Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 119
Filter
Add more filters

Publication year range
1.
Environ Sci Technol ; 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38984754

ABSTRACT

In the modern "omics" era, measurement of the human exposome is a critical missing link between genetic drivers and disease outcomes. High-resolution mass spectrometry (HRMS), routinely used in proteomics and metabolomics, has emerged as a leading technology to broadly profile chemical exposure agents and related biomolecules for accurate mass measurement, high sensitivity, rapid data acquisition, and increased resolution of chemical space. Non-targeted approaches are increasingly accessible, supporting a shift from conventional hypothesis-driven, quantitation-centric targeted analyses toward data-driven, hypothesis-generating chemical exposome-wide profiling. However, HRMS-based exposomics encounters unique challenges. New analytical and computational infrastructures are needed to expand the analysis coverage through streamlined, scalable, and harmonized workflows and data pipelines that permit longitudinal chemical exposome tracking, retrospective validation, and multi-omics integration for meaningful health-oriented inferences. In this article, we survey the literature on state-of-the-art HRMS-based technologies, review current analytical workflows and informatic pipelines, and provide an up-to-date reference on exposomic approaches for chemists, toxicologists, epidemiologists, care providers, and stakeholders in health sciences and medicine. We propose efforts to benchmark fit-for-purpose platforms for expanding coverage of chemical space, including gas/liquid chromatography-HRMS (GC-HRMS and LC-HRMS), and discuss opportunities, challenges, and strategies to advance the burgeoning field of the exposome.

2.
Chem Res Toxicol ; 36(7): 1121-1128, 2023 07 17.
Article in English | MEDLINE | ID: mdl-37342084

ABSTRACT

Cell and animal models have been used to provide insights with regard to physiological changes in intestinal flora due to exposure to drugs and environmental contaminants. Here, a novel in vitro model known as simulator of the human intestinal microbial ecosystem (SHIME) was used to assess the effects of three chemicals of emerging concern, namely glyphosate, perfluorooctanoic acid (PFOA), and docusate sodium (dioctyl sulfosuccinate, DOSS), on the lipidomic and metabolomic profiles of the gut microenvironment in both the proximal and distal colonic compartments. Nontargeted analyses by ultra-high performance liquid chromatography-tandem mass spectrometry and gas chromatography-electron ionization-mass spectrometry revealed minor differences in the lipidomic and metabolomic signatures of the proximal and distal colon following treatment with either glyphosate or PFOA at acceptable human daily intake levels or average daily exposures. However, global dysregulation of lipids and metabolites was observed due to DOSS treatment at conventional prescription doses when indicated as a stool softener. Our findings suggest that the current guidelines for glyphosate and PFOA exposure may be adequate at the level of the lower gut microbiome in healthy adults, but the probable yet uncharacterized off-target effects, safety, and efficacy of long-term DOSS treatment warrants further investigation. Indeed, we highlight the SHIME system as a novel in vitro approach which can be used as a screening tool to assess the impact of drugs and/or chemicals on the gut microbiome, while implementing state-of-the-art and data-driven mass spectrometric workflows to identify toxic lipidomic and metabolomic signatures.


Subject(s)
Dioctyl Sulfosuccinic Acid , Gastrointestinal Microbiome , Animals , Humans , Dioctyl Sulfosuccinic Acid/pharmacology , Lipidomics , Ecosystem , Gas Chromatography-Mass Spectrometry , Glyphosate
3.
Environ Sci Technol ; 57(9): 3825-3832, 2023 03 07.
Article in English | MEDLINE | ID: mdl-36749308

ABSTRACT

Wastewater treatment plants generate a solid waste known as biosolids. The most common management option for biosolids is to beneficially reuse them as an agricultural amendment, but because of the risk of pathogen exposure, many regulatory bodies require pathogen reduction before biosolids reuse. Per- and polyfluoroalkyl substances (PFAS) are well documented in biosolids, but limited information is available on how biosolids treatment processes impact PFAS. Furthermore, quantification of PFAS has focused on perfluoroalkyl acids (PFAAs) which are a small fraction of thousands of PFAS known to exist. The objective of this study was to quantify 92 PFAS in biosolids collected from eight biosolids treatment facilities before and after four pathogen treatment applications: composting, heat treatment, lime treatment, and anaerobic digestion. Overall, total PFAS concentrations before and after treatment were dominated by PFAA precursor species, in particular, diPAPs which accounted for a majority of the mass of the Σ92PFAS. This differs from historic data that found PFAAs, primarily PFOS, to dominate total PFAS concentrations. Treatment options such as heat treatment and composting changed the ratio of PFAA precursors to PFAAs indicating a transformation of PFAS during treatment. This study finds that PFAA precursors are likely underrepresented by other studies and make up a larger percentage of the total PFAS concentration in biosolids than previously estimated.


Subject(s)
Composting , Fluorocarbons , Water Pollutants, Chemical , Fluorocarbons/analysis , Biosolids , Water Pollutants, Chemical/analysis , Agriculture
4.
Gen Comp Endocrinol ; 337: 114250, 2023 06 01.
Article in English | MEDLINE | ID: mdl-36858274

ABSTRACT

Florida manatees (Trichechus manatus latirostris), a federally protected species, are classified as threatened due to anthropogenic stressors. Manatees inhabit sites that are impacted by human activities that can negatively affect stress physiology and metabolism. Samples collected from healthy manatees (pregnant females, non-pregnant females, and males) at Crystal River and Indian River Lagoon in Florida, were assessed for adrenal hormones, proteins, glucose, and lipid content in plasma. The objective was to determine if healthy manatees sampled between 2010-2014 from the Indian River Lagoon exhibited evidence of stress compared to healthy manatees sampled between 2012-2019 from Crystal River. Plasma cortisol concentrations were not different in male and non-pregnant female manatees between sites but were elevated in pregnant manatees. Plasma aldosterone concentrations were elevated in Indian River Lagoon manatees relative to those at Crystal River, possibly due to differences in salinity and available freshwater between the two environments. Site differences were noted for plasma protein and glucose concentrations in manatees; additionally, differences between the sexes were also observed in glucose concentrations. Fifteen lipid subclasses, including oxidized lysophosphatidylcholines, oxidized phosphatidylcholines, oxidized triacylglycerols, were elevated in manatees from the Indian River Lagoon relative to manatees from Crystal River. Evidence of a stress response in healthy Indian River Lagoon manatees was lacking compared to Crystal River manatees. Differences in metabolites related to energy (glucose, protein, and lipids) may be related to site-specific variables, such as salinity and food availability/quality. This study generates novel data on plasma lipid profiles and provides cortisol, aldosterone, glucose, and protein values from healthy Florida manatees in two disparate sites that can be referenced in future studies. These data contribute to an improved understanding of manatee physiology to better inform population management.


Subject(s)
Trichechus manatus , Animals , Humans , Male , Female , Trichechus manatus/physiology , Hydrocortisone , Aldosterone , Trichechus , Ecosystem , Lipids
5.
Mol Ecol ; 31(23): 6114-6127, 2022 12.
Article in English | MEDLINE | ID: mdl-34101921

ABSTRACT

The mechanisms connecting environmental conditions to plasticity in biological aging trajectories are fundamental to understanding individual variation in functional traits and life history. Recent findings suggest that telomere biology is especially dynamic during early life stages and has long-term consequences for subsequent reproduction and survival. However, our current understanding is mostly derived from studies investigating ecological and anthropogenic factors separately, leaving the effects of complex environmental interactions unresolved. American alligators (Alligator mississippiensis) are long-lived apex predators that rely on incubation temperature during a discrete period during development and endocrine cues to determine sex, making them especially vulnerable to current climatic variability and exposure to anthropogenic contaminants interfering with hormone function. Here, we combine field studies with a factorial design to understand how the developmental environment, along with intrinsic biological variation contribute to persistent telomere variation. We found that exposure to a common endocrine disrupting contaminant, DDE, affects telomere length, but that the directionality is highly dependent upon incubation temperature. Variation in hatchling growth, underlies a strong clutch effect. We also assess concentrations of a panel of glucocorticoid hormones and find that contaminant exposure elicits an increase in circulating glucocorticoids. Consistent with emerging evidence linking stress and aging trajectories, GC levels also appear to trend with shorter telomere length. Thus, we add support for a mechanistic link between contaminants and glucocorticoid signalling, which interacts with ecological aspects of the developmental environment to alter telomere dynamics.


Subject(s)
Alligators and Crocodiles , Glucocorticoids , Animals , Aging , Telomere/genetics
6.
Metabolomics ; 18(4): 24, 2022 04 09.
Article in English | MEDLINE | ID: mdl-35397018

ABSTRACT

INTRODUCTION: The metabolomics quality assurance and quality control consortium (mQACC) is enabling the identification, development, prioritization, and promotion of suitable reference materials (RMs) to be used in quality assurance (QA) and quality control (QC) for untargeted metabolomics research. OBJECTIVES: This review aims to highlight current RMs, and methodologies used within untargeted metabolomics and lipidomics communities to ensure standardization of results obtained from data analysis, interpretation and cross-study, and cross-laboratory comparisons. The essence of the aims is also applicable to other 'omics areas that generate high dimensional data. RESULTS: The potential for game-changing biochemical discoveries through mass spectrometry-based (MS) untargeted metabolomics and lipidomics are predicated on the evolution of more confident qualitative (and eventually quantitative) results from research laboratories. RMs are thus critical QC tools to be able to assure standardization, comparability, repeatability and reproducibility for untargeted data analysis, interpretation, to compare data within and across studies and across multiple laboratories. Standard operating procedures (SOPs) that promote, describe and exemplify the use of RMs will also improve QC for the metabolomics and lipidomics communities. CONCLUSIONS: The application of RMs described in this review may significantly improve data quality to support metabolomics and lipidomics research. The continued development and deployment of new RMs, together with interlaboratory studies and educational outreach and training, will further promote sound QA practices in the community.


Subject(s)
Lipidomics , Metabolomics , Mass Spectrometry/methods , Metabolomics/methods , Quality Control , Reproducibility of Results
7.
Environ Sci Technol ; 56(10): 6069-6077, 2022 05 17.
Article in English | MEDLINE | ID: mdl-34596397

ABSTRACT

One hundred and seventeen street sweeping samples were collected and analyzed for per- and polyfluoroalkyl substances (PFAS). Fifty-six samples were collected in one city (Gainesville, Florida) allowing for an in-depth city-wide characterization. Street sweepings from five other urban areas, (Orlando, n = 15; Key West, n = 15; Pensacola, n = 12; Tampa, n = 13; and Daytona Beach, n = 6) were analyzed to provide a city-to-city comparison of PFAS. Within our analytical workflow, 37 PFAS were quantified across all samples, while the maximum number of PFAS quantified at one site was 26. Of those PFAS quantified in Gainesville, 60% were perfluoroalkyl acids (PFAAs) and 33% were precursors to PFAA. Among the PFAAs, short-chain perfluoroalkyl carboxylic acids (PFCAs) were the dominant class representing 26% of the total PFAS by concentration. In the comparison across different urban cities, the dominant compound by concentration and frequency of detection varied; however, perfluorooctanoic acid (PFOA) and linear perfluorooctanesulfonic acid (PFOSlin) were the two PFAS that were detected the most frequently. This study documents the first-time detection of hexadecafluorosebacic acid and perfluoro-3,6,9-trioxaundecane-1,11-dioic acid within environmental samples.


Subject(s)
Alkanesulfonic Acids , Fluorocarbons , Water Pollutants, Chemical , Carboxylic Acids , Cities , Florida , Fluorocarbons/analysis , Water Pollutants, Chemical/analysis
8.
Anal Bioanal Chem ; 414(3): 1201-1215, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34014358

ABSTRACT

Because of the pervasiveness, persistence, and toxicity of per- and polyfluoroalkyl substances (PFAS), there is growing concern over PFAS contamination, exposures, and health effects. The diversity of potential PFAS is astounding, with nearly 10,000 PFAS catalogued in databases to date (and growing). The ability to detect the thousands of known PFAS, and discover previously uncatalogued PFAS, is necessary to understand the scope of PFAS contamination and to identify appropriate remediation and regulatory solutions. Current non-targeted methods for PFAS analysis require manual curation and are time-consuming, prone to error, and not comprehensive. FluoroMatch Flow 2.0 is the first software to cover all steps of data processing for PFAS discovery in liquid chromatography-high-resolution tandem mass spectrometry samples. These steps include feature detection, feature blank filtering, exact mass matching to catalogued PFAS, mass defect filtering, homologous series detection, retention time pattern analysis, class-based MS/MS screening, fragment screening, and predicted MS/MS from SMILES structures. In addition, a comprehensive confidence level criterion is implemented to help users understand annotation certainty and integrate various layers of evidence to reduce overreporting. Applying the software to aqueous film forming foam analysis, we discovered over one thousand likely PFAS including previously unreported species. Furthermore, we were able to filter out 96% of features which were likely not PFAS. FluoroMatch Flow 2 increased coverage of likely PFAS by over tenfold compared to the previous release. This software will enable researchers to better characterize PFAS in the environment and in biological systems.


Subject(s)
Environmental Monitoring/methods , Environmental Pollutants/analysis , Fluorocarbons/analysis , Software , Tandem Mass Spectrometry/methods , Chromatography, Liquid/methods
9.
Environ Res ; 208: 112635, 2022 05 15.
Article in English | MEDLINE | ID: mdl-34990607

ABSTRACT

Per- and polyfluoroalkyl substances (PFAS) are a class of synthetic chemicals commonly found in everyday consumer products and are an emerging concern due to their ubiquitous presence in ecosystems around the world. PFAS exposure, which often occurs through contaminated water, has been linked to several adverse health effects in humans and wildlife. PFAS can be transported in surface water and storm runoff in the nearshore environment. Episodic events, such as hurricanes, are projected to increase in frequency and intensity, and a critical unanswered question is: how do episodic events influence the concentrations and distributions of emerging contaminants, such as PFAS, in coastal systems? Here, we investigated the impact of the 2019 Hurricane Dorian on the Florida coast to assess how natural disasters, such as hurricanes, influence the fate and transport of PFAS in surface water. Water samples collected throughout the St. Augustine Intracoastal waterway before, during, and after the storm were analyzed and compared with baseline concentrations. Ultra-high-pressure liquid chromatography coupled with tandem mass spectrometry (UHPLC-MS/MS) was used in the detection and quantification of 23 and 17 PFAS, respectively. Perfluorooctane sulfonic acid (PFOS) was the compound with the highest concentration across all sampling sites. Mean PFOS levels showed the highest increase of 177% during the hurricane and returned to baseline levels after two days. Our findings highlight the need for continued research focused on understanding how large storms near all coastlines can impact the transport of environmental pollutants, such as PFOS, that can have adverse effects on human and environmental health. Further monitoring of PFAS in coastal systems is necessary to identify potential PFAS hotspots, investigate the impacts of episodic events on PFAS transport, develop mitigation practices capable of reducing the risk of PFAS exposure.


Subject(s)
Alkanesulfonic Acids , Cyclonic Storms , Fluorocarbons , Water Pollutants, Chemical , Alkanesulfonic Acids/analysis , Ecosystem , Florida , Fluorocarbons/analysis , Humans , Tandem Mass Spectrometry , Water Pollutants, Chemical/analysis
10.
Anal Chem ; 93(49): 16369-16378, 2021 12 14.
Article in English | MEDLINE | ID: mdl-34859676

ABSTRACT

Modern biomarker and translational research as well as personalized health care studies rely heavily on powerful omics' technologies, including metabolomics and lipidomics. However, to translate metabolomics and lipidomics discoveries into a high-throughput clinical setting, standardization is of utmost importance. Here, we compared and benchmarked a quantitative lipidomics platform. The employed Lipidyzer platform is based on lipid class separation by means of differential mobility spectrometry with subsequent multiple reaction monitoring. Quantitation is achieved by the use of 54 deuterated internal standards and an automated informatics approach. We investigated the platform performance across nine laboratories using NIST SRM 1950-Metabolites in Frozen Human Plasma, and three NIST Candidate Reference Materials 8231-Frozen Human Plasma Suite for Metabolomics (high triglyceride, diabetic, and African-American plasma). In addition, we comparatively analyzed 59 plasma samples from individuals with familial hypercholesterolemia from a clinical cohort study. We provide evidence that the more practical methyl-tert-butyl ether extraction outperforms the classic Bligh and Dyer approach and compare our results with two previously published ring trials. In summary, we present standardized lipidomics protocols, allowing for the highly reproducible analysis of several hundred human plasma lipids, and present detailed molecular information for potentially disease relevant and ethnicity-related materials.


Subject(s)
Laboratories , Lipidomics , Cohort Studies , Humans , Reference Standards , Spectrum Analysis
11.
Ecotoxicol Environ Saf ; 219: 112311, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33993092

ABSTRACT

Given the opposing responses reported for bisphenol A (BPA) in terms of induction of obesogenic effects and impaired lipid metabolism, the increasing use of bisphenol F (BPF), and the relatively low information available regarding the effects of bisphenol A bis(3-chloro-2- hydroxypropyl) ether (BADGE·2HCl) in aquatic organisms, this work aims to use the zebrafish liver cell line (ZFL) as an alternative model to characterize the toxicity and the lipid metabolism disruptive potential of the selected compounds in fish. All three bisphenols increased intracellular levels of dihydroceramides and ether-triacylglycerides (ether-TGs), suggestive of inhibited cell growth. However, while BPA and BADGE·2HCl caused an increase of saturated and lower unsaturated TGs, BPF caused oxidative stress and the decrease of TGs containing polyunsaturated fatty acids (PUFAs). Analysis by qPCR highlighted the up-regulation of the lipogenic genes scd and elovl6 by BPA and BPF in line with an increase of lipids containing saturated and monounsaturated FA and a decrease of lipids containing PUFAs. This study shows that BPA, BPF and BADGE·2HCl target lipid homeostasis in ZFL cells through different mechanisms, and highlights the higher lipotoxicity of BADGE·2HCl compared to BPA and BPF.


Subject(s)
Benzhydryl Compounds/toxicity , Phenols/toxicity , Water Pollutants, Chemical/toxicity , Animals , Epoxy Compounds/analysis , Ether , Ethers , Hepatocytes , Lipidomics , Liver/chemistry , Zebrafish
12.
Anal Chem ; 92(16): 11186-11194, 2020 08 18.
Article in English | MEDLINE | ID: mdl-32806901

ABSTRACT

Thousands of per- and polyfluoroalkyl substances (PFAS) exist in the environment and pose a potential health hazard. Suspect and nontarget screening with liquid chromatography (LC)-high-resolution tandem mass spectrometry (HRMS/MS) can be used for comprehensive characterization of PFAS. To date, no automated open source PFAS data analysis software exists to mine these extensive data sets. We introduce FluoroMatch, which automates file conversion, chromatographic peak picking, blank feature filtering, PFAS annotation based on precursor and fragment masses, and annotation ranking. The software library currently contains ∼7 000 PFAS fragmentation patterns based on rules derived from standards and literature, and the software automates a process for users to add additional compounds. The use of intelligent data-acquisition methods (iterative exclusion) nearly doubled the number of annotations. The software application is demonstrated by characterizing PFAS in landfill leachate as well as in leachate foam generated to concentrate the compounds for remediation purposes. FluoroMatch had wide coverage, returning 27 PFAS annotations for landfill leachate samples, explaining 71% of the all-ion fragmentation (CF2)n related fragments. By improving the throughput and coverage of PFAS annotation, FluoroMatch will accelerate the discovery of PFAS posing significant human risk.


Subject(s)
Hydrocarbons, Fluorinated/analysis , Algorithms , Chromatography, Liquid/statistics & numerical data , Hydrocarbons, Fluorinated/chemistry , Small Molecule Libraries/chemistry , Software , Tandem Mass Spectrometry/statistics & numerical data , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/chemistry
13.
Metabolomics ; 16(5): 56, 2020 04 19.
Article in English | MEDLINE | ID: mdl-32307636

ABSTRACT

BACKGROUND: Understanding the interaction between organisms and the environment is important for predicting and mitigating the effects of global phenomena such as climate change, and the fate, transport, and health effects of anthropogenic pollutants. By understanding organism and ecosystem responses to environmental stressors at the molecular level, mechanisms of toxicity and adaptation can be determined. This information has important implications in human and environmental health, engineering biotechnologies, and understanding the interaction between anthropogenic induced changes and the biosphere. One class of molecules with unique promise for environmental science are lipids; lipids are highly abundant and ubiquitous across nearly all organisms, and lipid profiles often change drastically in response to external stimuli. These changes allow organisms to maintain essential biological functions, for example, membrane fluidity, as they adapt to a changing climate and chemical environment. Lipidomics can help scientists understand the historical and present biofeedback processes in climate change and the biogeochemical processes affecting nutrient cycles. Lipids can also be used to understand how ecosystems respond to historical environmental changes with lipid signatures dating back to hundreds of millions of years, which can help predict similar changes in the future. In addition, lipids are direct targets of environmental stressors, for example, lipids are easily prone to oxidative damage, which occurs during exposure to most toxins. AIM OF REVIEW: This is the first review to summarize the current efforts to comprehensively measure lipids to better understand the interaction between organisms and their environment. This review focuses on lipidomic applications in the arenas of environmental toxicology and exposure assessment, xenobiotic exposures and health (e.g., obesity), global climate change, and nutrient cycles. Moreover, this review summarizes the use of and the potential for lipidomics in engineering biotechnologies for the remediation of persistent compounds and biofuel production. KEY SCIENTIFIC CONCEPT: With the preservation of certain lipids across millions of years and our ever-increasing understanding of their diverse biological roles, lipidomic-based approaches provide a unique utility to increase our understanding of the contemporary and historical interactions between organisms, ecosystems, and anthropogenically-induced environmental changes.


Subject(s)
Climate Change , Ecosystem , Lipidomics , Lipids , Humans
14.
Metabolomics ; 16(10): 113, 2020 10 12.
Article in English | MEDLINE | ID: mdl-33044703

ABSTRACT

INTRODUCTION: The metabolomics quality assurance and quality control consortium (mQACC) evolved from the recognized need for a community-wide consensus on improving and systematizing quality assurance (QA) and quality control (QC) practices for untargeted metabolomics. OBJECTIVES: In this work, we sought to identify and share the common and divergent QA and QC practices amongst mQACC members and collaborators who use liquid chromatography-mass spectrometry (LC-MS) in untargeted metabolomics. METHODS: All authors voluntarily participated in this collaborative research project by providing the details of and insights into the QA and QC practices used in their laboratories. This sharing was enabled via a six-page questionnaire composed of over 120 questions and comment fields which was developed as part of this work and has proved the basis for ongoing mQACC outreach. RESULTS: For QA, many laboratories reported documenting maintenance, calibration and tuning (82%); having established data storage and archival processes (71%); depositing data in public repositories (55%); having standard operating procedures (SOPs) in place for all laboratory processes (68%) and training staff on laboratory processes (55%). For QC, universal practices included using system suitability procedures (100%) and using a robust system of identification (Metabolomics Standards Initiative level 1 identification standards) for at least some of the detected compounds. Most laboratories used QC samples (>86%); used internal standards (91%); used a designated analytical acquisition template with randomized experimental samples (91%); and manually reviewed peak integration following data acquisition (86%). A minority of laboratories included technical replicates of experimental samples in their workflows (36%). CONCLUSIONS: Although the 23 contributors were researchers with diverse and international backgrounds from academia, industry and government, they are not necessarily representative of the worldwide pool of practitioners due to the recruitment method for participants and its voluntary nature. However, both questionnaire and the findings presented here have already informed and led other data gathering efforts by mQACC at conferences and other outreach activities and will continue to evolve in order to guide discussions for recommendations of best practices within the community and to establish internationally agreed upon reporting standards. We very much welcome further feedback from readers of this article.


Subject(s)
Chromatography, Liquid/methods , Mass Spectrometry/methods , Metabolomics/methods , Humans , Laboratories , Quality Control , Research Design , Surveys and Questionnaires
15.
Environ Sci Technol ; 54(19): 12550-12559, 2020 10 06.
Article in English | MEDLINE | ID: mdl-32865409

ABSTRACT

Large volumes of per- and polyfluoroalkyl substances (PFAS)-contaminated wastewaters, such as municipal solid waste landfill leachates, pose a challenge for PFAS treatment technologies in practice today. In this study, the surfactant properties of PFAS were exploited to concentrate the compounds in foam produced via the bubble aeration of landfill leachate. The effectiveness of the foaming technique for concentrating PFAS varied by compound, with a mean removal percentage (the percent difference between PFAS in leachate before and after foam removal) of 69% and a median removal percentage of 92% among the 10 replicate foaming experiments. This technique appears to be similarly effective at sequestering sulfonates and carboxylate PFAS compounds and is less effective at concentrating the smallest and largest PFAS molecules. The results of this study suggest that for the pretreatment or preconcentration of landfill leachates, foaming to sequester PFAS may provide a practical approach that could be strategically coupled to high-energy PFAS-destructive treatment technologies. The process described herein is simple and could feasibly be applied at a relatively low cost at most landfills, where leachate aeration is already commonplace.


Subject(s)
Fluorocarbons , Refuse Disposal , Water Pollutants, Chemical , Fluorocarbons/analysis , Solid Waste/analysis , Waste Disposal Facilities , Water Pollutants, Chemical/analysis
16.
Anal Bioanal Chem ; 412(27): 7373-7380, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32851459

ABSTRACT

The unavailability of appropriate quality assurance/quality control materials in many lipidomics applications poses a significant challenge for lipidomics research. It is recommended that samples with certified values and/or consensus estimates, such as NIST SRM 1950-Metabolites in Frozen Human Plasma, be implemented in routine analyses to enable community-wide comparisons of lipidomics results and analytical workflows. Herein, we applied a nontargeted lipidomics method for the analysis of a new human plasma reference material suite developed by NIST (hypertriglyceridemic, diabetic, and African-American plasma pools), in addition to SRM 1950. We identified specific lipidomics fingerprints associated with each sample type, including lauric acid-containing lipids and elevated triacylglycerol levels in hypertriglyceridemic plasma, palmitoleic acid-containing lipids in diabetic plasma, and oxidized fatty acid-containing phospholipids in African-American plasma. This work highlights the importance of developing and profiling application-specific reference materials, while establishing reference data that may be used for system suitability and/or quality control metrics.Graphical abstract.


Subject(s)
Diabetes Mellitus/blood , Hyperglycemia/blood , Lipidomics/methods , Lipids/blood , Black or African American , Chromatography, High Pressure Liquid/methods , Chromatography, High Pressure Liquid/standards , Humans , Lipidomics/standards , Lipids/analysis , Quality Control , Reference Standards , Tandem Mass Spectrometry/methods , Tandem Mass Spectrometry/standards , Triglycerides/analysis , Triglycerides/blood
17.
J Fish Dis ; 43(10): 1185-1199, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32740987

ABSTRACT

Pansteatitis is the leading cause for the decline in Nile crocodile populations and the sporadic mortality of fish in the Olifants River System, South Africa. To determine the prevalence of this disease in lentic systems, Mozambique tilapia, Oreochromis mossambicus, were collected from Lake Loskop, Lake Flag Boshielo, Phalaborwa Barrage and Lake Luphephe-Nwanedi. The former three impoundments are located within the main stem of the Olifants River, while the latter, which is geographically isolated and situated in the Limpopo River System, served as a reference site. Mesenteric adipose, liver, serosa of the swim bladder, gill and the skeletal muscle of fish sampled were examined for gross and microscopic evidence of pansteatitis. Microscopically observed changes were used to statistically compare pansteatitis prevalence between samples and sites. Based on histopathological evaluation, the adipose tissue in the liver, swim bladder serosa and coelom from severely debilitated individuals showed the most significant pathological changes. Lesions indicative of steatitis were observed in fish collected from Lake Loskop (75%), Lake Flag Boshielo (22%) and Lake Luphephe-Nwanedi (15%). Further investigation is warranted to understand the pervasiveness and mechanisms driving pathological changes of pansteatitis at Lake Flag Boshielo, Phalaborwa Barrage and Lake Luphephe-Nwanedi.


Subject(s)
Fish Diseases/pathology , Steatitis/pathology , Tilapia , Adipose Tissue/pathology , Air Sacs/pathology , Animals , Lakes , Liver/pathology , Rivers , South Africa
18.
Ecotoxicol Environ Saf ; 189: 110057, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31835046

ABSTRACT

American alligators are exposed to mercury (Hg) throughout their natural range and may maternally transfer Hg into their eggs. Wildlife species are highly sensitive to Hg toxicity during embryonic development and neonatal life, and information on Hg transfer into eggs is critical when attempting to understand the effects of Hg exposure on developing oviparous organisms. To examine Hg transfer in alligators, the objectives of the present study were to 1) determine Hg concentrations in yolk (embryonic and neonatal food source) from wild alligator eggs collected from three locations - Yawkey Wildlife Center SC (YWC), Lake Apopka FL (LA), and Lake Woodruff FL (LW); 2) examine the relationship between THg concentrations in wild alligator nest material and egg yolk at Merritt Island National Wildlife Refuge, FL; 3) examine the Hg concentrations in wild maternal female alligators (blood) and the THg in corresponding egg yolks and embryos across three nesting seasons at a single location (YWC), and evaluate the relationship between nesting female THg concentrations (blood) and their estimated age and number of nesting years (YWC); and 4) assess the transfer of biologically-relevant Hg concentrations (based on Hg measured in maternal female blood) into embryos using an egg-dosing experiment. Mean total Hg (THg) concentrations observed at each site were 26.3 ng/g ± 11.0 ng/g (YWC), 8.8 ng/g ± 5.1 ng/g (LA), and 22.6 ng/g ± 6.3 ng/g (LW). No relationship was observed between THg in alligator nest material and corresponding yolk samples, nor between THg in maternal alligator blood and estimated age and number of nesting years of these animals. However, significant positive relationships were observed between THg in blood of nesting female alligators and THg in their corresponding egg yolk. We observed that 12.8% of the maternal blood THg is found in the corresponding egg yolk, and a highly significant correlation was observed between the two sample types (r = 0.66; p < 0.0001). The egg dosing experiment revealed that Hg did not transfer through the eggshell at developmental stage 19. Overall, this study provides new information regarding Hg transfer in American alligators which can improve biomonitoring efforts and may inform ecotoxicological investigations and population management programs in areas of high Hg contamination.


Subject(s)
Alligators and Crocodiles/blood , Environmental Monitoring/methods , Maternal Exposure/adverse effects , Mercury/analysis , Ovum/metabolism , Water Pollutants, Chemical/analysis , Animals , Female , Florida , Lakes/chemistry , Male , Mercury/blood , South Carolina , Water Pollutants, Chemical/blood
19.
Aquaculture ; 5292020.
Article in English | MEDLINE | ID: mdl-33363294

ABSTRACT

A 9-week feeding trial was conducted with juvenile red drum, Sciaenops ocellatus, to evaluate the use of soy oil as a fish oil replacement. Three primary protein sources (fishmeal - FM, soybean meal - SBM, and soy protein concentrate - SPC) were utilized with 100% fish oil (FM, SBM, SPC), 75% fish oil (SBM, SPC), or 50% fish oil (FM, SBM, SPC) as the lipid source. Traditional growth and performance metrics (specific growth rate, feed consumption, feed conversion ratio) were tracked and tissue samples (liver, muscle, plasma, adipose, and brain) were collected for gas chromatography-based fatty acid profiling. Ten lipid metabolism related genes were analyzed for potential expression differences between dietary treatments in liver and muscle tissues and whole body and fillet tissues were sampled for proximate composition analyses. Forty- four fatty acids were measured by gas chromatography-flame ionization detector (GC-FID) and evaluated with principle component analysis and ANOVA to understand the dietary influence on lipid metabolism and health. Significant differences in growth rate were observed with the SBM 50% fish oil diet outperforming the FM 100% fish oil reference diet. All other soy protein-based diets performed statistically equivalent to both FM reference diets (100% and 50% fish oil) in regard to growth, however all soy protein-based formulations had significantly lower feed conversion ratios than the fishmeal-based references (p < .001). Gene expression differences were not significant in most cases, however often trended similarly as the observed performance. Fatty acid profiles differed as a function of oil source, with no apparent influence by protein source, with C18:2n-6 (linoleic acid) being-the primary differentiator. Overall, the six soy protein, fishmeal-free formulations performed equivalently or better than the fishmeal references with up to 50% of fish oil replaced by soybean oil.

20.
BMC Bioinformatics ; 20(1): 217, 2019 Apr 29.
Article in English | MEDLINE | ID: mdl-31035918

ABSTRACT

BACKGROUND: Lipidomics, the comprehensive measurement of lipids within a biological system or substrate, is an emerging field with significant potential for improving clinical diagnosis and our understanding of health and disease. While lipids diverse biological roles contribute to their clinical utility, the diversity of lipid structure and concentrations prove to make lipidomics analytically challenging. Without internal standards to match each lipid species, researchers often apply individual internal standards to a broad range of related lipids. To aid in standardizing and automating this relative quantitation process, we developed LipidMatch Normalizer (LMN) http://secim.ufl.edu/secim-tools/ which can be used in most open source lipidomics workflows. RESULTS: LMN uses a ranking system (1-3) to assign lipid standards to target analytes. A ranking of 1 signifies that both the lipid class and adduct of the internal standard and target analyte match, while a ranking of 3 signifies that neither the adduct or class match. If multiple internal standards are provided for a lipid class, standards with the closest retention time to the target analyte will be chosen. The user can also signify which lipid classes an internal standard represents, for example indicating that ether-linked phosphatidylcholine can be semi-quantified using phosphatidylcholine. LMN is designed to work with any lipid identification software and feature finding software, and in this study is used to quantify lipids in NIST SRM 1950 human plasma annotated using LipidMatch and MZmine. CONCLUSIONS: LMN can be integrated into an open source workflow which completes all data processing steps including feature finding, annotation, and quantification for LC-MS/MS studies. Using LMN we determined that in certain cases the use of peak height versus peak area, certain adducts, and negative versus positive polarity data can have major effects on the final concentration obtained.


Subject(s)
Lipids/analysis , Software , Algorithms , Chromatography, High Pressure Liquid , Humans , Lipids/chemistry , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL