skipping and intron retention events leading to a frameshift. Western blot showed deficiency of troponin-Tfast protein with secondary loss of troponin-Ifast . We establish a homozygous splice variant in TNNT3 as the likely cause of severe congenital NM with distal arthrogryposis, characterized by specific involvement of Type-2 fibers and deficiency of troponin-Tfast .
Subject(s)
Arthrogryposis/complications , Arthrogryposis/genetics , Genes, Recessive , Myopathies, Nemaline/complications , Myopathies, Nemaline/genetics , RNA Splicing/genetics , Troponin T/genetics , Humans , Infant , Infant, Newborn , Male , Myopathies, Nemaline/pathology , RNA Splice Sites/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolismABSTRACT
Dysferlin is a large transmembrane protein that plays a key role in cell membrane repair and underlies a recessive form of inherited muscular dystrophy. Dysferlinopathy is characterized by absence or marked reduction of dysferlin protein with 43% of reported pathogenic variants being missense variants that span the length of the dysferlin protein. The unique structure of dysferlin, with seven tandem C2 domains separated by linkers, suggests dysferlin may dynamically associate with phospholipid membranes in response to Ca2+ signaling. However, the overall conformation of the dysferlin protein is uncharacterized. To dissect the structural architecture of dysferlin, we have applied the method of limited proteolysis, which allows nonspecific digestion of unfolded peptides by trypsin. Using five antibodies spanning the dysferlin protein, we identified a highly reproducible jigsaw map of dysferlin fragments protected from digestion. Our data infer a modular architecture of four tertiary domains: 1) C2A, which is readily removed as a solo domain; 2) midregion C2B-C2C-Fer-DysF, commonly excised as an intact module, with subdigestion to different fragments suggesting several dynamic folding options; 3) C-terminal four-C2 domain module; and 4) calpain-cleaved mini-dysferlinC72, which is particularly resistant to proteolysis. Importantly, we reveal a patient missense variant, L344P, that largely escapes proteasomal surveillance and shows subtle but clear changes in tertiary conformation. Accompanying evidence from immunohistochemistry and flow cytometry using antibodies with conformationally sensitive epitopes supports proteolysis data. Collectively, we provide insight into the structural topology of dysferlin and show how a single missense mutation within dysferlin can exert local changes in tertiary conformation.
Subject(s)
Dysferlin/genetics , Muscle, Skeletal/metabolism , Muscular Dystrophies/genetics , Mutation, Missense , Proteasome Endopeptidase Complex/metabolism , Amino Acid Substitution , Biopsy , C2 Domains , Calpain/genetics , Calpain/metabolism , Cells, Cultured , Dysferlin/chemistry , Dysferlin/metabolism , HEK293 Cells , Humans , Molecular Weight , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Skeletal/pathology , Muscle, Skeletal/pathology , Muscular Dystrophies/metabolism , Muscular Dystrophies/pathology , Peptide Fragments/chemistry , Peptide Fragments/genetics , Peptide Fragments/metabolism , Protein Conformation , Protein Folding , Protein Interaction Domains and Motifs , Protein Structure, Tertiary , Proteolysis , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/metabolismABSTRACT
Tuberous sclerosis complex (TSC) is a variable multisystem disorder. The "no mutations identified" (NMI) group are reportedly phenotypically milder than those with an identified molecular cause, and often have mosaic or intronic variants not detected by standard sequencing methods. METHODS: We describe the phenotypes in an Australian TSC NMI group (n = 18) and a molecular testing strategy implementable in a diagnostic laboratory. Massively parallel sequencing (MPS) of the whole genomic regions of TSC1 and TSC2 was performed using DNA extracted from multiple tissue samples per participant. RESULTS: Our study showed that the phenotype in TSC NMI individuals can be similar to those with heterozygous, particularly TSC1, variants. Although neurodevelopmental outcomes can be less severe, the number of organ systems involved was similar to the non-mosaic groups. A diagnostic yield of 72% (13/18) was achieved, with the majority (10/13) being mosaic variants and the remainder heterozygous variants missed on previous testing. CONCLUSION: Testing DNA from multiple tissue samples allowed for validation of otherwise discarded low-level mosaic variants and detection of mosaic variants by MPS without excessive cost or the need for specialised techniques. Implementing this approach in a diagnostic setting is viable and allows optimal clinical care of patients with NMI TSC.
Subject(s)
Phenotype , Tuberous Sclerosis Complex 1 Protein , Tuberous Sclerosis Complex 2 Protein , Tuberous Sclerosis , Humans , Tuberous Sclerosis/genetics , Tuberous Sclerosis/pathology , Tuberous Sclerosis/diagnosis , Tuberous Sclerosis Complex 2 Protein/genetics , Female , Male , Australia , Tuberous Sclerosis Complex 1 Protein/genetics , Child , Adolescent , Adult , Child, Preschool , High-Throughput Nucleotide Sequencing/methods , Infant , Mutation , MosaicismABSTRACT
Even for essential splice-site variants that are almost guaranteed to alter mRNA splicing, no current method can reliably predict whether exon-skipping, cryptic activation or multiple events will result, greatly complicating clinical interpretation of pathogenicity. Strikingly, ranking the four most common unannotated splicing events across 335,663 reference RNA-sequencing (RNA-seq) samples (300K-RNA Top-4) predicts the nature of variant-associated mis-splicing with 92% sensitivity. The 300K-RNA Top-4 events correctly identify 96% of exon-skipping events and 86% of cryptic splice sites for 140 clinical cases subject to RNA testing, showing higher sensitivity and positive predictive value than SpliceAI. Notably, RNA re-analyses showed we had missed 300K-RNA Top-4 events for several clinical cases tested before the development of this empirical predictive method. Simply, mis-splicing events that happen around a splice site in RNA-seq data are those most likely to be activated by a splice-site variant. The SpliceVault web portal allows users easy access to 300K-RNA for informed splice-site variant interpretation and classification.
Subject(s)
RNA Splice Sites , RNA Splicing , RNA Splicing/genetics , RNA Splice Sites/genetics , Base Sequence , Alternative Splicing/geneticsABSTRACT
Dysferlin is a Ca2+-activated lipid binding protein implicated in muscle membrane repair. Recessive variants in DYSF result in dysferlinopathy, a progressive muscular dystrophy. We showed previously that calpain cleavage within a motif encoded by alternatively spliced exon 40a releases a 72 kDa C-terminal minidysferlin recruited to injured sarcolemma. Herein we use CRISPR/Cas9 gene editing to knock out murine Dysf exon 40a, to specifically assess its role in membrane repair and development of dysferlinopathy. We created three Dysf exon 40a knockout (40aKO) mouse lines that each express different levels of dysferlin protein ranging from ~ 90%, ~ 50% and ~ 10-20% levels of wild-type. Histopathological analysis of skeletal muscles from all 12-month-old 40aKO lines showed virtual absence of dystrophic features and normal membrane repair capacity for all three 40aKO lines, as compared with dysferlin-null BLAJ mice. Further, lipidomic and proteomic analyses on 18wk old quadriceps show all three 40aKO lines are spared the profound lipidomic/proteomic imbalance that characterises dysferlin-deficient BLAJ muscles. Collective results indicate that membrane repair does not depend upon calpain cleavage within exon 40a and that ~ 10-20% of WT dysferlin protein expression is sufficient to maintain the muscle lipidome, proteome and membrane repair capacity to crucially prevent development of dysferlinopathy.
Subject(s)
Membrane Proteins , Muscular Dystrophies, Limb-Girdle , Mice , Animals , Dysferlin/genetics , Dysferlin/metabolism , Mice, Knockout , Membrane Proteins/metabolism , Calpain/genetics , Proteomics , Muscular Dystrophies, Limb-Girdle/pathology , Muscle, Skeletal/pathology , Exons/geneticsABSTRACT
Paediatric hyperCKaemia without weakness presents a clinical conundrum. Invasive investigations with low diagnostic yields, including muscle biopsy, may be considered unjustifiable. Improved access to genome-wide genetic testing has shifted first-line investigations towards genetic studies in neuromuscular disease. This research aims to provide an evidence-based diagnostic approach to paediatric hyperCKaemia without weakness, a current gap in the literature. We identified 47 individuals (10-months to 16-years-old; 34 males, 13 females) from 43 families presenting with hyperCKaemia on two or more occasions, without weakness, from The Children's Hospital at Westmead Neuromuscular Clinic Database. Clinical features, investigations and outcomes were analysed via retrospective chart review. Genetic testing has been performed in 34/43. Genetic variants explaining hyperCKaemia were identified in 25/34 (74%) using multiplex ligation-dependent probe amplification, massive parallel sequencing, single gene testing and exome sequencing. Pathogenic/likely pathogenic variants were identified in 19 neuromuscular disease genes and six metabolic myopathy genes. Individuals with metabolic diagnoses had higher peak creatine kinase levels that sometimes normalized. Conversely, creatine kinase levels remained persistently elevated those with neuromuscular diagnoses. In summary, a genetic cause is found in most paediatric patients with hyperCKaemia without weakness informing clinical management and counselling. Thus, we propose a diagnostic algorithm for this cohort.
Subject(s)
Muscular Diseases , Neuromuscular Diseases , Child , Creatine Kinase , Female , Genetic Testing , Humans , Male , Muscle Weakness/genetics , Muscular Diseases/diagnosis , Muscular Diseases/genetics , Neuromuscular Diseases/diagnosis , Neuromuscular Diseases/genetics , Retrospective StudiesABSTRACT
OBJECTIVE: To describe the diagnostic utility of whole-genome sequencing and RNA studies in boys with suspected dystrophinopathy, for whom multiplex ligation-dependent probe amplification and exomic parallel sequencing failed to yield a genetic diagnosis, and to use remnant normal DMD splicing in 3 families to define critical levels of wild-type dystrophin bridging clinical spectrums of Duchenne to myalgia. METHODS: Exome, genome, and/or muscle RNA sequencing was performed for 7 males with elevated creatine kinase. PCR of muscle-derived complementary DNA (cDNA) studied consequences for DMD premessenger RNA (pre-mRNA) splicing. Quantitative Western blot was used to determine levels of dystrophin, relative to control muscle. RESULTS: Splice-altering intronic single nucleotide variants or structural rearrangements in DMD were identified in all 7 families. Four individuals, with abnormal splicing causing a premature stop codon and nonsense-mediated decay, expressed remnant levels of normally spliced DMD mRNA. Quantitative Western blot enabled correlation of wild-type dystrophin and clinical severity, with 0%-5% dystrophin conferring a Duchenne phenotype, 10% ± 2% a Becker phenotype, and 15% ± 2% dystrophin associated with myalgia without manifesting weakness. CONCLUSIONS: Whole-genome sequencing relied heavily on RNA studies to identify DMD splice-altering variants. Short-read RNA sequencing was regularly confounded by the effectiveness of nonsense-mediated mRNA decay and low read depth of the giant DMD mRNA. PCR of muscle cDNA provided a simple, yet informative approach. Highly relevant to genetic therapies for dystrophinopathies, our data align strongly with previous studies of mutant dystrophin in Becker muscular dystrophy, with the collective conclusion that a fractional increase in levels of normal dystrophin between 5% and 20% is clinically significant.
ABSTRACT
The primary cilium is an organelle which plays an important role in the transduction of signals in the Wnt and Sonic hedgehog pathways. Abnormal or absent primary cilia result in various neurodevelopmental, retinal, renal, hepatic and musculoskeletal abnormalities. Joubert syndrome (JS) is a ciliopathy with a prevalence estimated to be between 1:80 000 and 1:100 000. JS occurs due to bi-allelic mutations in one of the 34 identified genes, all of which encode for protein components of the primary cilia. The presentation of JS is highly variable, however a clinical diagnosis can be established by the presence of the molar tooth sign on axial brain MRI, hypotonia in infancy, and developmental delay. JS is less severe than Meckel syndrome (MKS), which is another recessive, and often lethal, ciliopathy. This report outlines an interesting case of JS, in which two novel mutations in B9D1 were identified. This gene is not commonly associated with JS, and is often implicated in MKS. Functional mRNA study was helpful in delineating the pathogenic role of novel variants in this case.
Subject(s)
Abnormalities, Multiple/genetics , Cerebellum/abnormalities , Cytoskeletal Proteins/genetics , Eye Abnormalities/genetics , Kidney Diseases, Cystic/genetics , RNA Splicing , Retina/abnormalities , Abnormalities, Multiple/pathology , Cerebellum/pathology , Eye Abnormalities/pathology , Female , Genetic Testing/methods , Humans , Kidney Diseases, Cystic/pathology , Mutation, Missense , RNA, Messenger/genetics , RNA, Messenger/metabolism , Retina/pathology , Young AdultABSTRACT
Nemaline myopathy is a congenital neuromuscular disorder characterized by muscle weakness, fiber atrophy and presence of nemaline bodies within myofibers. However, the understanding of underlying pathomechanisms is lacking. Recently, mutations in KBTBD13, KLHL40 and KLHL41, three substrate adaptors for the E3-ubiquitin ligase Cullin-3, have been associated with early-onset nemaline myopathies. We hypothesized that deregulation of Cullin-3 and its muscle protein substrates may be responsible for the disease development. Using Cullin-3 knockout mice, we identified accumulation of non-muscle alpha-Actinins (ACTN1 and ACTN4) in muscles of these mice, which we also observed in KBTBD13 patients. Our data reveal that proper regulation of Cullin-3 activity and ACTN1 levels is essential for normal muscle and neuromuscular junction development. While ACTN1 is naturally downregulated during myogenesis, its overexpression in C2C12 myoblasts triggered defects in fusion, myogenesis and acetylcholine receptor clustering; features that we characterized in Cullin-3 deficient mice. Taken together, our data highlight the importance for Cullin-3 mediated degradation of ACTN1 for muscle development, and indicate a new pathomechanism for the etiology of myopathies seen in Cullin-3 knockout mice and nemaline myopathy patients.
Subject(s)
Actinin/metabolism , Cullin Proteins/metabolism , Muscle Proteins/metabolism , Muscle, Skeletal/metabolism , Myopathies, Nemaline/metabolism , Animals , Cullin Proteins/genetics , Disease Models, Animal , Gene Expression Regulation, Developmental , Genetic Predisposition to Disease/genetics , Humans , Membrane Proteins/metabolism , Mice , Mice, Knockout/embryology , Muscle Proteins/genetics , Muscle Weakness/embryology , Muscle Weakness/genetics , Muscle Weakness/metabolism , Muscle, Skeletal/embryology , Muscular Diseases/metabolism , Muscular Diseases/pathology , Mutation , Myopathies, Nemaline/embryology , Myopathies, Nemaline/genetics , Myopathies, Nemaline/pathology , Neuromuscular Junction/growth & development , Neuromuscular Junction/metabolism , Neuromuscular Junction/pathology , Ubiquitin-Protein Ligases/metabolismABSTRACT
A precise genetic diagnosis of a dystrophinopathy has far-reaching implications for affected boys and their families. We present three boys with DMD single nucleotide variants associated with Becker muscular dystrophy presenting with myalgia, reduced exercise capacity, neurodevelopmental symptoms and elevated creatine kinase. The DMD variants were difficult to classify: AIII:1 a synonymous variant in exon 13 c.1602G>A, p.Lys534Lys; BIII:1 an essential splice-site variant in intron 33 c.4674+1G>A, and CII:1 a missense mutation within the cysteine-rich domain, exon 66 c.9619T>C, p.Cys3207Arg. Complementary DNA (cDNA) analysis using muscle-derived mRNA established splice-altering effects of variants for AIII:1 and BIII:1, and normal splicing in CII:1. Western blot analysis demonstrated mildly to moderately reduced dystrophin levels (17.6 - 36.1% the levels of controls), supporting dystrophinopathy as a probable diagnosis. These three cases highlight the diagnostic utility of muscle biopsy for mRNA studies and western blot to investigate DMD variants of uncertain pathogenicity, by exploring effects on splicing and dystrophin protein levels.
Subject(s)
Blood Proteins/genetics , Muscle, Skeletal/pathology , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/pathology , Mutation, Missense , RNA Splicing , Adolescent , Adult , Biopsy , Creatine Kinase/blood , Diagnosis, Differential , Family , Humans , Male , Muscular Dystrophy, Duchenne/diagnosisABSTRACT
Climate fluctuations have been linked to an increased prevalence of disease in seaweeds, including the red alga Delisea pulchra, which is susceptible to a bleaching disease caused by the bacterium Nautella italica R11 under elevated seawater temperatures. To further investigate the role of temperature in the induction of disease by N. italica R11, we assessed the effect of temperature on the expression of the extracellular proteome (exoproteome) in this bacterium. Label-free quantitative mass spectrometry was used to identify 207 proteins secreted into supernatant fraction, which is equivalent to 5% of the protein coding genes in the N. italica R11 genome. Comparative analysis demonstrated that expression of over 30% of the N. italica R11 exoproteome is affected by temperature. The temperature-dependent proteins include traits that could facilitate the ATP-dependent transport of amino acid and carbohydrate, as well as several uncharacterized proteins. Further, potential virulence determinants, including two RTX-like proteins, exhibited significantly higher expression in the exoproteome at the disease inducing temperature of 24°C relative to non-inducing temperature (16°C). This is the first study to demonstrate that temperature has an influence exoproteome expression in a macroalgal pathogen. The results have revealed several temperature regulated candidate virulence factors that may have a role in macroalgal colonization and invasion at elevated sea-surface temperatures, including novel RTX-like proteins.