Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Journal
Affiliation country
Publication year range
1.
Cell ; 2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39255801

ABSTRACT

The family of Ras-like GTPases consists of over 150 different members, regulated by an even larger number of guanine exchange factors (GEFs) and GTPase-activating proteins (GAPs) that comprise cellular switch networks that govern cell motility, growth, polarity, protein trafficking, and gene expression. Efforts to develop selective small molecule probes and drugs for these proteins have been hampered by the high affinity of guanosine triphosphate (GTP) and lack of allosteric regulatory sites. This paradigm was recently challenged by the discovery of a cryptic allosteric pocket in the switch II region of K-Ras. Here, we ask whether similar pockets are present in GTPases beyond K-Ras. We systematically surveyed members of the Ras, Rho, and Rab family of GTPases and found that many GTPases exhibit targetable switch II pockets. Notable differences in the composition and conservation of key residues offer potential for the development of optimized inhibitors for many members of this previously undruggable family.

2.
Cell ; 183(6): 1562-1571.e12, 2020 12 10.
Article in English | MEDLINE | ID: mdl-33306955

ABSTRACT

Ticks transmit a diverse array of microbes to vertebrate hosts, including human pathogens, which has led to a human-centric focus in this vector system. Far less is known about pathogens of ticks themselves. Here, we discover that a toxin in blacklegged ticks (Ixodes scapularis) horizontally acquired from bacteria-called domesticated amidase effector 2 (dae2)-has evolved to kill mammalian skin microbes with remarkable efficiency. Secreted into the saliva and gut of ticks, Dae2 limits skin-associated staphylococci in ticks while feeding. In contrast, Dae2 has no intrinsic ability to kill Borrelia burgdorferi, the tick-borne Lyme disease bacterial pathogen. These findings suggest ticks resist their own pathogens while tolerating symbionts. Thus, just as tick symbionts can be pathogenic to humans, mammalian commensals can be harmful to ticks. Our study underscores how virulence is context-dependent and bolsters the idea that "pathogen" is a status and not an identity.


Subject(s)
Bacteria/metabolism , Immunologic Factors/metabolism , Ixodes/physiology , Skin/microbiology , Symbiosis , Animals , Anti-Bacterial Agents/pharmacology , Biocatalysis , Cell Wall/metabolism , Feeding Behavior , Female , Gastrointestinal Tract/metabolism , Host-Pathogen Interactions , Mice , Models, Molecular , Peptidoglycan/metabolism , Phylogeny , Saliva/metabolism , Salivary Glands/metabolism , Staphylococcus epidermidis/physiology , Structural Homology, Protein , Substrate Specificity , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL