Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Small ; 20(16): e2306433, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38041503

ABSTRACT

This study presents an in-depth analysis of heterogeneous aging patterns in membrane electrode assemblies (MEAs) subjected to diverse accelerated stress test (AST) conditions, simulating carbon corrosion (CC AST) and Pt particle size growth in fully humidified (Pt AST-Wet) and underhumidified (Pt AST-Dry) H2/N2 atmospheres. Multimodal characterization techniques are used to focus on heterogeneous aging patterns, primarily examining the variations in current distributions and Pt particle size maps. The findings reveal distinct characteristics of current distributions for all the AST cases, with substantial changes and strong current gradients in the CC AST case, indicative of severe performance degradation. Notably, despite significant differences in Pt particle size growth at the end-of-life (EOL), the Pt AST-Wet and Pt AST-Dry cases show minor changes in spatial current distributions. Moreover, a preferential growth of Pt particles under serpentine flow field bends in the Pt AST-Wet case is observed for the first time. This study provides crucial insights into the role of mass transport properties in shaping fuel cell performance, and highlights the need to consider factors beyond electrochemically-active surface area (ECSA) when assessing fuel cell durability.

2.
Small ; 18(33): e2201750, 2022 08.
Article in English | MEDLINE | ID: mdl-35871500

ABSTRACT

Gas diffusion layers (GDLs) play a crucial role in heat transfer and water management of cathode catalyst layers in polymer electrolyte fuel cells (PEFCs). Thermal and water gradients can accelerate electrocatalyst degradation and therefore the selection of GDLs can have a major influence on PEFC durability. Currently, the role of GDLs in electrocatalyst degradation is poorly studied. In this study, electrocatalyst accelerated stress test studies are performed on membrane electrode assemblies (MEAs) prepared using three most commonly used GDLs. The effect of GDLs on electrocatalyst degradation is evaluated in both nitrogen (non-reactive) and air (reactive) gas environments at 100% relative humidity. In situ electrochemical characterization and extensive physical characterization is performed to understand the subtle differences in electrocatalyst degradation and correlated to the use of different GDLs. Overall, no difference is observed in the electrocatalyst degradation due to GDLs based on polarization curves at the end of life. But interestingly, MEA with a cracked microporous layer (MPL) in the GDL exhibited a higher electrocatalyst loading loss, which resulted in a lower and more heterogeneous increase in the average electrocatalyst nanoparticle size.


Subject(s)
Electrolytes , Polymers , Catalysis , Diffusion , Electrodes , Electrolytes/chemistry , Gases , Polymers/chemistry , Water
3.
ACS Nano ; 18(32): 21258-21267, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39101356

ABSTRACT

Catalyst deactivation through pathways such as sintering of nanoparticles and degradation of the support is a critical factor when designing high-performance catalysts. Here, structural changes of supported nanoparticle catalysts are investigated in controlled gas environments (O2, H2O, and H2) at different temperatures by imaging simultaneously the nanoparticle structures in 2D projection and the 3D surface-sensitive topography. Platinum nanoparticles on carbon support as a model system are imaged in an environmental transmission electron microscope (ETEM), with concurrent acquisition of high-angle annular dark field scanning TEM (HAADF-STEM) and secondary electron (SE) images. Particle migration and coalescence occurs and shows gas-dependent kinetics, with nanoparticles moving across and through the support during and after coalescence. The temperature required for motion is lower in O2 than in H2O and H2, explained through the nature of the gas/nanoparticle interactions. In O2 and H2, the carbon support degrades by trench formation along migration pathways, and the particles move continuously, indicating a chemical reaction between gas and support. In H2O gas, motion is more discontinuous and oriented particle attachment occurs, as expected from theoretical predictions. These results suggest that multimodal imaging in ETEM that combines HAADF-STEM and SE data provides comprehensive information regarding catalyst dynamics and degradation mechanisms.

4.
Adv Mater ; 32(46): e2003577, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33058263

ABSTRACT

Increasing catalytic activity and durability of atomically dispersed metal-nitrogen-carbon (M-N-C) catalysts for the oxygen reduction reaction (ORR) cathode in proton-exchange-membrane fuel cells remains a grand challenge. Here, a high-power and durable Co-N-C nanofiber catalyst synthesized through electrospinning cobalt-doped zeolitic imidazolate frameworks into selected polyacrylonitrile and poly(vinylpyrrolidone) polymers is reported. The distinct porous fibrous morphology and hierarchical structures play a vital role in boosting electrode performance by exposing more accessible active sites, providing facile electron conductivity, and facilitating the mass transport of reactant. The enhanced intrinsic activity is attributed to the extra graphitic N dopants surrounding the CoN4 moieties. The highly graphitized carbon matrix in the catalyst is beneficial for enhancing the carbon corrosion resistance, thereby promoting catalyst stability. The unique nanoscale X-ray computed tomography verifies the well-distributed ionomer coverage throughout the fibrous carbon network in the catalyst. The membrane electrode assembly achieves a power density of 0.40 W cm-2 in a practical H2 /air cell (1.0 bar) and demonstrates significantly enhanced durability under accelerated stability tests. The combination of the intrinsic activity and stability of single Co sites, along with unique catalyst architecture, provide new insight into designing efficient PGM-free electrodes with improved performance and durability.

SELECTION OF CITATIONS
SEARCH DETAIL