Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Affiliation country
Publication year range
1.
Nervenarzt ; 94(12): 1123-1128, 2023 Dec.
Article in German | MEDLINE | ID: mdl-37594495

ABSTRACT

Magnetic resonance imaging (MRI) is of exceptional importance in the diagnostics and monitoring of multiple sclerosis (MS); however, a close interdisciplinary cooperation between neurologists in private practice, (neuro)radiological practices, hospitals or specialized MS centers is only rarely established. In particular, there is a lack of standardized MRI protocols for image acquisition as well as established quality parameters, which guarantee the comparability of MRI records; however, this is a fundamental prerequisite for an effective application of MRI in the treatment of MS patients, e.g., for making the diagnosis or treatment monitoring. To address these challenges a group of neurologists and (neuro)radiologists developed a consensus proposal for standardization of image acquisition, interpretation and transmission of results and for improvement in interdisciplinary cooperation. This pilot project in the metropolitan area of Essen used a modified Delphi process and was based on the most up to date scientific knowledge. The recommendation takes the medical, economic, temporal and practical aspects of MRI in MS into consideration. The model of interdisciplinary cooperation between radiologists and neurologists with the aim of a regional standardization of MRI could serve as an example for other regions of Germany in order to optimize MRI for MS.


Subject(s)
Multiple Sclerosis , Humans , Multiple Sclerosis/diagnosis , Consensus , Pilot Projects , Magnetic Resonance Imaging/methods , Neurologists
2.
Radiother Oncol ; 146: 205-212, 2020 05.
Article in English | MEDLINE | ID: mdl-32222488

ABSTRACT

BACKGROUND AND PURPOSE: Proton radiotherapy offers the potential to reduce normal tissue toxicity. However, clinical safety margins, range uncertainties, and varying relative biological effectiveness (RBE) may result in a critical dose in tumor-surrounding normal tissue. To assess potential adverse effects in preclinical studies, image-guided proton mouse brain irradiation and analysis of DNA damage repair was established. MATERIAL AND METHODS: We designed and characterized a setup to shape proton beams with 7 mm range in water and 3 mm in diameter and commissioned a Monte Carlo model for in vivo dose simulation. Cone-beam computed tomography and orthogonal X-ray imaging were used to delineate the right hippocampus and position the mice. The brains of three C3H/HeNRj mice were irradiated with 8 Gy and excised 30 min later. Initial DNA double-strand breaks were visualized by staining brain sections for cell nuclei and γH2AX. Imaged sections were analyzed with an automated and validated processing pipeline to provide a quantitative, spatially resolved radiation damage indicator. RESULTS: The analyzed DNA damage pattern clearly visualized the radiation effect in the mouse brains and could be mapped to the simulated dose distribution. The proton beam passed the right hippocampus and stopped in the central brain region for all evaluated mice. CONCLUSION: We established image-guided proton irradiation of mouse brains. The clinically oriented workflow facilitates (back-) translational studies. Geometric accuracy, detailed Monte Carlo dose simulations, and cell-based assessment enable a biologically and spatially resolved analysis of radiation response and RBE.


Subject(s)
Proton Therapy , Animals , Brain , Mice , Mice, Inbred C3H , Monte Carlo Method , Protons , Relative Biological Effectiveness
SELECTION OF CITATIONS
SEARCH DETAIL