Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Int J Mol Sci ; 24(3)2023 Jan 26.
Article in English | MEDLINE | ID: mdl-36768733

ABSTRACT

Several molecular subtypes of cancer are highly dependent on splicing for cell survival. There is a general interest in the therapeutic targeting of splicing by small molecules. E7107, a first-in-class spliceosome inhibitor, showed strong growth inhibitory activities against a large variety of human cancer xenografts. Chronic lymphocytic leukaemia (CLL) is a clinically heterogeneous hematologic malignancy, with approximately 90% of cases being TP53 wild-type at diagnosis. An increasing number of studies are evaluating alternative targeted agents in CLL, including MDM2-p53 binding antagonists. In this study, we report the effect of splicing modulation on key proteins in the p53 signalling pathway, an important cell death pathway in B cells. Splicing modulation by E7107 treatment reduced full-length MDM2 production due to exon skipping, generating a consequent reciprocal p53 increase in TP53WT cells. It was especially noteworthy that a novel p21WAF1 isoform with compromised cyclin-dependent kinase inhibitory activity was produced due to intron retention. E7107 synergized with the MDM2 inhibitor RG7388, via dual MDM2 inhibition; by E7107 at the transcript level and by RG7388 at the protein level, producing greater p53 stabilisation and apoptosis. This study provides evidence for a synergistic MDM2 and spliceosome inhibitor combination as a novel approach to treat CLL and potentially other haematological malignancies.


Subject(s)
Antineoplastic Agents , B-Lymphocytes , Leukemia, Lymphocytic, Chronic, B-Cell , Humans , Antineoplastic Agents/pharmacology , Apoptosis/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Protein Isoforms/metabolism , Proto-Oncogene Proteins c-mdm2/metabolism , Pyrrolidines/pharmacology , Tumor Suppressor Protein p53/metabolism , B-Lymphocytes/metabolism
2.
Int J Mol Sci ; 24(14)2023 Jul 12.
Article in English | MEDLINE | ID: mdl-37511096

ABSTRACT

Chronic lymphocytic leukemia (CLL) is a genetically and clinically heterogeneous malignancy affecting older individuals. There are a number of current treatment options for CLL, including monoclonal antibodies, targeted drugs, chemotherapy, and different combinations of these. However, for those patients who are intrinsically treatment resistant, or relapse following initial responses, novel targeted therapies are still needed. Targeting the mouse double-minute-2 human homolog (MDM2), a primary negative regulator of p53, is an appealing therapeutic strategy for non-genotoxic reactivation of p53, since the TP53 gene is in its wild-type state at diagnosis in approximately 90% of patients. Mutated SF3B1 and TP53 are both associated with more aggressive disease, resistance to therapies and poorer overall survival for CLL. In this study, we performed a screen for SF3B1 and TP53 mutations and tested RG7388 (idasanutlin), a second-generation MDM2 inhibitor, in a cohort of CLL primary patient samples. SF3B1 mutations were detected in 24 of 195 cases (12.3%) and found associated with poor overall survival (hazard ratio [HR] 2.12, p = 0.032) and high CD38 expression (median CD38 (%) 32 vs. 5; p = 0.0087). The novel striking finding of this study was an independent link between SF3B1 mutational status and poor response to RG7388. Overall, SF3B1 mutations in CLL patient samples were associated with resistance to treatment with RG7388 ex vivo, and patients with the wild type for both SF3B1 and TP53 are more likely to benefit from treatment with MDM2 inhibitors.


Subject(s)
Drug Resistance, Neoplasm , Leukemia, Lymphocytic, Chronic, B-Cell , Proto-Oncogene Proteins c-mdm2 , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/metabolism , Mutation , Phosphoproteins/metabolism , Proto-Oncogene Proteins c-mdm2/antagonists & inhibitors , RNA Splicing Factors/genetics , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Drug Resistance, Neoplasm/genetics
3.
Genes Chromosomes Cancer ; 61(12): 747-753, 2022 12.
Article in English | MEDLINE | ID: mdl-36029175

ABSTRACT

ALK is the most commonly mutated oncogene in neuroblastoma with increased mutation frequency reported at relapse. Here we report the loss of an ALK mutation in two patients at relapse and a paired neuroblastoma cell line at relapse. ALK detection methods including Sanger sequencing, targeted next-generation sequencing and a new ALK Agena MassARRAY technique were used to detect common hotspot ALK variants in tumors at diagnosis and relapse from two high-risk neuroblastoma patients. Copy number analysis including single nucleotide polymorphism array and array comparative genomic hybridization confirmed adequate tumor cell content in DNA used for mutation testing. Case 1 presented with an ALK F1174L mutation at diagnosis with a variant allele frequency (VAF) ranging between 23.5% and 28.5%, but the mutation was undetectable at relapse. Case 2 presented with an ALK R1257Q mutation at diagnosis (VAF = 39%-47.4%) which decreased to <0.01% at relapse. Segmental chromosomal aberrations were maintained between diagnosis and relapse confirming sufficient tumor cell content for mutation detection. The diagnostic SKNBE1n cell line harbors an ALK F1174S mutation, which was lost in the relapsed SKNBE2c cell line. To our knowledge, these are the first reported cases of loss of ALK mutations at relapse in neuroblastoma in the absence of ALK inhibitor therapy, reflecting intra-tumoral spatial and temporal heterogeneity. As ALK inhibitors are increasingly used in the treatment of refractory/relapsed neuroblastoma, our study highlights the importance of confirming whether an ALK mutation detected at diagnosis is still present in clones leading to relapse.


Subject(s)
Anaplastic Lymphoma Kinase , Neuroblastoma , Receptor Protein-Tyrosine Kinases , Anaplastic Lymphoma Kinase/genetics , Comparative Genomic Hybridization , Humans , Mutation , Neoplasm Recurrence, Local/genetics , Neuroblastoma/pathology , Protein Kinase Inhibitors , Receptor Protein-Tyrosine Kinases/genetics
4.
Br J Cancer ; 124(2): 474-483, 2021 01.
Article in English | MEDLINE | ID: mdl-33082556

ABSTRACT

BACKGROUND: Chronic lymphocytic leukaemia (CLL) patients display a highly variable clinical course, with progressive acquisition of drug resistance. We sought to identify aberrant epigenetic traits that are enriched following exposure to treatment that could impact patient response to therapy. METHODS: Epigenome-wide analysis of DNA methylation was performed for 20 patients at two timepoints during treatment. The prognostic significance of differentially methylated regions (DMRs) was assessed in independent cohorts of 139 and 163 patients. Their functional role in drug sensitivity was assessed in vitro. RESULTS: We identified 490 DMRs following exposure to therapy, of which 31 were CLL-specific and independent of changes occurring in normal B-cell development. Seventeen DMR-associated genes were identified as differentially expressed following treatment in an independent cohort. Methylation of the HOXA4, MAFB and SLCO3A1 DMRs was associated with post-treatment patient survival, with HOXA4 displaying the strongest association. Re-expression of HOXA4 in cell lines and primary CLL cells significantly increased apoptosis in response to treatment with fludarabine, ibrutinib and idelalisib. CONCLUSION: Our study demonstrates enrichment for multiple CLL-specific epigenetic traits in response to chemotherapy that predict patient outcomes, and particularly implicate epigenetic silencing of HOXA4 in reducing the sensitivity of CLL cells to therapy.


Subject(s)
Drug Resistance, Neoplasm/genetics , Homeodomain Proteins/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Neoplasm Recurrence, Local/genetics , Transcription Factors/genetics , DNA Methylation/genetics , Epigenomics , Female , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Leukemia, Lymphocytic, Chronic, B-Cell/mortality , Male
5.
Neuropathol Appl Neurobiol ; 47(6): 736-747, 2021 10.
Article in English | MEDLINE | ID: mdl-33826763

ABSTRACT

AIMS: Application of advanced molecular pathology in rare tumours is hindered by low sample numbers, access to specialised expertise/technologies and tissue/assay QC and rapid reporting requirements. We assessed the feasibility of co-ordinated real-time centralised pathology review (CPR), encompassing molecular diagnostics and contemporary genomics (RNA-seq/DNA methylation-array). METHODS: This nationwide trial in medulloblastoma (<80 UK diagnoses/year) introduced a national reference centre (NRC) and assessed its performance and reporting to World Health Organisation standards. Paired frozen/formalin-fixed, paraffin-embedded tumour material were co-submitted from 135 patients (16 referral centres). RESULTS: Complete CPR diagnostics were successful for 88% (120/135). Inadequate sampling was the most common cause of failure; biomaterials were typically suitable for methylation-array (129/135, 94%), but frozen tissues commonly fell below RNA-seq QC requirements (53/135, 39%). Late reporting was most often due to delayed submission. CPR assigned or altered histological variant (vs local diagnosis) for 40/135 tumours (30%). Benchmarking/QC of specific biomarker assays impacted test results; fluorescent in-situ hybridisation most accurately identified high-risk MYC/MYCN amplification (20/135, 15%), while combined methods (CTNNB1/chr6 status, methylation-array subgrouping) best defined favourable-risk WNT tumours (14/135; 10%). Engagement of a specialist pathologist panel was essential for consensus assessment of histological variants and immunohistochemistry. Overall, CPR altered clinical risk-status for 29% of patients. CONCLUSION: National real-time CPR is feasible, delivering robust diagnostics to WHO criteria and assignment of clinical risk-status, significantly altering clinical management. Recommendations and experience from our study are applicable to advanced molecular diagnostics systems, both local and centralised, across rare tumour types, enabling their application in biomarker-driven routine diagnostics and clinical/research studies.


Subject(s)
Biomarkers, Tumor/genetics , Cerebellar Neoplasms/pathology , Genetic Predisposition to Disease/genetics , Medulloblastoma/pathology , Pathology, Molecular , Adolescent , Cerebellar Neoplasms/genetics , Child , Child, Preschool , Female , Genomics/methods , Humans , Male , Medulloblastoma/genetics , Pathology, Molecular/methods , Exome Sequencing/methods
6.
Nature ; 508(7494): 98-102, 2014 Apr 03.
Article in English | MEDLINE | ID: mdl-24670643

ABSTRACT

Changes in gene dosage are a major driver of cancer, known to be caused by a finite, but increasingly well annotated, repertoire of mutational mechanisms. This can potentially generate correlated copy-number alterations across hundreds of linked genes, as exemplified by the 2% of childhood acute lymphoblastic leukaemia (ALL) with recurrent amplification of megabase regions of chromosome 21 (iAMP21). We used genomic, cytogenetic and transcriptional analysis, coupled with novel bioinformatic approaches, to reconstruct the evolution of iAMP21 ALL. Here we show that individuals born with the rare constitutional Robertsonian translocation between chromosomes 15 and 21, rob(15;21)(q10;q10)c, have approximately 2,700-fold increased risk of developing iAMP21 ALL compared to the general population. In such cases, amplification is initiated by a chromothripsis event involving both sister chromatids of the Robertsonian chromosome, a novel mechanism for cancer predisposition. In sporadic iAMP21, breakage-fusion-bridge cycles are typically the initiating event, often followed by chromothripsis. In both sporadic and rob(15;21)c-associated iAMP21, the final stages frequently involve duplications of the entire abnormal chromosome. The end-product is a derivative of chromosome 21 or the rob(15;21)c chromosome with gene dosage optimized for leukaemic potential, showing constrained copy-number levels over multiple linked genes. Thus, dicentric chromosomes may be an important precipitant of chromothripsis, as we show rob(15;21)c to be constitutionally dicentric and breakage-fusion-bridge cycles generate dicentric chromosomes somatically. Furthermore, our data illustrate that several cancer-specific mutational processes, applied sequentially, can coordinate to fashion copy-number profiles over large genomic scales, incrementally refining the fitness benefits of aggregated gene dosage changes.


Subject(s)
Chromosome Aberrations , Chromosomes, Human, Pair 21/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Chromatids/genetics , Chromosome Breakage , Chromosomes, Human, Pair 15/genetics , DNA Copy Number Variations/genetics , Humans , Recombination, Genetic/genetics , Translocation, Genetic/genetics
7.
Haematologica ; 104(12): 2429-2442, 2019 12.
Article in English | MEDLINE | ID: mdl-31004033

ABSTRACT

Chronic lymphocytic leukemia (CLL) is a clinically heterogeneous hematologic malignancy. In approximately 90% of cases the TP53 gene is in its wildtype state at diagnosis of this malignancy. As mouse double-minute-2 homolog (MDM2) is a primary repressor of p53, targeting this protein is an attractive therapeutic approach for non-genotoxic reactivation of p53. Since the discovery of the first MDM2 inhibitor, Nutlin-3a, newer potent and bioavailable compounds have been developed. In this study we tested the second-generation MDM2 inhibitor, RG7388, in patient-derived CLL cells and normal cells, examining its effect on the induction of p53-transcriptional targets. RG7388 potently decreased viability in p53-functional CLL cells, whereas p53-non-functional samples were more resistant to the drug. RG7388 induced a pro-apoptotic gene expression signature with upregulation of p53-target genes involved in the intrinsic (PUMA, BAX) and extrinsic (TNFRSF10B, FAS) pathways of apoptosis, as well as MDM2 Only a slight induction of CDKN1A was observed and upregulation of pro-apoptotic genes dominated, indicating that CLL cells are primed for p53-dependent apoptosis. Consequently, RG7388 led to a concentration-dependent increase in caspase-3/7 activity and cleaved poly (ADP-ribose) polymerase. Importantly, we observed a preferential pro-apoptotic signature in CLL cells but not in normal blood and bone marrow cells, including CD34+ hematopoietic cells. These data support the further evaluation of MDM2 inhibitors as a novel additional treatment option for patients with p53-functional CLL.


Subject(s)
Apoptosis , Biomarkers, Tumor/metabolism , Gene Expression Regulation, Neoplastic/drug effects , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology , Proto-Oncogene Proteins c-mdm2/antagonists & inhibitors , Pyrrolidines/pharmacology , Tumor Suppressor Protein p53/metabolism , para-Aminobenzoates/pharmacology , Biomarkers, Tumor/genetics , Cell Cycle , Gene Expression Profiling , Humans , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism , Leukocytes, Mononuclear , Mutation , Proto-Oncogene Proteins c-mdm2/genetics , Proto-Oncogene Proteins c-mdm2/metabolism , Tumor Cells, Cultured , Tumor Suppressor Protein p53/genetics
8.
Br J Cancer ; 118(11): 1502-1512, 2018 05.
Article in English | MEDLINE | ID: mdl-29755120

ABSTRACT

BACKGROUND: In neuroblastoma (NB), the most powerful prognostic marker, the MYCN amplification (MNA), occasionally shows intratumoural heterogeneity (ITH), i.e. coexistence of MYCN-amplified and non-MYCN-amplified tumour cell clones, called heterogeneous MNA (hetMNA). Prognostication and therapy allocation are still unsolved issues. METHODS: The SIOPEN Biology group analysed 99 hetMNA NBs focussing on the prognostic significance of MYCN ITH. RESULTS: Patients <18 months (18 m) showed a better outcome in all stages as compared to older patients (5-year OS in localised stages: <18 m: 0.95 ± 0.04, >18 m: 0.67 ± 0.14, p = 0.011; metastatic: <18 m: 0.76 ± 0.15, >18 m: 0.28 ± 0.09, p = 0.084). The genomic 'background', but not MNA clone sizes, correlated significantly with relapse frequency and OS. No relapses occurred in cases of only numerical chromosomal aberrations. Infiltrated bone marrows and relapse tumour cells mostly displayed no MNA. However, one stage 4s tumour with segmental chromosomal aberrations showed a homogeneous MNA in the relapse. CONCLUSIONS: This study provides a rationale for the necessary distinction between heterogeneous and homogeneous MNA. HetMNA tumours have to be evaluated individually, taking age, stage and, most importantly, genomic background into account to avoid unnecessary upgrading of risk/overtreatment, especially in infants, as well as in order to identify tumours prone to developing homogeneous MNA.


Subject(s)
Gene Amplification , N-Myc Proto-Oncogene Protein/genetics , Neuroblastoma/genetics , Age Factors , Europe , Female , Genetic Heterogeneity , Humans , Infant , Infant, Newborn , Male , Prognosis , Survival Analysis
9.
Br J Cancer ; 115(9): 1048-1057, 2016 Oct 25.
Article in English | MEDLINE | ID: mdl-27701387

ABSTRACT

BACKGROUND: Despite therapeutic advances, survival following relapse for neuroblastoma patients remains poor. We investigated clinical and biological factors associated with length of progression-free and overall survival following relapse in UK neuroblastoma patients. METHODS: All cases of relapsed neuroblastoma, diagnosed during 1990-2010, were identified from four Paediatric Oncology principal treatment centres. Kaplan-Meier and Cox regression analyses were used to calculate post-relapse overall survival (PROS), post-relapse progression-free survival (PRPFS) between relapse and further progression, and to investigate influencing factors. RESULTS: One hundred eighty-nine cases were identified from case notes, 159 (84.0%) high risk and 17 (9.0%), unresectable, MYCN non-amplified (non-MNA) intermediate risk (IR). For high-risk patients diagnosed >2000, median PROS was 8.4 months (interquartile range (IQR)=3.0-17.4) and median PRPFS was 4.7 months (IQR=2.1-7.1). For IR, unresectable non-MNA patients, median PROS was 11.8 months (IQR 9.0-51.6) and 5-year PROS was 24% (95% CI 7-45%). MYCN amplified (MNA) disease and bone marrow metastases at diagnosis were independently associated with worse PROS for high-risk cases. Eighty percent of high-risk relapses occurred within 2 years of diagnosis compared with 50% of unresectable non-MNA IR disease. CONCLUSIONS: Patients with relapsed HR neuroblastomas should be treatment stratified according to MYCN status and PRPFS should be the primary endpoint in early phase clinical trials. The failure to salvage the majority of IR neuroblastoma is concerning, supporting investigation of intensification of upfront treatment regimens in this group to determine whether their use would diminish likelihood of relapse.


Subject(s)
Neuroblastoma/mortality , Neuroblastoma/pathology , Adolescent , Child , Child, Preschool , Disease Progression , Disease-Free Survival , Female , Humans , Infant , Male , Neoplasm Recurrence, Local/diagnosis , Neoplasm Recurrence, Local/mortality , Neuroblastoma/diagnosis , Neuroblastoma/therapy , Prognosis , Recurrence , Risk Factors
10.
Pediatr Blood Cancer ; 62(6): 1055-7, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25382309

ABSTRACT

Hypereosinophilia is a rare phenomenon associated with childhood malignancy, predominantly acute lymphoblastic leukaemia. Causation is unclear and likely to have multiple mechanisms. We report a six year old boy presenting with hypereosinophilia and associated Loeffler endocarditis. Three months following his initial hypereosinophilia he developed cutaneous B-lymphoblastic lymphoma. Re-analysis of apparently uninvolved bone marrow, taken at initial presentation, revealed a single, previously unidentified, t(5;14)(q31;q32) positive cell. Using fluorescent in situ hybridisation, we demonstrate IL3/IgH@ fusion in cutaneous lymphoma cells. Our case confirms the association of hypereosinophilia and B-lymphoblastic lymphoma and strengthens the association between IL3 hypersecretion and hypereosinophilia.


Subject(s)
Endocarditis/etiology , Hypereosinophilic Syndrome/etiology , Immunoglobulin Heavy Chains/genetics , Interleukin-3/genetics , Lymphoma, B-Cell/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Skin Neoplasms/genetics , Translocation, Genetic , Acute Disease , Child , Chromosomes, Human, Pair 14 , Chromosomes, Human, Pair 5 , Humans , Lymphoma, B-Cell/complications , Male , Precursor Cell Lymphoblastic Leukemia-Lymphoma/complications
12.
Blood ; 115(2): 206-14, 2010 Jan 14.
Article in English | MEDLINE | ID: mdl-19897583

ABSTRACT

Chromosomal abnormalities are increasingly used to risk stratify adults with acute lymphoblastic leukemia. Published data describing the age-specific incidence of chromosomal abnormalities and their prognostic relevance are largely derived from clinical trials. Trials frequently have age restrictions and low recruitment rates. Thus we investigated these factors in a population-based cohort of 349 patients diagnosed during the course of 19 years in the northern part of England. The incidence of most chromosomal abnormalities varied significantly with age. The incidence of t(9;22)(q34;q11) increased in each successive decade, up to 24% among 40- to 49-year-old subjects. Thereafter the incidence reached a plateau. t(4;11)(q21;q23) and t(1;19)(q23;p13) were a rare occurrence among patients older than 60 years of age. In contrast, the frequency of t(8;14)(q24;q32) and t(14;18)(q32;q21) increased with age. High hyperdiploidy occurred in 13% of patients younger than 20 years of age but in only 5% of older patients. The incidence of low hypodiploidy/near-triploidy and complex karyotype increased with age from 4% (15-29 years) to 16% (>or= 60 years). Overall survival varied significantly by age and cytogenetics. Older patients and those with t(9;22), t(4;11), low hypodiploidy/near-triploidy, or complex karyotype had a significantly inferior outcome. These population-based results demonstrate the cytogenetic heterogeneity of adult acute lymphoblastic leukemia. These data will inform the delivery of routine clinical services and the design of new age-focused clinical trials.


Subject(s)
Chromosomes, Human/metabolism , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/mortality , Translocation, Genetic , Adult , Age Factors , Aged , England/epidemiology , Female , Humans , Incidence , Male , Middle Aged , Ploidies , Precursor Cell Lymphoblastic Leukemia-Lymphoma/diagnosis , Precursor Cell Lymphoblastic Leukemia-Lymphoma/therapy , Prognosis , Survival Rate
14.
Blood ; 113(1): 100-7, 2009 Jan 01.
Article in English | MEDLINE | ID: mdl-18838613

ABSTRACT

Inactivation of the tumor suppressor gene, CDKN2A, can occur by deletion, methylation, or mutation. We assessed the principal mode of inactivation in childhood acute lymphoblastic leukemia (ALL) and frequency in biologically relevant subgroups. Mutation or methylation was rare, whereas genomic deletion occurred in 21% of B-cell precursor ALL and 50% of T-ALL patients. Single nucleotide polymorphism arrays revealed copy number neutral (CNN) loss of heterozygosity (LOH) in 8% of patients. Array-based comparative genomic hybridization demonstrated that the mean size of deletions was 14.8 Mb and biallelic deletions composed a large and small deletion (mean sizes, 23.3 Mb and 1.4 Mb). Among 86 patients, only 2 small deletions were below the resolution of detection by fluorescence in situ hybridization. Patients with high hyperdiploidy, ETV6-RUNX1, or 11q23/MLL rearrangements had low rates of deletion (11%, 15%, 13%), whereas patients with t(9;22), t(1;19), TLX3, or TLX1 rearrangements had higher frequencies (61%, 42%, 78%, and 89%). In conclusion, CDKN2A deletion is a significant secondary abnormality in childhood ALL strongly correlated with phenotype and genotype. The variation in the incidence of CDKN2A deletions by cytogenetic subgroup may explain its inconsistent association with outcome. CNN LOH without apparent CDKN2A inactivation suggests the presence of other relevant genes in this region.


Subject(s)
Gene Deletion , Gene Dosage , Gene Expression Regulation, Leukemic , Genes, p16 , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , Child , DNA Methylation , Female , Genomics , Human Growth Hormone , Humans , In Situ Hybridization, Fluorescence , Incidence , Loss of Heterozygosity , Male , Mutation , Phenotype , Polymorphism, Single Nucleotide , Precursor Cell Lymphoblastic Leukemia-Lymphoma/epidemiology
15.
Am J Med Genet A ; 155A(9): 2221-3, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21815249

ABSTRACT

Three individuals with chromosome 2q terminal deletions have been reported in the medical literature to have developed Wilms tumor. By looking at a UK national cohort, we aimed to ascertain the chance of an individual with a 2q terminal deletion developing a Wilms tumor. The objective was to clarify screening recommendations. All individuals over a 40-year period with chromosome 2q terminal deletions were ascertained from the Chromosome Abnormality Database. The names and dates of birth of these individuals were obtained from the Regional Cytogenetic Departments where the original chromosome analyses were performed. These data were collated and compared with the National Registry of Childhood Tumors. One hundred twenty-nine subjects were identified over a 40-year study period. Only a single individual in our national cohort was affected by Wilms tumor. This individual had an add(2)(q35) karyotype. We conclude that the incidence of Wilms tumor in the majority of individuals with a 2q terminal deletion is low, and is below the recommended threshold for surveillance for tumor development.


Subject(s)
Chromosome Deletion , Chromosomes, Human, Pair 2/genetics , Wilms Tumor/epidemiology , Wilms Tumor/genetics , Child, Preschool , Cohort Studies , Humans , Incidence , Karyotyping , Male , Registries , Retrospective Studies , Wilms Tumor/pathology
16.
Eur J Haematol ; 86(5): 361-71, 2011 May.
Article in English | MEDLINE | ID: mdl-21435002

ABSTRACT

Chromosomal rearrangements involving the ABL1 gene, leading to a BCR-ABL1 fusion gene, have been mainly associated with chronic myeloid leukemia and B-cell acute lymphoblastic leukemia (ALL). At present, six other genes have been shown to fuse to ABL1. The kinase domain of ABL1 is retained in all chimeric proteins that are also composed of the N-terminal part of the partner protein that often includes a coiled-coil or a helix-loop-helix domain. These latter domains allow oligomerization of the protein that is required for tyrosine kinase activation, cytoskeletal localization, and neoplastic transformation. Fusion genes that have a break in intron 1 or 2 (BCR-ABL1, ETV6-ABL1, ZMIZ1-ABL1, EML1-ABL1, and NUP214-ABL1) have transforming activity, although NUP214-ABL1 requires amplification to be efficient. The NUP214-ABL1 gene is the second most prevalent fusion gene involving ABL1 in malignant hemopathies, with a frequency of 5% in T-cell ALL. Both fusion genes (SFPQ-ABL1 and RCSD1-ABL1) characterized by a break in intron 4 of ABL1 are associated with B-cell ALL, as the chimeric proteins lacked the SH2 domain of ABL1. Screening for ABL1 chimeric genes could be performed in patients with ALL, more particularly in those with T-cell ALL because ABL1 modulates T-cell development and plays a role in cytoskeletal remodeling processes in T cells.


Subject(s)
Genes, abl , Hematologic Neoplasms/genetics , Oncogene Fusion , Cell Transformation, Neoplastic/genetics , Hematologic Neoplasms/chemistry , Humans , Intracellular Signaling Peptides and Proteins/genetics , Oncogene Proteins v-abl/antagonists & inhibitors , Oncogene Proteins v-abl/chemistry , Oncogene Proteins v-abl/genetics , Oncogene Proteins, Fusion/genetics , PTB-Associated Splicing Factor , Protein-Tyrosine Kinases/genetics , RNA-Binding Proteins/genetics , Transcription Factors/genetics
18.
J Clin Oncol ; 39(30): 3377-3390, 2021 10 20.
Article in English | MEDLINE | ID: mdl-34115544

ABSTRACT

PURPOSE: In neuroblastoma (NB), the ALK receptor tyrosine kinase can be constitutively activated through activating point mutations or genomic amplification. We studied ALK genetic alterations in high-risk (HR) patients on the HR-NBL1/SIOPEN trial to determine their frequency, correlation with clinical parameters, and prognostic impact. MATERIALS AND METHODS: Diagnostic tumor samples were available from 1,092 HR-NBL1/SIOPEN patients to determine ALK amplification status (n = 330), ALK mutational profile (n = 191), or both (n = 571). RESULTS: Genomic ALK amplification (ALKa) was detected in 4.5% of cases (41 out of 901), all except one with MYCN amplification (MNA). ALKa was associated with a significantly poorer overall survival (OS) (5-year OS: ALKa [n = 41] 28% [95% CI, 15 to 42]; no-ALKa [n = 860] 51% [95% CI, 47 to 54], [P < .001]), particularly in cases with metastatic disease. ALK mutations (ALKm) were detected at a clonal level (> 20% mutated allele fraction) in 10% of cases (76 out of 762) and at a subclonal level (mutated allele fraction 0.1%-20%) in 3.9% of patients (30 out of 762), with a strong correlation between the presence of ALKm and MNA (P < .001). Among 571 cases with known ALKa and ALKm status, a statistically significant difference in OS was observed between cases with ALKa or clonal ALKm versus subclonal ALKm or no ALK alterations (5-year OS: ALKa [n = 19], 26% [95% CI, 10 to 47], clonal ALKm [n = 65] 33% [95% CI, 21 to 44], subclonal ALKm (n = 22) 48% [95% CI, 26 to 67], and no alteration [n = 465], 51% [95% CI, 46 to 55], respectively; P = .001). Importantly, in a multivariate model, involvement of more than one metastatic compartment (hazard ratio [HR], 2.87; P < .001), ALKa (HR, 2.38; P = .004), and clonal ALKm (HR, 1.77; P = .001) were independent predictors of poor outcome. CONCLUSION: Genetic alterations of ALK (clonal mutations and amplifications) in HR-NB are independent predictors of poorer survival. These data provide a rationale for integration of ALK inhibitors in upfront treatment of HR-NB with ALK alterations.


Subject(s)
Anaplastic Lymphoma Kinase/genetics , Gene Amplification , Mutation Rate , Neuroblastoma/genetics , Child, Preschool , Clinical Trials, Phase III as Topic , Europe , Female , Follow-Up Studies , Humans , Infant , Male , N-Myc Proto-Oncogene Protein/genetics , Prognosis , Randomized Controlled Trials as Topic , Risk Factors , Survival Rate
19.
Haematologica ; 95(4): 679-83, 2010 Apr.
Article in English | MEDLINE | ID: mdl-19951974

ABSTRACT

Flow cytometric minimal residual disease (MRD) monitoring could become more powerful if directed towards the disease-maintaining leukemic stem cell (LSC) compartment. Using a cohort of 48 children with B-lineage acute lymphoblastic leukemia (ALL), we sought the newly proposed candidate-LSC population, CD34(+)CD38(low)CD19(+), at presentation and in end of induction bone marrow samples. We identified the candidate LSC population in 60% of diagnostic samples and its presence correlated with expression of CD38, relative to that of normal B-cell progenitors. In addition, the candidate LSC was not detectable in all MRD positive samples. The absence of the population in 40% of diagnostic and 40% of MRD positive samples does not support the use of this phenotype as a generic biomarker to track LSCs and suggests that this phenotype may be an artifact of CD38 underexpression rather than a biologically distinct LSC population. ClinicalTrials.gov Identifier: NCT00222612.


Subject(s)
ADP-ribosyl Cyclase 1/metabolism , Antigens, CD19/metabolism , Antigens, CD34/metabolism , Neoplasm, Residual/diagnosis , Neoplastic Stem Cells/immunology , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/immunology , Child , Clinical Trials as Topic , Flow Cytometry , Humans , Immunophenotyping , Neoplasm, Residual/immunology , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/pathology
20.
Clin Cancer Res ; 26(1): 122-134, 2020 01 01.
Article in English | MEDLINE | ID: mdl-31767563

ABSTRACT

PURPOSE: Circulating tumor cells (CTCs) serve as noninvasive tumor biomarkers in many types of cancer. Our aim was to detect CTCs from patients with neuroblastoma for use as predictive and pharmacodynamic biomarkers. EXPERIMENTAL DESIGN: We collected matched blood and bone marrow samples from 40 patients with neuroblastoma to detect GD2 +/CD45- neuroblastoma CTCs from blood and disseminated tumor cells (DTCs) from bone marrow using the Imagestream Imaging flow cytometer (ISx). In six cases, circulating free DNA (cfDNA) extracted from plasma isolated from the CTC sample was analyzed by high-density single-nucleotide polymorphism (SNP) arrays. RESULTS: CTCs were detected in 26 of 42 blood samples (1-264/mL) and DTCs in 25 of 35 bone marrow samples (57-291,544/mL). Higher numbers of CTCs in patients with newly diagnosed, high-risk neuroblastoma correlated with failure to obtain a complete bone marrow (BM) metastatic response after induction chemotherapy (P < 0.01). Ex vivo Nutlin-3 (MDM2 inhibitor) treatment of blood and BM increased p53 and p21 expression in CTCs and DTCs compared with DMSO controls. In five of six cases, cfDNA analyzed by SNP arrays revealed copy number abnormalities associated with neuroblastoma. CONCLUSIONS: This is the first study to show that CTCs and DTCs are detectable in neuroblastoma using the ISx, with concurrently extracted cfDNA used for copy number profiling, and may be useful as pharmacodynamic biomarkers in early-phase clinical trials. Further investigation is required to determine whether CTC numbers are predictive biomarkers of BM response to first-line induction chemotherapy.


Subject(s)
Biomarkers, Tumor/blood , Bone Marrow/pathology , Flow Cytometry/methods , Image Processing, Computer-Assisted/methods , Imidazoles/pharmacology , Neoplastic Cells, Circulating/pathology , Neuroblastoma/pathology , Piperazines/pharmacology , Biomarkers, Tumor/genetics , Bone Marrow/drug effects , DNA Copy Number Variations , Humans , Neoplastic Cells, Circulating/drug effects , Neuroblastoma/blood , Neuroblastoma/drug therapy , Predictive Value of Tests , Proto-Oncogene Proteins c-mdm2/antagonists & inhibitors
SELECTION OF CITATIONS
SEARCH DETAIL