Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Toxicol Appl Pharmacol ; 341: 77-86, 2018 02 15.
Article in English | MEDLINE | ID: mdl-29366638

ABSTRACT

Botulinum neurotoxins (BoNTs) are exceedingly potent neurological poisons that prevent neurotransmitter release from peripheral nerve terminals by cleaving presynaptic proteins required for synaptic vesicle fusion. The ensuing neuromuscular paralysis causes death by asphyxiation. Although no antidotal treatments exist to block toxin activity within the nerve terminal, aminopyridine antagonists of voltage-gated potassium channels have been proposed as symptomatic treatments for botulism toxemia. However, clinical evaluation of aminopyridines as symptomatic treatments for botulism has been inconclusive, in part because mechanisms responsible for reversal of paralysis in BoNT-poisoned nerve terminals are not understood. Here we measured the effects of 3,4-diaminopyridine (DAP) on phrenic nerve-elicited diaphragm contraction and end-plate potentials at various times after intoxication with BoNT serotypes A, B, or E. We found that DAP-mediated increases in quantal content promote neurotransmission from intoxicated nerve terminals through two functionally distinguishable mechanisms. First, DAP increases the probability of neurotransmission at non-intoxicated release sites. This mechanism is serotype-independent, becomes less effective as nerve terminals become progressively impaired, and remains susceptible to ongoing intoxication. Second, DAP elicits persistent production of toxin-resistant endplate potentials from nerve terminals fully intoxicated by BoNT/A, but not serotypes B or E. Since this effect appears specific to BoNT/A intoxication, we propose that DAP treatment enables BoNT/A-cleaved SNAP-25 to productively engage in fusogenic release by increasing the opportunity for low-efficiency fusion events. These findings have important implications for DAP as a botulism therapeutic by defining conditions under which DAP may be clinically effective in reversing botulism symptoms.


Subject(s)
4-Aminopyridine/analogs & derivatives , Botulinum Toxins, Type A/toxicity , Diaphragm/drug effects , Respiratory Paralysis/chemically induced , Respiratory Paralysis/drug therapy , 4-Aminopyridine/pharmacology , 4-Aminopyridine/therapeutic use , Amifampridine , Animals , Diaphragm/physiology , Male , Mice , Mice, Inbred C57BL , Organ Culture Techniques , Potassium Channel Blockers/pharmacology , Potassium Channel Blockers/therapeutic use , Respiratory Paralysis/physiopathology
2.
J Pharmacol Exp Ther ; 356(1): 2-12, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26514794

ABSTRACT

Methylmercury (MeHg) disrupts cerebellar function, especially during development. Cerebellar granule cells (CGC), which are particularly susceptible to MeHg by unknown mechanisms, migrate during this process. Transient changes in intracellular Ca(2+) (Ca(2+) i) are crucial to proper migration, and MeHg is well known to disrupt CGC Ca(2+) i regulation. Acutely prepared slices of neonatal rat cerebellum in conjunction with confocal microscopy and fluo4 epifluorescence were used to track changes induced by MeHg in CGC Ca(2+) i regulation in the external (EGL) and internal granule cell layers (IGL) as well as the molecular layer (ML). MeHg caused no cytotoxicity but did cause a time-dependent increase in fluo4 fluorescence that depended on the stage of CGC development. CGCs in the EGL were most susceptible to MeHg-induced increases in fluo4 fluorescence. MeHg increased fluorescence in CGC processes but only diffusely; Purkinje cells rarely fluoresced in these slices. Neither muscimol nor bicuculline alone altered baseline fluo4 fluorescence in any CGC layer, but each delayed the onset and reduced the magnitude of effect of MeHg on fluo4 fluorescence in the EGL and ML. In the IGL, both muscimol and bicuculline delayed the onset of MeHg-induced increases in fluo4 fluorescence but did not affect fluorescence magnitude. Thus, acute exposure to MeHg causes developmental stage-dependent increases in Ca(2+) i in CGCs. Effects are most prominent in CGCs during development or early stages of migration. GABAA receptors participate in an as yet unclear manner to MeHg-induced Ca(2+) i dysregulation of CGCs.


Subject(s)
Cell Movement/drug effects , Cerebellum/cytology , Cerebellum/metabolism , Methylmercury Compounds/pharmacology , Receptors, GABA-A/drug effects , Aniline Compounds , Animals , Animals, Newborn , Bicuculline/pharmacology , Calcium Signaling/drug effects , Cell Survival/drug effects , Cerebellum/drug effects , Cytoplasmic Granules/drug effects , Cytoplasmic Granules/metabolism , Female , Fluorescent Dyes , GABA Agonists/pharmacology , GABA Antagonists/pharmacology , In Vitro Techniques , Male , Muscimol/pharmacology , Pregnancy , Purkinje Cells/drug effects , Rats , Xanthenes
3.
Front Cell Neurosci ; 17: 1226194, 2023.
Article in English | MEDLINE | ID: mdl-37650071

ABSTRACT

Introduction: Botulinum neurotoxin (BoNT) causes neuroparalytic disease and death by blocking neuromuscular transmission. There are no specific therapies for clinical botulism and the only treatment option is supportive care until neuromuscular function spontaneously recovers, which can take weeks or months after exposure. The highly specialized neuromuscular junction (NMJ) between phrenic motor neurons and diaphragm muscle fibers is the main clinical target of BoNT. Due to the difficulty in eliciting respiratory paralysis without a high mortality rate, few studies have characterized the neurophysiological mechanisms involved in diaphragm recovery from intoxication. Here, we develop a mouse model of botulism that involves partial paralysis of respiratory muscles with low mortality rates, allowing for longitudinal analysis of recovery. Methods and results: Mice challenged by systemic administration of 0.7 LD50 BoNT/A developed physiological signs of botulism, such as respiratory depression and reduced voluntary running activity, that persisted for an average of 8-12 d. Studies in isolated hemidiaphragm preparations from intoxicated mice revealed profound reductions in nerve-elicited, tetanic and twitch muscle contraction strengths that recovered to baseline 21 d after intoxication. Despite apparent functional recovery, neurophysiological parameters remained depressed for 28 d, including end plate potential (EPP) amplitude, EPP success rate, quantal content (QC), and miniature EPP (mEPP) frequency. However, QC recovered more quickly than mEPP frequency, which could explain the discrepancy between muscle function studies and neurophysiological recordings. Hypothesizing that differential modulation of voltage-gated calcium channels (VGCC) contributed to the uncoupling of QC from mEPP frequency, pharmacological inhibition studies were used to study the contributions of different VGCCs to neurophysiological function. We found that N-type VGCC and P/Q-type VGCC partially restored QC but not mEPP frequency during recovery from paralysis, potentially explaining the accelerated recovery of evoked release versus spontaneous release. We identified additional changes that presumably compensate for reduced acetylcholine release during recovery, including increased depolarization of muscle fiber resting membrane potential and increased quantal size. Discussion: In addition to identifying multiple forms of compensatory plasticity that occur in response to reduced NMJ function, it is expected that insights into the molecular mechanisms involved in recovery from neuromuscular paralysis will support new host-targeted treatments for multiple neuromuscular diseases.

4.
Toxicon ; 147: 47-53, 2018 Jun 01.
Article in English | MEDLINE | ID: mdl-29054436

ABSTRACT

Botulinum neurotoxins (BoNTs) are exceedingly potent neurological poisons that block cholinergic release in the peripheral nervous system and cause death by asphyxiation. While post-exposure prophylaxis can effectively eliminate toxin in the bloodstream, there are no clinically effective treatments to prevent or reverse disease once BoNT has entered the neuron. To address the need for post-symptomatic countermeasures, we designed and developed an in vitro assay based on whole-cell, patch-clamp electrophysiological monitoring of miniature excitatory post-synaptic currents in synaptically active murine embryonic stem cell-derived neurons. This synaptic function-based assay was used to assess the efficacy of rationally selected drugs to restore neurotransmission in neurons comprehensively intoxicated by BoNT/A. Based on clinical reports suggesting that elevated Ca2+ signaling promotes symptomatic relief from botulism, we identified seven candidate drugs that modulate presynaptic Ca2+ signaling and assessed their ability to reverse BoNT/A-induced synaptic blockade. The most effective drugs from the screen were found to phasically agonize voltage-gated calcium channel (VGCC) activity. Lead candidates were then applied to ex vivo studies in BoNT/A-paralyzing mouse phrenic nerve-hemidiaphragm (PND) preparations. Treatment of PNDs with VGCC agonists after paralytic onset transiently potentiated nerve-elicited muscle contraction and delayed progression to neuromuscular failure. Collectively, this study suggests that Ca2+-modulating drugs represent a novel symptomatic treatment for neuromuscular paralysis following BoNT/A poisoning.


Subject(s)
Botulinum Toxins/toxicity , Synaptic Transmission/drug effects , Animals , Calcium/metabolism , Calcium Channels , Diaphragm/drug effects , Mice , Neurons/drug effects , Organ Culture Techniques , Phrenic Nerve/drug effects
6.
Toxicol Sci ; 149(2): 503-15, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26615023

ABSTRACT

Clinical manifestations of tetanus and botulism result from an intricate series of interactions between clostridial neurotoxins (CNTs) and nerve terminal proteins that ultimately cause proteolytic cleavage of SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins and functional blockade of neurotransmitter release. Although detection of cleaved SNARE proteins is routinely used as a molecular readout of CNT intoxication in cultured cells, impaired synaptic function is the pathophysiological basis of clinical disease. Work in our laboratory has suggested that the blockade of synaptic neurotransmission in networked neuron cultures offers a phenotypic readout of CNT intoxication that more closely replicates the functional endpoint of clinical disease. Here, we explore the value of measuring spontaneous neurotransmission frequencies as novel and functionally relevant readouts of CNT intoxication. The generalizability of this approach was confirmed in primary neuron cultures as well as human and mouse stem cell-derived neurons exposed to botulinum neurotoxin serotypes A-G and tetanus neurotoxin. The sensitivity and specificity of synaptic activity as a reporter of intoxication was evaluated in assays representing the principal clinical and research purposes of in vivo studies. Our findings confirm that synaptic activity offers a novel and functionally relevant readout for the in vitro characterizations of CNTs. They further suggest that the analysis of synaptic activity in neuronal cell cultures can serve as a surrogate for neuromuscular paralysis in the mouse lethal assay, and therefore is expected to significantly reduce the need for terminal animal use in toxin studies and facilitate identification of candidate therapeutics in cell-based screening assays.


Subject(s)
Botulinum Toxins/toxicity , Metalloendopeptidases/toxicity , Neurons/drug effects , Synaptic Transmission/drug effects , Tetanus Toxin/toxicity , Animals , Cells, Cultured , Dizocilpine Maleate/pharmacology , Dose-Response Relationship, Drug , Embryonic Stem Cells/drug effects , Embryonic Stem Cells/physiology , Excitatory Postsynaptic Potentials/drug effects , Humans , Mice , Neurons/physiology , Rats , SNARE Proteins/metabolism , Synaptosomal-Associated Protein 25/analysis
7.
World J Stem Cells ; 7(6): 899-921, 2015 Jul 26.
Article in English | MEDLINE | ID: mdl-26240679

ABSTRACT

Functional synaptogenesis and network emergence are signature endpoints of neurogenesis. These behaviors provide higher-order confirmation that biochemical and cellular processes necessary for neurotransmitter release, post-synaptic detection and network propagation of neuronal activity have been properly expressed and coordinated among cells. The development of synaptic neurotransmission can therefore be considered a defining property of neurons. Although dissociated primary neuron cultures readily form functioning synapses and network behaviors in vitro, continuously cultured neurogenic cell lines have historically failed to meet these criteria. Therefore, in vitro-derived neuron models that develop synaptic transmission are critically needed for a wide array of studies, including molecular neuroscience, developmental neurogenesis, disease research and neurotoxicology. Over the last decade, neurons derived from various stem cell lines have shown varying ability to develop into functionally mature neurons. In this review, we will discuss the neurogenic potential of various stem cells populations, addressing strengths and weaknesses of each, with particular attention to the emergence of functional behaviors. We will propose methods to functionally characterize new stem cell-derived neuron (SCN) platforms to improve their reliability as physiological relevant models. Finally, we will review how synaptically active SCNs can be applied to accelerate research in a variety of areas. Ultimately, emphasizing the critical importance of synaptic activity and network responses as a marker of neuronal maturation is anticipated to result in in vitro findings that better translate to efficacious clinical treatments.

SELECTION OF CITATIONS
SEARCH DETAIL