Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 96
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Stud Mycol ; 108: 1-411, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39100921

ABSTRACT

The global diversity of fungi has been estimated between 2 to 11 million species, of which only about 155 000 have been named. Most fungi are invisible to the unaided eye, but they represent a major component of biodiversity on our planet, and play essential ecological roles, supporting life as we know it. Although approximately 20 000 fungal genera are presently recognised, the ecology of most remains undetermined. Despite all this diversity, the mycological community actively researches some fungal genera more commonly than others. This poses an interesting question: why have some fungal genera impacted mycology and related fields more than others? To address this issue, we conducted a bibliometric analysis to identify the top 100 most cited fungal genera. A thorough database search of the Web of Science, Google Scholar, and PubMed was performed to establish which genera are most cited. The most cited 10 genera are Saccharomyces, Candida, Aspergillus, Fusarium, Penicillium, Trichoderma, Botrytis, Pichia, Cryptococcus and Alternaria. Case studies are presented for the 100 most cited genera with general background, notes on their ecology and economic significance and important research advances. This paper provides a historic overview of scientific research of these genera and the prospect for further research. Citation: Bhunjun CS, Chen YJ, Phukhamsakda C, Boekhout T, Groenewald JZ, McKenzie EHC, Francisco EC, Frisvad JC, Groenewald M, Hurdeal VG, Luangsa-ard J, Perrone G, Visagie CM, Bai FY, Blaszkowski J, Braun U, de Souza FA, de Queiroz MB, Dutta AK, Gonkhom D, Goto BT, Guarnaccia V, Hagen F, Houbraken J, Lachance MA, Li JJ, Luo KY, Magurno F, Mongkolsamrit S, Robert V, Roy N, Tibpromma S, Wanasinghe DN, Wang DQ, Wei DP, Zhao CL, Aiphuk W, Ajayi-Oyetunde O, Arantes TD, Araujo JC, Begerow D, Bakhshi M, Barbosa RN, Behrens FH, Bensch K, Bezerra JDP, Bilanski P, Bradley CA, Bubner B, Burgess TI, Buyck B, Cadez N, Cai L, Calaça FJS, Campbell LJ, Chaverri P, Chen YY, Chethana KWT, Coetzee B, Costa MM, Chen Q, Custódio FA, Dai YC, Damm U, de Azevedo Santiago ALCM, De Miccolis Angelini RM, Dijksterhuis J, Dissanayake AJ, Doilom M, Dong W, Alvarez-Duarte E, Fischer M, Gajanayake AJ, Gené J, Gomdola D, Gomes AAM, Hausner G, He MQ, Hou L, Iturrieta-González I, Jami F, Jankowiak R, Jayawardena RS, Kandemir H, Kiss L, Kobmoo N, Kowalski T, Landi L, Lin CG, Liu JK, Liu XB, Loizides M, Luangharn T, Maharachchikumbura SSN, Makhathini Mkhwanazi GJ, Manawasinghe IS, Marin-Felix Y, McTaggart AR, Moreau PA, Morozova OV, Mostert L, Osiewacz HD, Pem D, Phookamsak R, Pollastro S, Pordel A, Poyntner C, Phillips AJL, Phonemany M, Promputtha I, Rathnayaka AR, Rodrigues AM, Romanazzi G, Rothmann L, Salgado-Salazar C, Sandoval-Denis M, Saupe SJ, Scholler M, Scott P, Shivas RG, Silar P, Souza-Motta CM, Silva-Filho AGS, Spies CFJ, Stchigel AM, Sterflinger K, Summerbell RC, Svetasheva TY, Takamatsu S, Theelen B, Theodoro RC, Thines M, Thongklang N, Torres R, Turchetti B, van den Brule T, Wang XW, Wartchow F, Welti S, Wijesinghe SN, Wu F, Xu R, Yang ZL, Yilmaz N, Yurkov A, Zhao L, Zhao RL, Zhou N, Hyde KD, Crous PW (2024). What are the 100 most cited fungal genera? Studies in Mycology 108: 1-411. doi: 10.3114/sim.2024.108.01.

2.
Plant Dis ; 103(2): 223-237, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30484755

ABSTRACT

Integrated Fusarium head blight (FHB) management programs consisting of different combinations of cultivar resistance class and an application of the fungicide prothioconazole + tebuconazole at or after 50% early anthesis were evaluated for efficacy against FHB incidence (INC; percentage of diseased spikes), index (IND; percentage of diseased spikelets per spike), Fusarium damaged kernel (FDK), deoxynivalenol (DON) toxin contamination, grain yield, and test weight (TW) in inoculated field trials conducted in 11 U.S. states in 2014 and 2015. Mean log response ratios and corresponding percent control values for INC, IND, FDK, and DON, and mean differences in yield and TW relative to a nontreated, inoculated susceptible check (S_CK), were estimated through network meta-analyses as measures of efficacy. Results from the analyses were then used to estimate the economic benefit of each management program for a range of grain prices and fungicide applications costs. Management programs consisting of a moderately resistant (MR) cultivar treated with the fungicide were the most efficacious, reducing INC by 60 to 69%, IND by 71 to 76%, FDK by 66 to 72%, and DON by 60 to 64% relative to S_CK, compared with 56 to 62% for INC, 68 to 72% for IND, 66 to 68% for FDK, and 58 to 61% for DON for programs with a moderately susceptible (MS) cultivar. The least efficacious programs were those with a fungicide application to a susceptible (S) cultivar, with less than a 45% reduction of INC, IND, FDK, or DON. All programs were more efficacious under conditions favorable for FHB compared with less favorable conditions, with applications made at 50% early anthesis being of comparable efficacy to those made 2 to 7 days later. Programs with an MS cultivar resulted in the highest mean yield increases relative to S_CK (541 to 753 kg/ha), followed by programs with an S cultivar (386 to 498 kg/ha) and programs with an MR cultivar (250 to 337 kg/ha). Integrated management programs with an MS or MR cultivar treated with the fungicide at or after 50% early anthesis were the most likely to result in a 50 or 75% control of IND, FDK, or DON in a future trial. At a fixed fungicide application cost, these programs were $4 to $319/MT more economically beneficial than corresponding fungicide-only programs, depending on the cultivar and grain price. These findings demonstrate the benefits of combining genetic resistance with a prothioconazole + tebuconazole treatment to manage FHB, even if that treatment is applied a few days after 50% early anthesis.


Subject(s)
Disease Resistance , Fungicides, Industrial , Fusarium , Triticum , Disease Resistance/genetics , Fungicides, Industrial/pharmacology , Fusarium/drug effects , Fusarium/genetics , Plant Diseases/microbiology , Triazoles/pharmacology , Triticum/microbiology
3.
Phytopathology ; 108(9): 1078-1088, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29658843

ABSTRACT

Foliar fungicide use in hybrid maize in the United States was rare before 2000. The decade from 2000 to 2010 saw foliar fungicides increasingly applied to maize in the absence of appreciable disease pressure, a practice seemingly at odds with integrated pest management philosophy. Yet, it is commonly believed that growers do not employ management strategies unless there are perceived benefits. Maize (corn) growers (CGs) and certified crop advisors (CCAs) across four Midwestern states (Iowa, Illinois, Ohio, and Wisconsin) were surveyed to better understand their practices, values and perceptions concerning the use of foliar fungicides during 2005 to 2009. The survey results demonstrated the rapid rise in maize foliar fungicide applications from 2000 through 2008, with 84% of CGs who sprayed having used a foliar fungicide in maize production for the very first time during 2005 to 2009. During 2005 to 2009, 73% of CCAs had recommended using a foliar fungicide, but only 35% of CGs sprayed. Perceived yield gains, conditional on having sprayed, were above the break-even point on average. However, negative yield responses were also observed by almost half of CCAs and a quarter of CGs. Hybrid disease resistance was a more important factor to economically successful maize production than foliar fungicides. Diseases as a yield-limiting factor were more important to CGs than CCAs. As a group, CGs were not as embracing of foliar fungicide as were CCAs, and remained more conservative about the perceived benefits to yield.


Subject(s)
Disease Resistance , Fungicides, Industrial/administration & dosage , Plant Diseases/prevention & control , Zea mays/drug effects , Consultants , Farmers , Illinois , Iowa , Ohio , Plant Diseases/microbiology , Plant Leaves/drug effects , Plant Leaves/genetics , Plant Leaves/growth & development , Plant Leaves/microbiology , Surveys and Questionnaires , Wisconsin , Zea mays/genetics , Zea mays/growth & development , Zea mays/microbiology
4.
Plant Dis ; 102(11): 2241-2252, 2018 11.
Article in English | MEDLINE | ID: mdl-30222055

ABSTRACT

Pythium seedling blight, which can be caused by a number of Pythium spp., is a disease that affects soybean (Glycine max) in the United States and Canada. Pythium ultimum var. ultimum, one of the most common pathogenic species, is favored by cool, wet conditions in early spring and causes seed decay, root rot, and seedling damping-off. In all, 102 major ancestors of modern North American cultivars and "first progeny" cultivars developed directly from ancestral lines were evaluated for resistance to P. ultimum var. ultimum and two other species of Pythium in greenhouse assays. Several ancestors and first progeny cultivars, as well as the resistant check Archer, had varying levels of partial resistance to an Illinois isolate of P. ultimum var. ultimum. In a subsequent experiment, four of the most resistant lines (PI 84637, Maple Isle, Fiskeby III, and Fiskeby 840-7-3) and the susceptible cultivar Kanro were screened for resistance against isolates of P. irregulare and P. sylvaticum, and resistance to P. ultimum var. ultimum was confirmed. The lines that were partially resistant to P. ultimum var. ultimum in the first experiment were also partially resistant to P. irregulare and P. sylvaticum. The P. ultimum var. ultimum isolate was the most aggressive of the three isolates, followed by the P. irregulare and P. sylvaticum isolates. Modern cultivars descended from the soybean lines with partial resistance to these pathogens could be useful sources of resistance to Pythium seedling blight if they are found to have similar levels of resistance.


Subject(s)
Disease Resistance/genetics , Glycine max/genetics , Plant Diseases/immunology , Pythium/physiology , Plant Diseases/parasitology , Seedlings/genetics , Seedlings/immunology , Seedlings/microbiology , Glycine max/immunology , Glycine max/parasitology , Species Specificity
5.
Plant Dis ; 102(12): 2602-2615, 2018 12.
Article in English | MEDLINE | ID: mdl-30295564

ABSTRACT

Field trials were conducted in 17 U.S. states to evaluate the effects of quinone outside inhibitor (QoI) and demethylation inhibitor (DMI) fungicide programs on Fusarium head blight index (IND) and deoxynivalenol (DON) toxin in wheat. Four DMI-only treatments applied at Feekes 10.5.1, five QoI-only treatments applied between Feekes 9 or Feekes 10.5, three QoI+DMI mixtures applied at Feekes 10.5, and three treatments consisting of a QoI at Feekes 9 followed by a DMI at Feekes 10.5.1 were evaluated. Network meta-analytical models were fitted to log-transformed mean IND and DON data and estimated contrasts of log means were used to obtain estimates of mean percent controls relative to the nontreated check as measures of efficacy. Results from the meta-analyses were also used to assess the risk of DON increase in future trials. DMI at Feekes 10.5.1 were the most effective programs against IND and DON and the least likely to increase DON in future trials. QoI-only programs increased mean DON over the nontreated checks and were the most likely to do so in future trials, particularly when applied at Feekes 10.5. The effects of QoI+DMI combinations depended on the active ingredients and whether the two were applied as a mixture at heading or sequentially. Following a Feekes 9 QoI application with a Feekes 10.5.1 application of a DMI reduced the negative effect of the QoI on DON but was not sufficient to achieve the efficacy of the Feekes 10.5.1 DMI-only treatments. Our results suggest that one must be prudent when using QoI treatments under moderate to high risk of FHB, particularly where the QoI is used without an effective DMI applied in combination or in sequence.


Subject(s)
Fungicides, Industrial/pharmacology , Fusarium/drug effects , Plant Diseases/prevention & control , Strobilurins/pharmacology , Trichothecenes/pharmacology , Triticum/microbiology , Demethylation/drug effects , Plant Diseases/microbiology
6.
Plant Dis ; 100(7): 1429-1437, 2016 Jul.
Article in English | MEDLINE | ID: mdl-30686193

ABSTRACT

Pathotype diversity of Phytophthora sojae was assessed in 11 states in the United States during 2012 and 2013. Isolates of P. sojae were recovered from 202 fields, either from soil samples using a soybean seedling bioassay or by isolation from symptomatic plants. Each isolate was inoculated directly onto 12 soybean differentials; no Rps gene or Rps 1a, 1b, 1c, 1k, 3a, 3b, 3c, 4, 6, 7, or 8. There were 213 unique virulence pathotypes identified among the 873 isolates collected. None of the Rps genes were effective against all the isolates collected but Rps6 and Rps8 were effective against the majority of isolates collected in the northern regions of the sampled area. Virulence toward Rps1a, 1b, 1c, and 1k ranged from 36 to 100% of isolates collected in each state, while virulence to Rps6 and Rps8 was less than 36 and 10%, respectively. Depending on the state, the effectiveness of Rps3a ranged from totally effective to susceptible to more than 40% of the isolates. Pathotype complexity has increased in populations of P. sojae in the United States, emphasizing the increasing importance of stacked Rps genes in combination with high partial resistance as a means of limiting losses to P. sojae.

7.
Plant Dis ; 99(10): 1434-1444, 2015 Oct.
Article in English | MEDLINE | ID: mdl-30690986

ABSTRACT

Standard foliar fungicide applications in wheat are usually made between flag leaf emergence (Feekes [FK] 8) and heading (FK10.5) to minimize damage to the flag leaf. However, over the last few years, new fungicide programs such as applications prior to FK8 and split half-rate applications have been implemented, although there are few data pertaining to the efficacy of these programs. Eight experiments were conducted in Illinois, Indiana, Ohio, and Wisconsin from 2010 to 2012 to compare new programs to standard FK8 and FK10 programs in terms of disease control and yield response. The programs evaluated consisted of single full-rate applications of 19% tebuconazole + 19% prothioconazole (Prosaro) or 23.6% pyraclostrobin (Headline) at FK5 (pseudostem strongly erected), FK8, or FK10, or split half rates at FK5 and 8 (FK5+8), plus an untreated check (CK). Leaf blotch (LB) severity and yield data were collected and random effects meta-analytical models fitted to estimate the overall log odds ratio of disease reaching the flag leaf ( L¯OR ) and mean yield increase ( D¯ ) for each fungicide program relative to CK. For all programs, L¯OR was significantly different from zero (P < 0.05). Based on estimated odds ratios (OR = exp[ L¯OR ]), the two FK8 programs reduced the risk of LB reaching the flag leaf by 55 and 75%, compared with 62 and 69% and 67 and 70% for the two FK10 and FK5+8 programs, respectively, and only 32 and 37% for the two FK5 programs. D¯ was significantly different from zero (P ≤ 0.003) for all FK8, FK10, and FK5+8 programs, with values of 233 and 245, 175 and 220, and 175 and 187 kg ha-1 for the FK10, FK5+8, and FK8 programs, respectively. Differences in mean yield response between Headline and Prosaro were not statistically significant (P > 0.05). The probability of profitability was estimated for each program for a range of grain prices and fungicide application costs. All FK8, FK10, and FK5+8 programs had more than an 80% chance of resulting in a positive yield response, compared with 63 and 67% for the two FK5 programs. The chance of obtaining a yield increase of 200 kg ha-1, required to offset an application cost of $36 ha-1 at a grain price of $0.18 kg-1, ranged from 44 to 60% for FK8, FK10 and FK5+8 programs compared with 22 and 25% for the two FK5 programs. These findings could be used to help inform fungicide application decisions for LB diseases in soft red winter wheat.

8.
Plant Dis ; 99(4): 544-550, 2015 Apr.
Article in English | MEDLINE | ID: mdl-30699555

ABSTRACT

Frogeye leaf spot of soybean, caused by the fungus Cercospora sojina, reduces soybean yields in most of the top-producing countries around the world. Control strategies for frogeye leaf spot can rely heavily on quinone outside inhibitor (QoI) fungicides. In 2010, QoI fungicide-resistant C. sojina isolates were identified in Tennessee for the first time. As the target of QoI fungicides, the cytochrome b gene present in fungal mitochondria has played a key role in the development of resistance to this fungicide class. The cytochrome b genes from three QoI-sensitive and three QoI-resistant C. sojina isolates were cloned and sequenced. The complete coding sequence of the cytochrome b gene was identified and found to encode 396 amino acids. The QoI-resistant C. sojina isolates contained the G143A mutation in the cytochrome b gene, a guanidine to cytosine transversion at the second position in codon 143 that causes an amino acid substitution of alanine for glycine. C. sojina-specific polymerase chain reaction primer sets and TaqMan probes were developed to efficiently discriminate QoI-resistant and -sensitive isolates. The molecular basis of QoI fungicide resistance in field isolates of C. sojina was identified as the G143A mutation, and specific molecular approaches were developed to discriminate and to track QoI-resistant and -sensitive isolates of C. sojina.

9.
Plant Dis ; 98(3): 328-335, 2014 Mar.
Article in English | MEDLINE | ID: mdl-30708417

ABSTRACT

Blackleg, caused by Leptosphaeria maculans, was first reported on canola (Brassica napus) in North Dakota in 1991. In 2003, L. maculans strains of previously unreported pathogenicity groups (PG) were discovered in the region. Since then, however, little has been known about the prevalence of L. maculans in the state. The objectives of this study, therefore, were to characterize the prevalence of blackleg and of L. maculans PGs in North Dakota. Prevalence was assessed in 2004, 2007, and 2009 in 572 fields. PG determination for 216 L. maculans isolates retrieved from blackleg symptomatic stems during that period was achieved on a set of B. napus differential cultivars. Blackleg prevalence increased from 28% in 2004 to 63 and 74% in 2007 and 2009, respectively. Similarly, the number of fields with blackleg incidences >30% increased from 4% in 2004 to 12 and 23% in 2007 and 2009, respectively. In all years, PG-4 was the predominant group, while PG-2, once predominant, accounted for <2% of isolates. Increase in the prevalence and incidence of blackleg as well as the frequency of virulent PGs over the last 10 years is a serious threat to the canola industry of the region.

10.
Plant Dis ; 98(10): 1387-1397, 2014 Oct.
Article in English | MEDLINE | ID: mdl-30703938

ABSTRACT

Seven field experiments were conducted in Ohio and Illinois between 2011 and 2013 to evaluate postanthesis applications of prothioconazole + tebuconazole and metconazole for Fusarium head blight and deoxynivalenol (DON) control in soft red winter wheat. Treatments consisted of an untreated check and fungicide applications made at early anthesis (A), 2 (A+2), 4 (A+4), 5 (A+5), or 6 (A+6) days after anthesis. Six of the seven experiments were augmented with artificial Fusarium graminearum inoculum, and the other was naturally infected. FHB index (IND), Fusarium damaged kernels (FDK), and DON concentration of grain were quantified. All application timings led to significantly lower mean arcsine-square-root-transformed IND and FDK (arcIND and arcFDK) and log-transformed (logDON) than in the untreated check; however, arcIND, arcFDK, and logDON for the postanthesis applications were generally not significantly different from those for the anthesis applications. Relative to the check, A+2 resulted in the highest percent control for both IND and DON, 69 and 54%, respectively, followed by A+4 (62 and 52%), A+6 (62 and 48%), and A (56 and 50%). A+2 and A+6 significantly reduced IND by 30 and 14%, respectively, relative to the anthesis application. Postanthesis applications did not, however, reduce DON relative to the anthesis application. These results suggest that applications made up to 6 days following anthesis may be just as effective as, and sometimes more effective than, anthesis applications at reducing FHB and DON.

11.
Plant Dis ; 98(7): 864-875, 2014 Jul.
Article in English | MEDLINE | ID: mdl-30708845

ABSTRACT

Existing crop monitoring programs determine the incidence and distribution of plant diseases and pathogens and assess the damage caused within a crop production region. These programs have traditionally used observed or predicted disease and pathogen data and environmental information to prescribe management practices that minimize crop loss. Monitoring programs are especially important for crops with broad geographic distribution or for diseases that can cause rapid and great economic losses. Successful monitoring programs have been developed for several plant diseases, including downy mildew of cucurbits, Fusarium head blight of wheat, potato late blight, and rusts of cereal crops. A recent example of a successful disease-monitoring program for an economically important crop is the soybean rust (SBR) monitoring effort within North America. SBR, caused by the fungus Phakopsora pachyrhizi, was first identified in the continental United States in November 2004. SBR causes moderate to severe yield losses globally. The fungus produces foliar lesions on soybean (Glycine max) and other legume hosts. P. pachyrhizi diverts nutrients from the host to its own growth and reproduction. The lesions also reduce photosynthetic area. Uredinia rupture the host epidermis and diminish stomatal regulation of transpiration to cause tissue desiccation and premature defoliation. Severe soybean yield losses can occur if plants defoliate during the mid-reproductive growth stages. The rapid response to the threat of SBR in North America resulted in an unprecedented amount of information dissemination and the development of a real-time, publicly available monitoring and prediction system known as the Soybean Rust-Pest Information Platform for Extension and Education (SBR-PIPE). The objectives of this article are (i) to highlight the successful response effort to SBR in North America, and (ii) to introduce researchers to the quantity and type of data generated by SBR-PIPE. Data from this system may now be used to answer questions about the biology, ecology, and epidemiology of an important pathogen and disease of soybean.

12.
Plant Dis ; 96(5): 767, 2012 May.
Article in English | MEDLINE | ID: mdl-30727541

ABSTRACT

Quinone outside inhibitor (QoI; also known as strobilurin) fungicides sometimes are applied to soybean (Glycine max) fields to help manage frogeye leaf spot of soybean (caused by Cercospora sojina) in the United States. In August 2010, soybean leaflets exhibiting severe frogeye leaf spot symptoms were collected from a field in Lauderdale County, TN that had been treated twice with pyraclostrobin during that growing season. The field had been planted into soybean annually since at least 2008, and a QoI fungicide had been applied to the field in each of those years. Fifteen single-spore isolates of C. sojina were recovered from the affected soybean leaflets. These isolates were identified as C. sojina based on the observed symptoms on the soybean leaflets and the morphology and size of conidiophores and conidia (3). In addition, DNA was extracted from the cultures, PCR amplification of the small subunit rDNA and internal transcribed spacer (ITS) region was conducted (2), and the resulting PCR product was sequenced at the Keck Biotechnology Center at the University of Illinois, Urbana. The resulting nucleotide sequences were compared with sequences deposited in the nucleotide database ( http://www.ncbi.nlm.nih.gov ) and showed highest homology to sequences of C. sojina. The isolates were tested for their sensitivity to technical-grade formulations of the QoI fungicides azoxystrobin, pyraclostrobin, and trifloxystrobin with an in vitro conidial germination assay with fungicide + salicylhydroxamic acid (SHAM)-amended potato dextrose agar as described by Bradley and Pedersen (1). The effective concentration at which 50% conidial germination was inhibited (EC50) was determined for all 15 C. sojina isolates, with mean values of 3.1644 (2.7826 to 4.5409), 0.3297 (0.2818 to 0.6404), and 0.8573 (0.3665 to 2.5119) µg/ml for azoxystrobin, pyraclostrobin, and trifloxystrobin, respectively. When compared with previously established mean EC50 values of C. sojina baseline isolates (4), EC50 values of the C. sojina isolates collected from the Lauderdale County, TN soybean field were approximately 249- to 7,144-fold greater than the EC50 values of the baseline isolates. These results indicate that all isolates recovered from the Lauderdale County, TN soybean field were highly resistant to QoI fungicides. To our knowledge, this is the first report of QoI fungicide resistance occurring in C. sojina, and surveys for additional QoI fungicide-resistant C. sojina isolates are needed to determine their prevalence and geographic distribution. In light of these findings, soybean growers in Tennessee and adjacent states should consider utilizing alternative frogeye leaf spot management practices such as planting resistant cultivars, rotating to nonhost crops, and tilling affected soybean residue (3). References: (1) C. A. Bradley and D. K. Pedersen. Plant Dis. 95:189, 2011. (2) N. S. Lord et al. FEMS Microbiol. Ecol. 42:327, 2002. (3) D. V. Phillips. Page 20 in: Compendium of Soybean Diseases. 4th ed. G. L. Hartman et al., eds. The American Phytopathological Society, St. Paul, MN, 1999. (4) G. Zhang et al. Phytopathology (Abstr.) 100(suppl.):S145, 2010.

13.
Plant Dis ; 96(7): 957-967, 2012 Jul.
Article in English | MEDLINE | ID: mdl-30727217

ABSTRACT

Integration of host resistance and prothioconazole + tebuconazole fungicide application at anthesis to manage Fusarium head blight (FHB) and deoxynivalenol (DON) in wheat was evaluated using data from over 40 trials in 12 U.S. states. Means of FHB index (index) and DON from up to six resistance class-fungicide management combinations per trial (susceptible treated [S_TR] and untreated [S_UT]; moderately susceptible treated [MS_TR] and untreated [MS_UT]; moderately resistant treated [MR_TR] and untreated [MR_UT]) were used in multivariate meta-analyses, and mean log response ratios across trials were estimated and transformed to estimate mean percent control ( ) due to the management combinations relative to S_UT. All combinations led to a significant reduction in index and DON (P < 0.001). MR_TR was the most effective combination, with a of 76% for index and 71% for DON, followed by MS_TR (71 and 58%, respectively), MR_UT (54 and 51%, respectively), S_TR (53 and 39%, respectively), and MS_UT (43 and 30%, respectively). Calculations based on the principle of treatment independence showed that the combination of fungicide application and resistance was additive in terms of percent control for index and DON. Management combinations were ranked based on percent control relative to S_UT within each trial, and nonparametric analyses were performed to determine management combination stability across environments (trials) using the Kendall coefficient of concordance (W). There was a significant concordance of management combinations for both index and DON (P < 0.001), indicating a nonrandom ranking across environments and relatively low variability in the within-environment ranking of management combinations. MR_TR had the highest mean rank (best control relative to S_UT) and was one of the most stable management combinations across environments, with low rank stability variance (0.99 for index and 0.67 for DON). MS_UT had the lowest mean rank (poorest control) but was also one of the most stable management combinations. Based on Piepho's nonparametric rank-based variance homogeneity U test, there was an interaction of management combination and environment for index (P = 0.011) but not for DON (P = 0.147), indicating that the rank ordering for index depended somewhat on environment. In conclusion, although the magnitude of percent control will likely vary among environments, integrating a single tebuconazole + prothioconazole application at anthesis with cultivar resistance will be a more effective and stable management practice for both index and DON than either approach used alone.

14.
Phytopathology ; 101(9): 1122-32, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21554185

ABSTRACT

The use of foliar fungicides on field corn has increased greatly over the past 5 years in the United States in an attempt to increase yields, despite limited evidence that use of the fungicides is consistently profitable. To assess the value of using fungicides in grain corn production, random-effects meta-analyses were performed on results from foliar fungicide experiments conducted during 2002 to 2009 in 14 states across the United States to determine the mean yield response to the fungicides azoxystrobin, pyraclostrobin, propiconazole + trifloxystrobin, and propiconazole + azoxystrobin. For all fungicides, the yield difference between treated and nontreated plots was highly variable among studies. All four fungicides resulted in a significant mean yield increase relative to the nontreated plots (P < 0.05). Mean yield difference was highest for propiconazole + trifloxystrobin (390 kg/ha), followed by propiconazole + azoxystrobin (331 kg/ha) and pyraclostrobin (256 kg/ha), and lowest for azoxystrobin (230 kg/ha). Baseline yield (mean yield in the nontreated plots) had a significant effect on yield for propiconazole + azoxystrobin (P < 0.05), whereas baseline foliar disease severity (mean severity in the nontreated plots) significantly affected the yield response to pyraclostrobin, propiconazole + trifloxystrobin, and propiconazole + azoxystrobin but not to azoxystrobin. Mean yield difference was generally higher in the lowest yield and higher disease severity categories than in the highest yield and lower disease categories. The probability of failing to recover the fungicide application cost (p(loss)) also was estimated for a range of grain corn prices and application costs. At the 10-year average corn grain price of $0.12/kg ($2.97/bushel) and application costs of $40 to 95/ha, p(loss) for disease severity <5% was 0.55 to 0.98 for pyraclostrobin, 0.62 to 0.93 for propiconazole + trifloxystrobin, 0.58 to 0.89 for propiconazole + azoxystrobin, and 0.91 to 0.99 for azoxystrobin. When disease severity was >5%, the corresponding probabilities were 0.36 to 95, 0.25 to 0.69, 0.25 to 0.64, and 0.37 to 0.98 for the four fungicides. In conclusion, the high p(loss) values found in most scenarios suggest that the use of these foliar fungicides is unlikely to be profitable when foliar disease severity is low and yield expectation is high.


Subject(s)
Fungicides, Industrial/pharmacology , Plant Diseases/microbiology , Zea mays/drug effects , Zea mays/growth & development , Acetates/pharmacology , Carbamates/pharmacology , Edible Grain/drug effects , Edible Grain/growth & development , Edible Grain/microbiology , Imines/pharmacology , Methacrylates/pharmacology , Plant Leaves/growth & development , Plant Leaves/microbiology , Pyrazoles/pharmacology , Pyrimidines/pharmacology , Risk Factors , Strobilurins , Triazoles/pharmacology , United States , Zea mays/microbiology
15.
Plant Dis ; 95(2): 189-194, 2011 Feb.
Article in English | MEDLINE | ID: mdl-30743412

ABSTRACT

Cercospora zeae-maydis, the causal agent of gray leaf spot on corn (Zea mays), can cause severe yield loss in the United States. Quinone outside inhibitor (QoI) fungicides are effective tools that can be used to manage gray leaf spot, and their use has increased in corn production in the United States. In total, 61 C. zeae-maydis isolates collected from fields in which QoI fungicides had never been applied were tested in vitro using azoxystrobin-, pyraclostrobin-, or trifloxystrobin-amended medium to determine the effective fungicide concentration at which 50% of the conidial germination was inhibited (EC50). The effect of salicylhydroxamic acid (SHAM) also was evaluated for seven isolates to determine whether C. zeae-maydis is capable of using alternative respiration in azoxystrobin-amended medium. All seven C. zeae-maydis isolates tested had significantly greater (P < 0.02) EC50 values when SHAM was not included in medium amended with azoxystrobin, indicating that C. zeae-maydis has the potential to utilize alternative respiration to overcome QoI fungicide inhibition in vitro. Baseline EC50 values of azoxystrobin ranged from 0.003 to 0.031 µg/ml, with mean and median values of 0.018 and 0.019 µg/ml, respectively. Baseline EC50 values of pyraclostrobin ranged from 0.0003 to 0.0025 µg/ml, with mean and median values of 0.0010 and 0.0010 µg/ml, respectively. Baseline EC50 values of trifloxystrobin ranged from 0.0004 to 0.0034 µg/ml, with mean and median values of 0.0023 and 0.0024 µg/ml, respectively. These baseline sensitivity values will be used in a fungicide resistance monitoring program to determine whether shifts in sensitivity to QoI fungicides are occurring in C. zeae-maydis populations.

16.
Plant Dis ; 95(5): 616, 2011 May.
Article in English | MEDLINE | ID: mdl-30731968

ABSTRACT

Miscanthus sinensis Anderss., a perennial grass, is native to eastern Asia. It has been widely grown as an ornamental in temperate regions of the world, including the United States, and recently has become an important component of public and private sector bioenergy feedstock Miscanthus selection programs. In August 2008, stem rot and blight was observed on M. sinensis plants in two irregular patches, ~2 to 2.5 × 1 to 1.5 m each in a trial plot that was preceded by corn, at the University of Illinois Energy Farm near Urbana, IL. At the time of the observation, most plants were dead and the wilted tillers had black, soft rotted basal stems. A few plants were stunted and the crowns of the tillers had black-to-brown soft rot. Some tillers' leaves were dead and others had turned light brown. Sample tissue fragments were surface disinfested in 0.5% NaOCl and plated on 1% water agar (WA). After 3 days of incubation in the dark at 23°C, colonies were transferred to corn meal agar (CMA), potato dextrose agar (PDA), or 10% V8 juice agar and incubated at 23°C under continuous white light for up to 2 weeks. Morphological characteristics of the isolates correspond to those originally described for Pythium sylvaticum W.A. Campb. & J.W. Hendrix (1). The mycelia grew and covered the 10-cm-diameter plates within 5 days. On PDA, the culture was a creamy white mycelial mat of coenocytic hyphae. The isolates produced only globose, terminal or intercalary hyphal swellings ranging from 28 to 48 µm in diameter, but no oogonia were produced on any of the three growth media. No zoospores were produced when agar blocks bearing mycelium were flooded with distilled water or 1% soil water. Sequence analysis was performed with the internal transcribed spacer (ITS) region of the rDNA amplified with primer pair ITS1/ITS4 (3) and the mitochondrially encoded cytochrome c oxydase subunit II (cox II) gene using primers FM58/FM66 (2). The resulting 871-bp ITS nucleotide sequence (Accession No. HM991706) was identical among all three isolates analyzed and 99% identical (100% coverage) to ITS sequences of multiple isolates of P. sylvaticum in GenBank. Likewise, the 544-bp cox II sequence (Accession No. HQ454429) was 99% identical (97% coverage) to cox II sequences of multiple isolates of P. sylvaticum. Six pots of M. sinensis seedlings were inoculated by placing two CMA plugs of a 2-week-old culture of isolate F71 at the crown. The control pots were mock inoculated with sterile CMA plugs. The plants were incubated at ~90% relative humidity (RH) and 25°C day and 22°C night for 3 days, and thereafter left on the greenhouse bench at ~65% RH with alternating 9 h of darkness and 15 h of light. Three weeks after inoculation, two of the inoculated seedlings wilted, others were stunted with leaves wilting from the tip downwards and the stems rotting from the crown upward. A thick mat of mycelia was seen on the rotted basal stems. No symptoms were observed in the control. P. sylvaticum was reisolated from both the rotted basal stems and the wilted foliage. To our knowledge, this is the first report of P. sylvaticum on M. sinensis. Infestation of farm soils with P. sylvaticum could limit M. sinensis biomass production significantly by limiting seedling establishment. References: (1) W. A. Campbell and F. F. Hendrix. Mycologia 59:274, 1967. (2) F. M. Martin. Mycologia 92:711, 2000. (3) T. J. White et al. Page 38 in: PCR Protocols: A Guide to Methods and Applications. M. A. Innis et al., eds. Academic Press, San Diego, 1990.

17.
Plant Dis ; 95(10): 1318, 2011 Oct.
Article in English | MEDLINE | ID: mdl-30731678

ABSTRACT

In September 2009, sunflower (Helianthus annuus L.) plants (cv. Mycogen 8C451) from a University of Illinois field research trial in Fayette County, Illinois exhibited silvery gray girdling lesions on the lower stems and premature death. When lower stems and roots were split open, the pith tissue was compressed into layers. Black microsclerotia (90 to 180 µm) were present on the outside of the lower stem tissue and in the stem vascular tissue. Five pieces (approximately 1 cm long) of symptomatic stem tissue from five different affected plants (25 pieces total) were soaked in a 0.5% solution of NaOCl for 30 s, rinsed with sterile distilled water, and placed on potato dextrose agar (PDA; Becton, Dickinson, and Company, Franklin Lakes, NJ). Gray hyphae grew from all of the stem pieces, which subsequently turned black and formed black microsclerotia (75 to 175 µm). On the basis of plant symptoms and size and color of the microsclerotia, the disease was diagnosed as charcoal rot caused by Macrophomina phaseolina (Tassi) Goid (2). To confirm that the isolated fungus was M. phaseolina, DNA was extracted from the pure culture, and PCR amplification of a subunit rDNA and internal transcribed spacer (ITS) region with primers EF3RCNL and ITS4 was performed (3). The Keck Biotechnology Center at the University of Illinois, Urbana sequenced the PCR product. The resulting nucleotide sequence shared the highest homology (99%) with sequences of M. phaseolina when compared with the subunit rDNA and ITS sequences in the nucleotide database ( http://www.ncbi.nlm.nih.gov ). A greenhouse experiment was conducted to confirm pathogenicity; the greenhouse temperature was approximately 27°C and sunflower plants (cv. Cargill 270) were grown in pots and watered daily to maintain adequate soil moisture for growth. Sterile toothpicks were infested with M. phaseolina and placed through the stems (10 cm above the soil surface) of five 40-day-old sunflower plants that were approximately at growth stage R4 (1,4). Five sterile, noninfested toothpicks were similarly placed through sunflower plants to act as controls. Parafilm was used to hold the toothpick in the stem and seal the stem injury. Thirty-five days after inoculation, the mean lesion length on stems inoculated with M. phaseolina was 595 mm and no lesions developed on the control plants. M. phaseolina-inoculated plants also began to wilt and die. Cultures identical to the original M. phaseolina isolate were reisolated from stem lesions of the M. phaseolina-inoculated plants. This is the first report of charcoal rot on sunflower in Illinois to our knowledge. Sunflower is currently not a major crop grown in Illinois, but on-going research is focused on evaluating sunflower as a potential late-planted crop to follow winter wheat. If sunflower production increases in Illinois, growers may need to take precautions to manage charcoal rot. References: (1) L. K. Edmunds. Phytopathology 54:514, 1964. (2) T. Gulya et al. Page 263 in: Sunflower Technology and Production. American Society of Agronomy, Madison, WI, 1997. (3) N. S. Lord et al. FEMS Microbiol. Ecol. 42:327, 2002. (4) A. A. Schneiter and J. F. Miller. Crop Sci. 21:901, 1981.

18.
Plant Dis ; 94(1): 83-86, 2010 Jan.
Article in English | MEDLINE | ID: mdl-30754394

ABSTRACT

Quinone outside inhibitor (QoI) foliar fungicides can be effective at reducing foliar diseases in corn (Zea mays), and they have been shown to provide physiological benefits experimentally in other crops in the absence of disease. A new supplemental label for pyraclostrobin that was approved in January 2009 by the United States Environmental Protection Agency (EPA) states that corn plants applied with pyraclostrobin may have better tolerance to damage caused by hail. To determine the effects of QoI foliar fungicides on hail-damaged corn, field research trials were conducted near Champaign, IL in 2007 and 2008. Hail damage was simulated with a gasoline-powered string-mower at the V12 growth stage, which caused injury to leaves and defoliation. At VT, the foliar fungicides azoxystrobin and pyraclostrobin were applied to corn. Control treatments included a nontreated control and a nondamaged control. The simulated hail damage significantly (P ≤ 0.05) increased gray leaf spot severity (caused by Cercospora zeae-maydis) in 2007 but not in 2008. Simulated hail damage also significantly reduced yield compared with the nondamaged control in both 2007 and 2008. Foliar fungicides significantly reduced disease severity compared with the nontreated control in 2007 but not in 2008; however, foliar fungicides did not significantly improve yield in either the damaged or nondamaged plots compared with the nontreated controls. Results from our research trials indicated that foliar fungicides provided very little benefit to corn injured by simulated hail; thus, growers should consider factors other than hail damage when making fungicide application decisions for corn.

19.
Plant Dis ; 94(10): 1262, 2010 Oct.
Article in English | MEDLINE | ID: mdl-30743600

ABSTRACT

In August 2008, long and narrow lesions were observed on leaves of corn (Zea mays L.) growing in a field in Pope County, Illinois. Lesions were 10 to 35 × 50 to 250 mm and were cream to tan. Dark pycnidia inside the lesions were immersed and approximately 350 µm in diameter. Affected leaves were collected and placed into a moist chamber to encourage the development of conidia. Conidia developed in cirri and were dark, one septate, and 7 to 11 × 59 to 87 µm. Cirri were streaked onto potato dextrose agar (PDA; Becton, Dickinson, and Company, Franklin Lakes, NJ) and cultures arising from single conidia were transferred and maintained. On the basis of the corn leaf symptoms and the morphological characteristics of the pycnidia and conidia, the fungus was tentatively identified as Stenocarpella macrospora (Earle) Sutton (1). To complete Koch's postulates, 'Garst 84H80-3000GT' corn was inoculated in the greenhouse. Conidia were produced by placing a S. macrospora isolate from Pope County, IL onto water agar containing autoclaved corn leaves and incubating at room temperature until pycnidia and conidia were produced (approximately 3 weeks). A conidial suspension was used to inoculate the leaf whorls of corn plants (approximately at the V4 growth stage). Control plants were mock inoculated with sterile water. The experiment was repeated once over time. Twenty days after inoculation, all plants inoculated with S. macrospora conidia developed lesions similar to those observed in the field, and mock-inoculated plants remained symptomless. The fungus was reisolated on PDA from the symptomatic leaves. In August 2009, symptomatic leaves similar to those observed in Pope County, IL in 2008 were observed and collected from corn fields in Gallatin and Vermillion counties. Pycnidia and conidia from these lesions were similar to those described above, and isolates from single conidia were obtained from these samples. To confirm the identity of all isolates collected, PCR amplification of the small subunit rDNA and internal transcribed spacer (ITS) region with primers EF3RCNL and ITS4 was conducted (3). The PCR product was sequenced with these primers at the Keck Biotechnology Center at the University of Illinois, Urbana. The resulting nucleotide sequence was compared with small subunit rDNA and ITS sequences deposited in the GenBank nucleotide database, which revealed 99% homology to sequences of S. macrospora. In total, six of our S. macrospora isolates from Gallatin, Pope, and Vermillion counties were submitted to the United States Department of Agriculture-Agriculture Research Service Culture Collection in Peoria, IL, where they have received NRRL Accession Nos. 54190-54195. To our knowledge, this is the first report of S. macrospora affecting corn in Illinois. Although not observed in the Illinois corn fields described above, S. macrospora has been reported to infect stalks and ears (2). Because of the large leaf lesions caused by S. macrospora and its reported aggressiveness in causing disease on leaves, ears, and stalks, this pathogen has the potential to cause severe yield and quality losses to corn in the United States (2). References: (1) M. L. Carson. Diseases of minor importance or limited occurrence. Page 23 in: Compendium of Corn Diseases. 3rd ed. The American Phytopathological Society, St. Paul, MN, 1999. (2) F. M. Latterell and A. E. Rossi. Plant Dis. 67:725, 1983. (3) N. S. Lord et al. FEMS Microbiol. Ecol. 42:327, 2002.

20.
Plant Dis ; 94(2): 273, 2010 Feb.
Article in English | MEDLINE | ID: mdl-30754288

ABSTRACT

Sunflower rust caused by Puccinia helianthi (Schw.) is an autoecious and macrocyclic rust that occurs on wild perennial, wild annual, and cultivated sunflower species (Helianthus annuus L.). Severe epidemics of sunflower rust can significantly reduce yield and quality of cultivated sunflower (4). Uredinia of P. helianthi were observed in individual sunflower fields in four Illinois counties in 2008, namely; Champaign, LaSalle, McLean, and Livingston. Leaves with uredinia from each field were collected and shipped to the USDA-ARS Sunflower Pathology Laboratory in Fargo, ND. Urediniospores were harvested by rinsing leaves with Soltrol 170 isoparaffin solvent (Chevron Phillips Chemicals, Woodlands, TX). Urediniospores were increased by inoculating the spore suspension onto 21-day-old seedlings of susceptible oilseed hybrid Myc-7350 with a vacuum-pump powered atomizer. After the Soltrol 170 evaporated, plants were placed in a dew chamber for 24 h and then moved to a greenhouse at approximately 20 to 25°C with a 14-h photoperiod. When sporulating uredinia were visible, a bulk collection of urediniospores was made from samples of each location. Additionally, one single-pustule derived isolate from each location was obtained by harvesting urediniospores from a single pustule and increasing as above. To determine the virulence phenotypes, each single-pustule derived isolate and bulk collection were inoculated as above onto at least two replicated sets of the nine international differential lines (each set containing three plants per line) and evaluated after 14 days (1,2). The single-pustule isolates from LaSalle, Livingston, and McLean counties were determined to be virulence phenotype 300. The single-pustule isolate from Champaign produced no infection on any differential lines, including the susceptible, and was therefore considered not viable. The virulence phenotypes of the bulk samples were coded as 330 (Champaign), 324 (McLean), and 336 (Livingston and LaSalle). Virulence of all aforementioned virulence phenotypes was found to be common in a recent survey of 400 Midwestern P. helianthi samples collected in 2007 and 2008 (1). Although sunflower production is limited in Illinois, expansion could occur. This is particularly true in southern Illinois, where double cropping sunflower after winter wheat is a possibility. Urediniospore germination and infection is favored by free moisture and temperatures ranging from 10 to 25°C, while optimum temperature for spore development ranges from 20 to 35°C (3). These environmental conditions are often more common in Illinois than in the major sunflower-producing states in the Great Plains, where sunflower rust is a concern annually. Thus, determination of P. helianthi virulence phenotypes in Illinois may be important for future management of sunflower rust. References: (1) T. J. Gulya and S. G. Markell. National Sunflower Association. Online Publication/Gulya_RustStatus_09, 2009. (2) T. Gulya and S. Masirevic. FAO Eur. Res. Network on Sunflower. Bucarest, Romania. 31, 1995. (3) T. Gulya et al. Sunflower Diseases. Page 263 in: Sunflower Technology and Production. A. A. Schneiter, ed. American Society of Agronomy, Madison, WI, 1997. (4) S. Markell et al. Plant Dis. 93:668, 2009.

SELECTION OF CITATIONS
SEARCH DETAIL