Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
1.
EMBO J ; 42(5): e111519, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36579501

ABSTRACT

Nucleotide-binding domain leucine-rich repeat (NLR) immune receptors are important components of plant and metazoan innate immunity that can function as individual units or as pairs or networks. Upon activation, NLRs form multiprotein complexes termed resistosomes or inflammasomes. Although metazoan paired NLRs, such as NAIP/NLRC4, form hetero-complexes upon activation, the molecular mechanisms underpinning activation of plant paired NLRs, especially whether they associate in resistosome hetero-complexes, is unknown. In asterid plant species, the NLR required for cell death (NRC) immune receptor network is composed of multiple resistance protein sensors and downstream helpers that confer immunity against diverse plant pathogens. Here, we show that pathogen effector-activation of the NLR proteins Rx (confers virus resistance), and Bs2 (confers bacterial resistance) leads to oligomerization of their helper NLR, NRC2. Activated Rx does not oligomerize or enter into a stable complex with the NRC2 oligomer and remains cytoplasmic. In contrast, activated NRC2 oligomers accumulate in membrane-associated puncta. We propose an activation-and-release model for NLRs in the NRC immune receptor network. This points to a distinct activation model compared with mammalian paired NLRs.


Subject(s)
NLR Proteins , Plant Immunity , Animals , NLR Proteins/chemistry , NLR Proteins/metabolism , Plants/metabolism , Immunity, Innate , Inflammasomes , Plant Proteins/genetics , Plant Diseases , Mammals
2.
EMBO J ; 41(13): e110352, 2022 07 04.
Article in English | MEDLINE | ID: mdl-35620914

ABSTRACT

Beyond its role in cellular homeostasis, autophagy plays anti- and promicrobial roles in host-microbe interactions, both in animals and plants. One prominent role of antimicrobial autophagy is to degrade intracellular pathogens or microbial molecules, in a process termed xenophagy. Consequently, microbes evolved mechanisms to hijack or modulate autophagy to escape elimination. Although well-described in animals, the extent to which xenophagy contributes to plant-bacteria interactions remains unknown. Here, we provide evidence that Xanthomonas campestris pv. vesicatoria (Xcv) suppresses host autophagy by utilizing type-III effector XopL. XopL interacts with and degrades the autophagy component SH3P2 via its E3 ligase activity to promote infection. Intriguingly, XopL is targeted for degradation by defense-related selective autophagy mediated by NBR1/Joka2, revealing a complex antagonistic interplay between XopL and the host autophagy machinery. Our results implicate plant antimicrobial autophagy in the depletion of a bacterial virulence factor and unravel an unprecedented pathogen strategy to counteract defense-related autophagy in plant-bacteria interactions.


Subject(s)
Plant Diseases , Virulence Factors , Animals , Autophagy , Bacteria/metabolism , Host-Pathogen Interactions , Plant Diseases/microbiology , Virulence Factors/genetics , Virulence Factors/metabolism
3.
PLoS Biol ; 21(2): e3001962, 2023 02.
Article in English | MEDLINE | ID: mdl-36753519

ABSTRACT

Macroautophagy/autophagy is an intracellular degradation process central to cellular homeostasis and defense against pathogens in eukaryotic cells. Regulation of autophagy relies on hierarchical binding of autophagy cargo receptors and adaptors to ATG8/LC3 protein family members. Interactions with ATG8/LC3 are typically facilitated by a conserved, short linear sequence, referred to as the ATG8/LC3 interacting motif/region (AIM/LIR), present in autophagy adaptors and receptors as well as pathogen virulence factors targeting host autophagy machinery. Since the canonical AIM/LIR sequence can be found in many proteins, identifying functional AIM/LIR motifs has proven challenging. Here, we show that protein modelling using Alphafold-Multimer (AF2-multimer) identifies both canonical and atypical AIM/LIR motifs with a high level of accuracy. AF2-multimer can be modified to detect additional functional AIM/LIR motifs by using protein sequences with mutations in primary AIM/LIR residues. By combining protein modelling data from AF2-multimer with phylogenetic analysis of protein sequences and protein-protein interaction assays, we demonstrate that AF2-multimer predicts the physiologically relevant AIM motif in the ATG8-interacting protein 2 (ATI-2) as well as the previously uncharacterized noncanonical AIM motif in ATG3 from potato (Solanum tuberosum). AF2-multimer also identified the AIM/LIR motifs in pathogen-encoded virulence factors that target ATG8 members in their plant and human hosts, revealing that cross-kingdom ATG8-LIR/AIM associations can also be predicted by AF2-multimer. We conclude that the AF2-guided discovery of autophagy adaptors/receptors will substantially accelerate our understanding of the molecular basis of autophagy in all biological kingdoms.


Subject(s)
Furylfuramide , Microtubule-Associated Proteins , Humans , Microtubule-Associated Proteins/metabolism , Phylogeny , Amino Acid Motifs , Autophagy-Related Protein 8 Family/chemistry , Autophagy/physiology , Carrier Proteins/metabolism , Protein Binding
4.
PLoS Genet ; 19(1): e1010500, 2023 01.
Article in English | MEDLINE | ID: mdl-36656829

ABSTRACT

The NRC immune receptor network has evolved in asterid plants from a pair of linked genes into a genetically dispersed and phylogenetically structured network of sensor and helper NLR (nucleotide-binding domain and leucine-rich repeat-containing) proteins. In some species, such as the model plant Nicotiana benthamiana and other Solanaceae, the NRC (NLR-REQUIRED FOR CELL DEATH) network forms up to half of the NLRome, and NRCs are scattered throughout the genome in gene clusters of varying complexities. Here, we describe NRCX, an atypical member of the NRC family that lacks canonical features of these NLR helper proteins, such as a functional N-terminal MADA motif and the capacity to trigger autoimmunity. In contrast to other NRCs, systemic gene silencing of NRCX in N. benthamiana markedly impairs plant growth resulting in a dwarf phenotype. Remarkably, dwarfism of NRCX silenced plants is partially dependent on NRCX paralogs NRC2 and NRC3, but not NRC4. Despite its negative impact on plant growth when silenced systemically, spot gene silencing of NRCX in mature N. benthamiana leaves doesn't result in visible cell death phenotypes. However, alteration of NRCX expression modulates the hypersensitive response mediated by NRC2 and NRC3 in a manner consistent with a negative role for NRCX in the NRC network. We conclude that NRCX is an atypical member of the NRC network that has evolved to contribute to the homeostasis of this genetically unlinked NLR network.


Subject(s)
NLR Proteins , Nicotiana , NLR Proteins/genetics , NLR Proteins/metabolism , Nicotiana/genetics , Plant Immunity/genetics , Plants/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Diseases
5.
Mol Plant Microbe Interact ; 37(3): 220-226, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37999635

ABSTRACT

Filamentous plant pathogens, including fungi and oomycetes, cause some of the most devastating plant diseases. These organisms serve as ideal models for understanding the intricate molecular interplay between plants and the invading pathogens. Filamentous pathogens secrete effector proteins via haustoria, specialized structures for infection and nutrient uptake, to suppress the plant immune response and to reprogram plant metabolism. Recent advances in cell biology have provided crucial insights into the biogenesis of the extrahaustorial membrane and the redirection of host endomembrane trafficking toward this interface. Functional studies have shown that an increasing number of oomycete effectors accumulate at the perihaustorial interface to subvert plant focal immune responses, with a particular convergence on targets involved in host endomembrane trafficking. In this review, we summarize the diverse mechanisms of perihaustorial effectors from oomycetes and pinpoint pressing questions regarding their role in manipulating host defense and metabolism at the haustorial interface. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Subject(s)
Host-Pathogen Interactions , Oomycetes , Oomycetes/metabolism , Plants/microbiology , Proteins/metabolism , Fungi , Plant Diseases/microbiology
6.
PLoS Pathog ; 18(10): e1010918, 2022 10.
Article in English | MEDLINE | ID: mdl-36302035

ABSTRACT

In order to infect a new host species, the pathogen must evolve to enhance infection and transmission in the novel environment. Although we often think of evolution as a process of accumulation, it is also a process of loss. Here, we document an example of regressive evolution of an effector activity in the Irish potato famine pathogen (Phytophthora infestans) lineage, providing evidence that a key sequence motif in the effector PexRD54 has degenerated following a host jump. We began by looking at PexRD54 and PexRD54-like sequences from across Phytophthora species. We found that PexRD54 emerged in the common ancestor of Phytophthora clade 1b and 1c species, and further sequence analysis showed that a key functional motif, the C-terminal ATG8-interacting motif (AIM), was also acquired at this point in the lineage. A closer analysis showed that the P. mirabilis PexRD54 (PmPexRD54) AIM is atypical, the otherwise-conserved central residue mutated from a glutamate to a lysine. We aimed to determine whether this PmPexRD54 AIM polymorphism represented an adaptation to the Mirabilis jalapa host environment. We began by characterizing the M. jalapa ATG8 family, finding that they have a unique evolutionary history compared to previously characterized ATG8s. Then, using co-immunoprecipitation and isothermal titration calorimetry assays, we showed that both full-length PmPexRD54 and the PmPexRD54 AIM peptide bind weakly to the M. jalapa ATG8s. Through a combination of binding assays and structural modelling, we showed that the identity of the residue at the position of the PmPexRD54 AIM polymorphism can underpin high-affinity binding to plant ATG8s. Finally, we conclude that the functionality of the PexRD54 AIM was lost in the P. mirabilis lineage, perhaps owing to as-yet-unknown selection pressure on this effector in the new host environment.


Subject(s)
Mirabilis , Phytophthora infestans , Solanum tuberosum , Plant Diseases , Phytophthora infestans/genetics , Host Specificity
7.
Plant Cell ; 33(5): 1447-1471, 2021 07 02.
Article in English | MEDLINE | ID: mdl-33677602

ABSTRACT

Pathogens modulate plant cell structure and function by secreting effectors into host tissues. Effectors typically function by associating with host molecules and modulating their activities. This study aimed to identify the host processes targeted by the RXLR class of host-translocated effectors of the potato blight pathogen Phytophthora infestans. To this end, we performed an in planta protein-protein interaction screen by transiently expressing P. infestans RXLR effectors in Nicotiana benthamiana leaves followed by coimmunoprecipitation and liquid chromatography-tandem mass spectrometry. This screen generated an effector-host protein interactome matrix of 59 P. infestans RXLR effectors x 586 N. benthamiana proteins. Classification of the host interactors into putative functional categories revealed over 35 biological processes possibly targeted by P. infestans. We further characterized the PexRD12/31 family of RXLR-WY effectors, which associate and colocalize with components of the vesicle trafficking machinery. One member of this family, PexRD31, increased the number of FYVE positive vesicles in N. benthamiana cells. FYVE positive vesicles also accumulated in leaf cells near P. infestans hyphae, indicating that the pathogen may enhance endosomal trafficking during infection. This interactome dataset will serve as a useful resource for functional studies of P. infestans effectors and of effector-targeted host processes.


Subject(s)
Host-Pathogen Interactions/physiology , Phytophthora infestans/physiology , Proteins/metabolism , Transport Vesicles/metabolism , Cell Membrane/metabolism , Endosomes/metabolism , Plant Diseases/microbiology , Plant Proteins/metabolism , Protein Interaction Maps , SNARE Proteins/metabolism , Nicotiana/metabolism , Nicotiana/microbiology
8.
Phys Biol ; 20(5)2023 07 28.
Article in English | MEDLINE | ID: mdl-37442125

ABSTRACT

Soil-dwelling microorganisms use a variety of chemical and physical signals to navigate their environment. Plant roots produce endogenous electric fields which result in characteristic current profiles. Such electrical signatures are hypothesised to be used by pathogens and symbionts to track and colonise plant roots. The oomycete pathogenPhytophthora palmivoragenerates motile zoospores which swim towards the positive pole when exposed to an external electric fieldin vitro. Here, we provide a quantitative characterization of their electrotactic behaviour in 3D. We found that a weak electric field (0.7-1.0 V cm-1) is sufficient to induce an accumulation of zoospore at the positive pole, without affecting their encystment rate. We also show that the same external electric field increases the zoospore germination rate and orients the germ tube's growth. We conclude that several early stages of theP. palmivorainfection cycle are affected by external electric fields. Taken together, our results are compatible with the hypothesis that pathogens use plant endogenous electric fields for host targeting.


Subject(s)
Phytophthora , Germination , Plant Roots
9.
Proc Natl Acad Sci U S A ; 117(17): 9613-9620, 2020 04 28.
Article in English | MEDLINE | ID: mdl-32284406

ABSTRACT

In plants and animals, nucleotide-binding leucine-rich repeat (NLR) proteins are intracellular immune sensors that recognize and eliminate a wide range of invading pathogens. NLR-mediated immunity is known to be modulated by environmental factors. However, how pathogen recognition by NLRs is influenced by environmental factors such as light remains unclear. Here, we show that the agronomically important NLR Rpi-vnt1.1 requires light to confer disease resistance against races of the Irish potato famine pathogen Phytophthora infestans that secrete the effector protein AVRvnt1. The activation of Rpi-vnt1.1 requires a nuclear-encoded chloroplast protein, glycerate 3-kinase (GLYK), implicated in energy production. The pathogen effector AVRvnt1 binds the full-length chloroplast-targeted GLYK isoform leading to activation of Rpi-vnt1.1. In the dark, Rpi-vnt1.1-mediated resistance is compromised because plants produce a shorter GLYK-lacking the intact chloroplast transit peptide-that is not bound by AVRvnt1. The transition between full-length and shorter plant GLYK transcripts is controlled by a light-dependent alternative promoter selection mechanism. In plants that lack Rpi-vnt1.1, the presence of AVRvnt1 reduces GLYK accumulation in chloroplasts counteracting GLYK contribution to basal immunity. Our findings revealed that pathogen manipulation of chloroplast functions has resulted in a light-dependent immune response.


Subject(s)
Chloroplasts/microbiology , Gene Expression Regulation, Plant/immunology , Light , NLR Proteins/metabolism , Phytophthora infestans/metabolism , Plant Proteins/metabolism , Agrobacterium/metabolism , Animals , Chloroplasts/metabolism , Escherichia coli/metabolism , Fungal Proteins , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Plant/radiation effects , Gene Silencing , Microscopy, Confocal , NLR Proteins/genetics , Phosphotransferases (Alcohol Group Acceptor)/genetics , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Plant Proteins/genetics , Seedlings , Solanum tuberosum/metabolism , Solanum tuberosum/microbiology , Nicotiana/metabolism , Nicotiana/microbiology , Two-Hybrid System Techniques
10.
Plant J ; 107(6): 1771-1787, 2021 09.
Article in English | MEDLINE | ID: mdl-34250673

ABSTRACT

Upon immune activation, chloroplasts switch off photosynthesis, produce antimicrobial compounds and associate with the nucleus through tubular extensions called stromules. Although it is well established that chloroplasts alter their position in response to light, little is known about the dynamics of chloroplast movement in response to pathogen attack. Here, we report that during infection with the Irish potato famine pathogen Phytophthora infestans, chloroplasts accumulate at the pathogen interface, associating with the specialized membrane that engulfs the pathogen haustorium. The chemical inhibition of actin polymerization reduces the accumulation of chloroplasts at pathogen haustoria, suggesting that this process is partially dependent on the actin cytoskeleton. However, chloroplast accumulation at haustoria does not necessarily rely on movement of the nucleus to this interface and is not affected by light conditions. Stromules are typically induced during infection, embracing haustoria and facilitating chloroplast interactions, to form dynamic organelle clusters. We found that infection-triggered stromule formation relies on BRASSINOSTEROID INSENSITIVE 1-ASSOCIATED KINASE 1 (BAK1)-mediated surface immune signaling, whereas chloroplast repositioning towards haustoria does not. Consistent with the defense-related induction of stromules, effector-mediated suppression of BAK1-mediated immune signaling reduced stromule formation during infection. On the other hand, immune recognition of the same effector stimulated stromules, presumably via a different pathway. These findings implicate chloroplasts in a polarized response upon pathogen attack and point to more complex functions of these organelles in plant-pathogen interactions.


Subject(s)
Chloroplasts/microbiology , Host-Pathogen Interactions/physiology , Nicotiana/microbiology , Phytophthora infestans/pathogenicity , Actin Cytoskeleton/metabolism , Actin Cytoskeleton/microbiology , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Chloroplasts/drug effects , Chloroplasts/immunology , Dinitrobenzenes/pharmacology , Light , Microscopy, Confocal , Optical Tweezers , Plant Diseases/microbiology , Plant Immunity , Plant Leaves/drug effects , Plant Leaves/microbiology , Plants, Genetically Modified , Reactive Oxygen Species/metabolism , Sulfanilamides/pharmacology , Thiazolidines/pharmacology , Nicotiana/drug effects , Nicotiana/genetics , Nicotiana/immunology
11.
J Cell Sci ; 133(5)2020 03 04.
Article in English | MEDLINE | ID: mdl-32132107

ABSTRACT

Many filamentous pathogens invade plant cells through specialized hyphae called haustoria. These infection structures are enveloped by a newly synthesized plant-derived membrane called the extrahaustorial membrane (EHM). This specialized membrane is the ultimate interface between the plant and pathogen, and is key to the success or failure of infection. Strikingly, the EHM is reminiscent of host-derived membrane interfaces that engulf intracellular metazoan parasites. These perimicrobial interfaces are critical sites where pathogens facilitate nutrient uptake and deploy virulence factors to disarm cellular defenses mounted by their hosts. Although the mechanisms underlying the biogenesis and functions of these host-microbe interfaces are poorly understood, recent studies have provided new insights into the cellular and molecular mechanisms involved. In this Cell Science at a Glance and the accompanying poster, we summarize these recent advances with a specific focus on the haustorial interfaces associated with filamentous plant pathogens. We highlight the progress in the field that fundamentally underpin this research topic. Furthermore, we relate our knowledge of plant-filamentous pathogen interfaces to those generated by other plant-associated organisms. Finally, we compare the similarities between host-pathogen interfaces in plants and animals, and emphasize the key questions in this research area.


Subject(s)
Arabidopsis , Animals , Host-Pathogen Interactions/genetics , Plant Cells , Plant Diseases
12.
Proc Natl Acad Sci U S A ; 114(30): 8113-8118, 2017 07 25.
Article in English | MEDLINE | ID: mdl-28698366

ABSTRACT

Both plants and animals rely on nucleotide-binding domain and leucine-rich repeat-containing (NLR) proteins to respond to invading pathogens and activate immune responses. An emerging concept of NLR function is that "sensor" NLR proteins are paired with "helper" NLRs to mediate immune signaling. However, our fundamental knowledge of sensor/helper NLRs in plants remains limited. In this study, we discovered a complex NLR immune network in which helper NLRs in the NRC (NLR required for cell death) family are functionally redundant but display distinct specificities toward different sensor NLRs that confer immunity to oomycetes, bacteria, viruses, nematodes, and insects. The helper NLR NRC4 is required for the function of several sensor NLRs, including Rpi-blb2, Mi-1.2, and R1, whereas NRC2 and NRC3 are required for the function of the sensor NLR Prf. Interestingly, NRC2, NRC3, and NRC4 redundantly contribute to the immunity mediated by other sensor NLRs, including Rx, Bs2, R8, and Sw5. NRC family and NRC-dependent NLRs are phylogenetically related and cluster into a well-supported superclade. Using extensive phylogenetic analysis, we discovered that the NRC superclade probably emerged over 100 Mya from an NLR pair that diversified to constitute up to one-half of the NLRs of asterids. These findings reveal a complex genetic network of NLRs and point to a link between evolutionary history and the mechanism of immune signaling. We propose that this NLR network increases the robustness of immune signaling to counteract rapidly evolving plant pathogens.


Subject(s)
NLR Proteins/physiology , Plant Immunity , Evolution, Molecular , Gene Regulatory Networks , Plant Diseases , Nicotiana
13.
J Exp Bot ; 69(6): 1325-1333, 2018 03 14.
Article in English | MEDLINE | ID: mdl-29294077

ABSTRACT

In plants, the highly conserved catabolic process of autophagy has long been known as a means of maintaining cellular homeostasis and coping with abiotic stress conditions. Accumulating evidence has linked autophagy to immunity against invading pathogens, regulating plant cell death, and antimicrobial defences. In turn, it appears that phytopathogens have evolved ways not only to evade autophagic clearance but also to modulate and co-opt autophagy for their own benefit. In this review, we summarize and discuss the emerging discoveries concerning how pathogens modulate both host and self-autophagy machineries to colonize their host plants, delving into the arms race that determines the fate of interorganismal interaction.


Subject(s)
Autophagy/physiology , Host-Pathogen Interactions/immunology , Plant Immunity , Plants/immunology , Autophagy/immunology , Plants/microbiology
14.
Traffic ; 16(2): 204-26, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25430691

ABSTRACT

A number of plant pathogenic and symbiotic microbes produce specialized cellular structures that invade host cells where they remain enveloped by host-derived membranes. The mechanisms underlying the biogenesis and functions of host-microbe interfaces are poorly understood. Here, we show that plant late endocytic trafficking is diverted toward the extrahaustorial membrane (EHM); a host-pathogen interface that develops in plant cells invaded by Irish potato famine pathogen Phytophthora infestans. A late endosome and tonoplast marker protein Rab7 GTPase RabG3c, but not a tonoplast-localized sucrose transporter, is recruited to the EHM, suggesting specific rerouting of vacuole-targeted late endosomes to a host-pathogen interface. We revealed the dynamic nature of this process by showing that, upon activation, a cell surface immune receptor traffics toward the haustorial interface. Our work provides insight into the biogenesis of the EHM and reveals dynamic processes that recruit membrane compartments and immune receptors to this host-pathogen interface.


Subject(s)
Endocytosis , Endosomes/metabolism , Host-Pathogen Interactions , Nicotiana/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Phytophthora infestans/pathogenicity , Plant Proteins/genetics , Plant Proteins/metabolism , Protein Kinases/genetics , Protein Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Protein Transport , Nicotiana/genetics , Nicotiana/microbiology , rab GTP-Binding Proteins/genetics , rab GTP-Binding Proteins/metabolism
15.
J Biol Chem ; 291(38): 20270-20282, 2016 09 16.
Article in English | MEDLINE | ID: mdl-27458016

ABSTRACT

Filamentous plant pathogens deliver effector proteins to host cells to promote infection. The Phytophthora infestans RXLR-type effector PexRD54 binds potato ATG8 via its ATG8 family-interacting motif (AIM) and perturbs host-selective autophagy. However, the structural basis of this interaction remains unknown. Here, we define the crystal structure of PexRD54, which includes a modular architecture, including five tandem repeat domains, with the AIM sequence presented at the disordered C terminus. To determine the interface between PexRD54 and ATG8, we solved the crystal structure of potato ATG8CL in complex with a peptide comprising the effector's AIM sequence, and we established a model of the full-length PexRD54-ATG8CL complex using small angle x-ray scattering. Structure-informed deletion of the PexRD54 tandem domains reveals retention of ATG8CL binding in vitro and in planta This study offers new insights into structure/function relationships of oomycete RXLR effectors and how these proteins engage with host cell targets to promote disease.


Subject(s)
Autophagy-Related Protein 8 Family , Phytophthora infestans , Plant Diseases , Plant Proteins , Solanum tuberosum , Autophagy-Related Protein 8 Family/chemistry , Autophagy-Related Protein 8 Family/genetics , Autophagy-Related Protein 8 Family/metabolism , Crystallography, X-Ray , Phytophthora infestans/chemistry , Phytophthora infestans/genetics , Phytophthora infestans/metabolism , Plant Proteins/chemistry , Plant Proteins/genetics , Plant Proteins/metabolism , Protein Domains , Protein Structure, Quaternary , Solanum tuberosum/chemistry , Solanum tuberosum/genetics , Solanum tuberosum/metabolism
16.
Mol Plant Microbe Interact ; 28(12): 1316-29, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26367241

ABSTRACT

Plants and animals rely on immune receptors, known as nucleotide-binding domain and leucine-rich repeat (NLR)-containing proteins, to defend against invading pathogens and activate immune responses. How NLR receptors respond to pathogens is inadequately understood. We previously reported single-residue mutations that expand the response of the potato immune receptor R3a to AVR3a(EM), a stealthy effector from the late blight oomycete pathogen Phytophthora infestans. I2, another NLR that mediates resistance to the will-causing fungus Fusarium oxysporum f. sp. lycopersici, is the tomato ortholog of R3a. We transferred previously identified R3a mutations to I2 to assess the degree to which the resulting I2 mutants have an altered response. We discovered that wild-type I2 protein responds weakly to AVR3a. One mutant in the N-terminal coiled-coil domain, I2(I141N), appeared sensitized and displayed markedly increased response to AVR3a. Remarkably, I2(I141N) conferred partial resistance to P. infestans. Further, I2(I141N) has an expanded response spectrum to F. oxysporum f. sp. lycopersici effectors compared with the wild-type I2 protein. Our results suggest that synthetic immune receptors can be engineered to confer resistance to phylogenetically divergent pathogens and indicate that knowledge gathered for one NLR could be exploited to improve NLR from other plant species.


Subject(s)
Fusarium/pathogenicity , Phytophthora infestans/pathogenicity , Receptors, Immunologic/immunology , Solanum lycopersicum/immunology , Amino Acid Sequence , Fusarium/immunology , Solanum lycopersicum/microbiology , Molecular Sequence Data , Phytophthora infestans/immunology , Receptors, Immunologic/chemistry
17.
Mol Plant Microbe Interact ; 28(8): 901-12, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25894205

ABSTRACT

The introgression of disease resistance (R) genes encoding immunoreceptors with broad-spectrum recognition into cultivated potato appears to be the most promising approach to achieve sustainable management of late blight caused by the oomycete pathogen Phytophthora infestans. Rpi-blb2 from Solanum bulbocastanum shows great potential for use in agriculture based on preliminary potato disease trials. Rpi-blb2 confers immunity by recognizing the P. infestans avirulence effector protein AVRblb2 after it is translocated inside the plant cell. This effector belongs to the RXLR class of effectors and is under strong positive selection. Structure-function analyses revealed a key polymorphic amino acid (position 69) in AVRblb2 effector that is critical for activation of Rpi-blb2. In this study, we reconstructed the evolutionary history of the Avrblb2 gene family and further characterized its genetic structure in worldwide populations. Our data indicate that Avrblb2 evolved as a single-copy gene in a putative ancestral species of P. infestans and has recently expanded in the Phytophthora spp. that infect solanaceous hosts. As a consequence, at least four variants of AVRblb2 arose in P. infestans. One of these variants, with a Phe residue at position 69, evades recognition by the cognate resistance gene. Surprisingly, all Avrblb2 variants are maintained in pathogen populations. This suggests a potential benefit for the pathogen in preserving duplicated versions of AVRblb2, possibly because the variants may have different contributions to pathogen fitness in a diversified solanaceous host environment.


Subject(s)
Fungal Proteins/genetics , Phytophthora infestans/genetics , Phytophthora infestans/pathogenicity , Amino Acid Sequence , Conserved Sequence , Fungal Proteins/metabolism , Genetic Variation , Host-Pathogen Interactions/genetics , Molecular Sequence Data , Mutation , Phylogeny , Phytophthora/genetics , Polymorphism, Genetic , Solanum tuberosum/genetics , Solanum tuberosum/microbiology , Virulence Factors/genetics , Virulence Factors/metabolism
18.
Plant Physiol ; 165(3): 1005-1018, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24808104

ABSTRACT

Filamentous pathogens such as the oomycete Phytophthora infestans infect plants by developing specialized structures termed haustoria inside the host cells. Haustoria are thought to enable the secretion of effector proteins into the plant cells. Haustorium biogenesis, therefore, is critical for pathogen accommodation in the host tissue. Haustoria are enveloped by a specialized host-derived membrane, the extrahaustorial membrane (EHM), which is distinct from the plant plasma membrane. The mechanisms underlying the biogenesis of the EHM are unknown. Remarkably, several plasma membrane-localized proteins are excluded from the EHM, but the remorin REM1.3 accumulates around P. infestans haustoria. Here, we used overexpression, colocalization with reporter proteins, and superresolution microscopy in cells infected by P. infestans to reveal discrete EHM domains labeled by REM1.3 and the P. infestans effector AVRblb2. Moreover, SYNAPTOTAGMIN1, another previously identified perihaustorial protein, localized to subdomains that are mainly not labeled by REM1.3 and AVRblb2. Functional characterization of REM1.3 revealed that it is a susceptibility factor that promotes infection by P. infestans. This activity, and REM1.3 recruitment to the EHM, require the REM1.3 membrane-binding domain. Our results implicate REM1.3 membrane microdomains in plant susceptibility to an oomycete pathogen.

19.
Plant Cell ; 24(8): 3420-34, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22885736

ABSTRACT

Plant pathogens secrete effector proteins to modulate plant immunity and promote host colonization. Plant nucleotide binding leucine-rich repeat (NB-LRR) immunoreceptors recognize specific pathogen effectors directly or indirectly. Little is known about how NB-LRR proteins recognize effectors of filamentous plant pathogens, such as Phytophthora infestans. AVR2 belongs to a family of 13 sequence-divergent P. infestans RXLR effectors that are differentially recognized by members of the R2 NB-LRR family in Solanum demissum. We report that the putative plant phosphatase BSU-LIKE PROTEIN1 (BSL1) is required for R2-mediated perception of AVR2 and resistance to P. infestans. AVR2 associates with BSL1 and mediates the interaction of BSL1 with R2 in planta, possibly through the formation of a ternary complex. Strains of P. infestans that are virulent on R2 potatoes express an unrecognized form, Avr2-like (referred to as A2l). A2L can still interact with BSL1 but does not promote the association of BSL1 with R2. Our findings show that recognition of the P. infestans AVR2 effector by the NB-LRR protein R2 requires the putative phosphatase BSL1. This reveals that, similar to effectors of phytopathogenic bacteria, recognition of filamentous pathogen effectors can be mediated via a host protein that interacts with both the effector and the NB-LRR immunoreceptor.


Subject(s)
Disease Resistance , Phosphoric Monoester Hydrolases/metabolism , Phytophthora infestans/pathogenicity , Plant Immunity , Plant Proteins/metabolism , Solanum/microbiology , Amino Acid Sequence , Cell Membrane/metabolism , Host-Pathogen Interactions , Immunoprecipitation , Leucine-Rich Repeat Proteins , Molecular Sequence Data , Phosphoric Monoester Hydrolases/genetics , Phosphoric Monoester Hydrolases/immunology , Phytophthora infestans/immunology , Plant Diseases/immunology , Plant Diseases/microbiology , Plant Proteins/genetics , Plant Proteins/immunology , Plasmids/genetics , Plasmids/metabolism , Protein Interaction Mapping , Protein Stability , Proteins/genetics , Proteins/immunology , Proteins/metabolism , Receptors, Cell Surface/immunology , Receptors, Cell Surface/metabolism , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/immunology , Recombinant Fusion Proteins/metabolism , Solanum/enzymology , Solanum/immunology , Substrate Specificity , Two-Hybrid System Techniques
20.
Nature ; 461(7262): 393-8, 2009 Sep 17.
Article in English | MEDLINE | ID: mdl-19741609

ABSTRACT

Phytophthora infestans is the most destructive pathogen of potato and a model organism for the oomycetes, a distinct lineage of fungus-like eukaryotes that are related to organisms such as brown algae and diatoms. As the agent of the Irish potato famine in the mid-nineteenth century, P. infestans has had a tremendous effect on human history, resulting in famine and population displacement. To this day, it affects world agriculture by causing the most destructive disease of potato, the fourth largest food crop and a critical alternative to the major cereal crops for feeding the world's population. Current annual worldwide potato crop losses due to late blight are conservatively estimated at $6.7 billion. Management of this devastating pathogen is challenged by its remarkable speed of adaptation to control strategies such as genetically resistant cultivars. Here we report the sequence of the P. infestans genome, which at approximately 240 megabases (Mb) is by far the largest and most complex genome sequenced so far in the chromalveolates. Its expansion results from a proliferation of repetitive DNA accounting for approximately 74% of the genome. Comparison with two other Phytophthora genomes showed rapid turnover and extensive expansion of specific families of secreted disease effector proteins, including many genes that are induced during infection or are predicted to have activities that alter host physiology. These fast-evolving effector genes are localized to highly dynamic and expanded regions of the P. infestans genome. This probably plays a crucial part in the rapid adaptability of the pathogen to host plants and underpins its evolutionary potential.


Subject(s)
Genome/genetics , Phytophthora infestans/genetics , Plant Diseases/microbiology , Solanum tuberosum/microbiology , Algal Proteins/genetics , DNA Transposable Elements/genetics , DNA, Intergenic/genetics , Evolution, Molecular , Host-Pathogen Interactions/genetics , Humans , Ireland , Molecular Sequence Data , Necrosis , Phenotype , Phytophthora infestans/pathogenicity , Plant Diseases/immunology , Solanum tuberosum/immunology , Starvation
SELECTION OF CITATIONS
SEARCH DETAIL