Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
J Immunol ; 206(7): 1454-1468, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33674445

ABSTRACT

Bruton tyrosine kinase (BTK) is expressed in B cells and innate immune cells, acting as an essential signaling element in multiple immune cell pathways. Selective BTK inhibition has the potential to target multiple immune-mediated disease pathways. Rilzabrutinib is an oral, reversible, covalent BTK inhibitor designed for immune-mediated diseases. We examined the pharmacodynamic profile of rilzabrutinib and its preclinical mechanisms of action. In addition to potent and selective BTK enzyme and cellular activity, rilzabrutinib inhibited activation and inflammatory activities of B cells and innate cells such as macrophages, basophils, mast cells, and neutrophils, without cell death (in human and rodent assay systems). Rilzabrutinib demonstrated dose-dependent improvement of clinical scores and joint pathology in a rat model of collagen-induced arthritis and demonstrated reductions in autoantibody-mediated FcγR signaling in vitro and in vivo, with blockade of rat Arthus reaction, kidney protection in mouse Ab-induced nephritis, and reduction in platelet loss in mouse immune thrombocytopenia. Additionally, rilzabrutinib inhibited IgE-mediated, FcεR-dependent immune mechanisms in human basophils and mast cell-dependent mouse models. In canines with naturally occurring pemphigus, rilzabrutinib treatment resulted in rapid clinical improvement demonstrated by anti-inflammatory effects visible within 2 wk and all animals proceeding to complete or substantial disease control. Rilzabrutinib is characterized by reversible covalent BTK binding, long BTK residence time with low systemic exposure, and multiple mechanistic and biological effects on immune cells. Rilzabrutinib's unique characteristics and promising efficacy and safety profile support clinical development of rilzabrutinib for a broad array of immune-mediated diseases.


Subject(s)
Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors , Anti-Inflammatory Agents/therapeutic use , Basophils/immunology , Blood Platelets/immunology , Kidney/pathology , Mast Cells/immunology , Nephritis/drug therapy , Pemphigus/drug therapy , Protein Kinase Inhibitors/therapeutic use , Purpura, Thrombocytopenic, Idiopathic/drug therapy , Animals , Disease Models, Animal , Dogs , Drug Evaluation, Preclinical , Humans , Immunoglobulin E/metabolism , Kidney/drug effects , Mice , Mice, 129 Strain
2.
EMBO Rep ; 19(12)2018 12.
Article in English | MEDLINE | ID: mdl-30279279

ABSTRACT

Cells of hematopoietic origin express high levels of the immunoproteasome, a cytokine-inducible proteasome variant comprising the proteolytic subunits LMP2 (ß1i), MECL-1 (ß2i), and LMP7 (ß5i). Targeting the immunoproteasome in pre-clinical models of autoimmune diseases with the epoxyketone inhibitor ONX 0914 has proven to be effective. ONX 0914 was previously described as a selective LMP7 inhibitor. Here, we show that PRN1126, developed as an exclusively LMP7-specific inhibitor, has limited effects on IL-6 secretion, experimental colitis, and experimental autoimmune encephalomyelitis (EAE). We demonstrate that prolonged exposure of cells with ONX 0914 leads to inhibition of both LMP7 and LMP2. Co-inhibition of LMP7 and LMP2 with PRN1126 and LMP2 inhibitors LU-001i or ML604440 impairs MHC class I cell surface expression, IL-6 secretion, and differentiation of naïve T helper cells to T helper 17 cells, and strongly ameliorates disease in experimental colitis and EAE. Hence, co-inhibition of LMP2 and LMP7 appears to be synergistic and advantageous for the treatment of autoimmune diseases.


Subject(s)
Autoimmunity , Proteasome Endopeptidase Complex/immunology , Proteasome Inhibitors/pharmacology , Protein Subunits/antagonists & inhibitors , Animals , Cell Differentiation , Cell Membrane Permeability , Colitis/immunology , Colitis/pathology , Cytokines/metabolism , Dextran Sulfate , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/pathology , Epitopes/metabolism , Histocompatibility Antigens Class I/metabolism , Mice, Inbred C57BL , Proteasome Endopeptidase Complex/metabolism , Protein Subunits/immunology , Spleen/cytology , Th17 Cells/cytology , Th17 Cells/immunology
3.
Angew Chem Int Ed Engl ; 58(33): 11385-11389, 2019 08 12.
Article in English | MEDLINE | ID: mdl-31222866

ABSTRACT

Reversible covalency, achieved with, for instance, highly electron-deficient olefins, offers a compelling strategy to design chemical probes and drugs that benefit from the sustained target engagement afforded by irreversible compounds, while avoiding permanent protein modification. Reversible covalency has mainly been evaluated for cysteine residues in individual kinases and the broader potential for this strategy to engage cysteines across the proteome remains unexplored. Herein, we describe a mass-spectrometry-based platform that integrates gel filtration with activity-based protein profiling to assess cysteine residues across the human proteome for both irreversible and reversible interactions with small-molecule electrophiles. Using this method, we identify numerous cysteine residues from diverse protein classes that are reversibly engaged by cyanoacrylamide fragment electrophiles, revealing the broad potential for reversible covalency as a strategy for chemical-probe discovery.


Subject(s)
Cysteine/chemistry , Phosphotransferases/chemistry , Proteome/chemistry , Proteome/metabolism , Amino Acid Sequence , Gene Expression Regulation, Enzymologic , Phosphotransferases/metabolism
4.
Nat Chem Biol ; 11(7): 525-31, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26006010

ABSTRACT

Drugs with prolonged on-target residence times often show superior efficacy, yet general strategies for optimizing drug-target residence time are lacking. Here we made progress toward this elusive goal by targeting a noncatalytic cysteine in Bruton's tyrosine kinase (BTK) with reversible covalent inhibitors. Using an inverted orientation of the cysteine-reactive cyanoacrylamide electrophile, we identified potent and selective BTK inhibitors that demonstrated biochemical residence times spanning from minutes to 7 d. An inverted cyanoacrylamide with prolonged residence time in vivo remained bound to BTK for more than 18 h after clearance from the circulation. The inverted cyanoacrylamide strategy was further used to discover fibroblast growth factor receptor (FGFR) kinase inhibitors with residence times of several days, demonstrating the generalizability of the approach. Targeting of noncatalytic cysteines with inverted cyanoacrylamides may serve as a broadly applicable platform that facilitates 'residence time by design', the ability to modulate and improve the duration of target engagement in vivo.


Subject(s)
Acrylamides/pharmacokinetics , B-Lymphocytes/drug effects , Cyanoacrylates/pharmacokinetics , Protein Kinase Inhibitors/pharmacokinetics , Protein-Tyrosine Kinases/antagonists & inhibitors , Acrylamides/chemical synthesis , Agammaglobulinaemia Tyrosine Kinase , Animals , B-Lymphocytes/enzymology , B-Lymphocytes/pathology , Cell Line, Tumor , Crystallography, X-Ray , Cyanoacrylates/chemical synthesis , Dasatinib , Female , Gene Expression , Humans , Ligands , Molecular Docking Simulation , Protein Kinase Inhibitors/chemical synthesis , Protein Structure, Tertiary , Protein-Tyrosine Kinases/chemistry , Protein-Tyrosine Kinases/genetics , Pyrimidines/pharmacokinetics , Rats , Rats, Sprague-Dawley , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Sf9 Cells , Spodoptera , Structure-Activity Relationship , Substrate Specificity , Thiazoles/pharmacokinetics , Time Factors
5.
J Immunol ; 195(10): 4822-31, 2015 Nov 15.
Article in English | MEDLINE | ID: mdl-26466958

ABSTRACT

In T cells, the Tec kinases IL-2-inducible T cell kinase (ITK) and resting lymphocyte kinase (RLK) are activated by TCR stimulation and are required for optimal downstream signaling. Studies of CD4(+) T cells from Itk(-/-) and Itk(-/-)Rlk(-/-) mice have indicated differential roles of ITK and RLK in Th1, Th2, and Th17 differentiation and cytokine production. However, these findings are confounded by the complex T cell developmental defects in these mice. In this study, we examine the consequences of ITK and RLK inhibition using a highly selective and potent small molecule covalent inhibitor PRN694. In vitro Th polarization experiments indicate that PRN694 is a potent inhibitor of Th1 and Th17 differentiation and cytokine production. Using a T cell adoptive transfer model of colitis, we find that in vivo administration of PRN694 markedly reduces disease progression, T cell infiltration into the intestinal lamina propria, and IFN-γ production by colitogenic CD4(+) T cells. Consistent with these findings, Th1 and Th17 cells differentiated in the presence of PRN694 show reduced P-selectin binding and impaired migration to CXCL11 and CCL20, respectively. Taken together, these data indicate that ITK plus RLK inhibition may have therapeutic potential in Th1-mediated inflammatory diseases.


Subject(s)
Cell Differentiation/drug effects , Colitis/prevention & control , Protein Kinase Inhibitors/pharmacology , Protein-Tyrosine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/immunology , Th1 Cells/immunology , Animals , Cell Differentiation/genetics , Cell Differentiation/immunology , Chemokine CCL20/genetics , Chemokine CCL20/immunology , Chemokine CXCL11/genetics , Chemokine CXCL11/immunology , Colitis/genetics , Colitis/immunology , Colitis/pathology , Interferon-gamma/genetics , Interferon-gamma/immunology , Mice , Mice, Knockout , Protein-Tyrosine Kinases/genetics , Th1 Cells/pathology , Th17 Cells/immunology , Th17 Cells/pathology
6.
J Biol Chem ; 290(10): 5960-78, 2015 Mar 06.
Article in English | MEDLINE | ID: mdl-25593320

ABSTRACT

Interleukin-2-inducible T-cell kinase (ITK) and resting lymphocyte kinase (RLK or TXK) are essential mediators of intracellular signaling in both normal and neoplastic T-cells and natural killer (NK) cells. Thus, ITK and RLK inhibitors have therapeutic potential in a number of human autoimmune, inflammatory, and malignant diseases. Here we describe a novel ITK/RLK inhibitor, PRN694, which covalently binds to cysteine residues 442 of ITK and 350 of RLK and blocks kinase activity. Molecular modeling was utilized to design molecules that interact with cysteine while binding to the ATP binding site in the kinase domain. PRN694 exhibits extended target residence time on ITK and RLK and is highly selective for a subset of the TEC kinase family. In vitro cellular assays confirm that PRN694 prevents T-cell receptor- and Fc receptor-induced cellular and molecular activation, inhibits T-cell receptor-induced T-cell proliferation, and blocks proinflammatory cytokine release as well as activation of Th17 cells. Ex vivo assays demonstrate inhibitory activity against T-cell prolymphocytic leukemia cells, and in vivo assays demonstrate durable pharmacodynamic effects on ITK, which reduces an oxazolone-induced delayed type hypersensitivity reaction. These data indicate that PRN694 is a highly selective and potent covalent inhibitor of ITK and RLK, and its extended target residence time enables durable attenuation of effector cells in vitro and in vivo. The results from this study highlight potential applications of this dual inhibitor for the treatment of T-cell- or NK cell-mediated inflammatory, autoimmune, and malignant diseases.


Subject(s)
Benzimidazoles/administration & dosage , Protein Kinase Inhibitors/administration & dosage , Protein-Tyrosine Kinases/metabolism , T-Lymphocytes/drug effects , Adenosine Triphosphate/metabolism , Binding Sites , Crystallography, X-Ray , Cysteine/chemistry , Cysteine/metabolism , Humans , Killer Cells, Natural/drug effects , Killer Cells, Natural/immunology , Lymphocyte Activation/drug effects , Lymphocyte Activation/immunology , Protein-Tyrosine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/chemistry , Receptors, Antigen, T-Cell/drug effects , Receptors, Antigen, T-Cell/metabolism , Signal Transduction/drug effects , T-Lymphocytes/immunology
7.
J Med Chem ; 65(7): 5300-5316, 2022 04 14.
Article in English | MEDLINE | ID: mdl-35302767

ABSTRACT

Bruton's tyrosine kinase (BTK), a Tec family tyrosine kinase, is critical in immune pathways as an essential intracellular signaling element, participating in both adaptive and immune responses. Currently approved BTK inhibitors are irreversible covalent inhibitors and limited to oncology indications. Herein, we describe the design of covalent reversible BTK inhibitors and the discoveries of PRN473 (11) and rilzabrutinib (PRN1008, 12). These compounds have exhibited potent and durable inhibition of BTK, in vivo efficacy in rodent arthritis models, and clinical efficacy in canine pemphigus foliaceus. Compound 11 has completed phase 1 trials as a topical agent, and 12 is in phase 3 trials for pemphigus vulgaris and immune thrombocytopenia.


Subject(s)
Protein Kinase Inhibitors , Signal Transduction , Agammaglobulinaemia Tyrosine Kinase , Animals , Dogs , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use
8.
Immunohorizons ; 5(7): 581-589, 2021 07 29.
Article in English | MEDLINE | ID: mdl-34326199

ABSTRACT

The expression of Bruton tyrosine kinase (BTK) in B cells and innate immune cells provides essential downstream signaling for BCR, Fc receptors, and other innate immune cell pathways. The topical covalent BTK inhibitor PRN473 has shown durable, reversible BTK occupancy with rapid on-rate and slow off-rate binding kinetics and long residence time, resulting in prolonged, localized efficacy with low systemic exposure in vivo. Mechanisms of PRN473 include inhibition of IgE (FcεR)-mediated activation of mast cells and basophils, IgG (FcγR)-mediated activation of monocytes, and neutrophil migration. In vivo, oral PRN473 was efficacious and well tolerated in the treatment of canine pemphigus foliaceus. In this study, we evaluated in vitro selectivity and functionality, in vivo skin Ab inflammatory responses, and systemic pharmacology with topically administered PRN473. Significant dose-dependent inhibition of IgG-mediated passive Arthus reaction in rats was observed with topical PRN473 and was maintained when given 16 h prior to challenge, reinforcing extended activity with once-daily administration. Similarly, topical PRN473 resulted in significant dose-dependent inhibition of the mouse passive cutaneous anaphylaxis IgE-mediated reaction. Multiday treatment with topical PRN473 in rodents resulted in low-to-no systemic accumulation, suggesting that efficacy was mainly due to localized exposure. Reduced skin Ab inflammatory activity was also confirmed with oral PRN473. These preclinical studies provide a strong biologic basis for targeting innate immune cell responses locally in the skin, with rapid onset of action following once-daily topical PRN473 administration and minimal systemic exposure. Dose-dependent inhibition in these preclinical models of immune-mediated skin diseases support future clinical studies.


Subject(s)
Agammaglobulinaemia Tyrosine Kinase , Arthus Reaction , Passive Cutaneous Anaphylaxis , Protein Kinase Inhibitors , Skin Diseases , Animals , Female , Humans , Mice , Rats , Administration, Cutaneous , Administration, Oral , Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors , Arthus Reaction/drug therapy , Arthus Reaction/immunology , Arthus Reaction/pathology , Disease Models, Animal , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Passive Cutaneous Anaphylaxis/drug effects , Protein Kinase Inhibitors/administration & dosage , Skin/drug effects , Skin/immunology , Skin/pathology , Skin Diseases/drug therapy , Skin Diseases/immunology , Skin Diseases/pathology
9.
Anal Biochem ; 395(2): 256-62, 2009 Dec 15.
Article in English | MEDLINE | ID: mdl-19716360

ABSTRACT

Novel biochemical strategies are needed to identify the next generation of protein kinase inhibitors. One promising new assay format is a competition binding approach that employs time-resolved fluorescence resonance energy transfer (TR-FRET). In this assay, a FRET donor is bound to the kinase via a purification tag, whereas a FRET acceptor is bound via a tracer-labeled inhibitor. Displacement of the tracer by an unlabeled inhibitor eliminates FRET between the fluorophores and provides a readout on binding. Although promising, this technique has so far been limited in applicability in part by a lack of signal strength is some cases and also by an inability to predict whether a particular tagging strategy will show robust FRET. In this work, we sought to better understand the factors that give rise to a strong FRET signal in this assay. We determined the magnitude of FRET for several tyrosine kinases using different purification tags (biotin, glutathione S-transferase [GST], and His) placed at either the N terminus or C terminus of the kinase. It was observed that coupling the FRET acceptor to the kinase C terminus using a biotin/streptavidin interaction resulted in the greatest increase in FRET. Specifically, for multiple kinases, the signal/background ratio was at least 3-fold better using C-terminal biotinylation compared with tagging at the N terminus using a His/anti-His antibody or GST/anti-GST antibody interaction. In one case, the FRET signal using C-terminal biotin tagging was more than 150-fold over background. This strong FRET signal facilitated development of improved inhibitor binding assays that required only tens of picomolar enzyme or tracer-labeled inhibitor. Together, these results indicate that C-terminal biotinylation is a promising tagging strategy for developing an optimal FRET-based competition binding assay for tyrosine kinases.


Subject(s)
Fluorescence Resonance Energy Transfer/methods , Protein Kinase Inhibitors/metabolism , Protein-Tyrosine Kinases/metabolism , Agammaglobulinaemia Tyrosine Kinase , Antibodies/immunology , Antibodies/metabolism , Biotin/metabolism , Glutathione Transferase/metabolism , Histidine/metabolism , Oligopeptides/metabolism , Protein Structure, Tertiary , Protein-Tyrosine Kinases/chemistry , Protein-Tyrosine Kinases/isolation & purification , Streptavidin/metabolism
10.
Biochemistry ; 47(40): 10587-99, 2008 Oct 07.
Article in English | MEDLINE | ID: mdl-18795794

ABSTRACT

Understanding the principles of calmodulin (CaM) activation of target enzymes will help delineate how this seemingly simple molecule can play such a complex role in transducing Ca (2+)-signals to a variety of downstream pathways. In the work reported here, we use biochemical and biophysical tools and a panel of CaM constructs to examine the lobe specific interactions between CaM and CaMKII necessary for the activation and autophosphorylation of the enzyme. Interestingly, the N-terminal lobe of CaM by itself was able to partially activate and allow autophosphorylation of CaMKII while the C-terminal lobe was inactive. When used together, CaMN and CaMC produced maximal CaMKII activation and autophosphorylation. Moreover, CaMNN and CaMCC (chimeras of the two N- or C-terminal lobes) both activated the kinase but with greater K act than for wtCaM. Isothermal titration calorimetry experiments showed the same rank order of affinities of wtCaM > CaMNN > CaMCC as those determined in the activity assay and that the CaM to CaMKII subunit binding ratio was 1:1. Together, our results lead to a proposed sequential mechanism to describe the activation pathway of CaMKII led by binding of the N-lobe followed by the C-lobe. This mechanism contrasts the typical sequential binding mode of CaM with other CaM-dependent enzymes, where the C-lobe of CaM binds first. The consequence of such lobe specific binding mechanisms is discussed in relation to the differential rates of Ca (2+)-binding to each lobe of CaM during intracellular Ca (2+) oscillations.


Subject(s)
Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Calmodulin/metabolism , Adenosine Diphosphate/pharmacology , Animals , Binding Sites/genetics , Calcium/metabolism , Calmodulin/chemistry , Calmodulin/genetics , Calorimetry , Fluorometry , Models, Molecular , Nucleotides/pharmacology , Phosphorylation/drug effects , Protein Binding/drug effects , Protein Structure, Tertiary , Rats , Temperature
11.
J Invest Dermatol ; 138(4): 864-871, 2018 04.
Article in English | MEDLINE | ID: mdl-29129599

ABSTRACT

The chronic and highly prevalent skin disorder psoriasis vulgaris is characterized by a hyperproliferative epidermis and aberrant immune activity. Many studies have highlighted the role of differentiated T lymphocytes in psoriasis progression. Several biologics are currently available that target proinflammatory cytokines produced by T lymphocytes, but the need for improved therapies persists. The small molecule PRN694 covalently binds ITK and RLK, two Tec kinases activated downstream of T-lymphocyte activation, both of which are up-regulated in psoriatic skin. These Tec kinases are involved in signaling cascades mediating T-lymphocyte proliferation, differentiation, and migration and proinflammatory cytokine production. In vitro analysis showed that PRN694 effectively inhibited IL-17A production from murine T helper type 17-differentiated T lymphocytes. Additionally, PRN694 effectively reduced the psoriasis-like phenotype severity and reduced epidermal proliferation and thickness in both the Rac1V12 and imiquimod mouse models of psoriasis. PRN694 also inhibited CD3+ T-cell and γδ T-cell infiltration into skin regions. Inhibition of ITK and RLK attenuated psoriasis-associated signaling pathways, indicating that PRN694 is an effective psoriasis therapeutic.


Subject(s)
Benzimidazoles/pharmacology , Dermis/pathology , Gene Expression Regulation , Immunity, Cellular , Protein-Tyrosine Kinases/genetics , Psoriasis/genetics , Animals , Cells, Cultured , Dermis/metabolism , Disease Models, Animal , Humans , Mice , Protein-Tyrosine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/biosynthesis , Psoriasis/drug therapy , Psoriasis/immunology , RNA, Messenger/genetics , T-Lymphocytes/immunology
12.
Br J Pharmacol ; 175(3): 429-439, 2018 02.
Article in English | MEDLINE | ID: mdl-29130484

ABSTRACT

BACKGROUND AND PURPOSE: Following inflammatory stimuli, neutrophils are recruited to sites of inflammation and exert effector functions that often have deleterious effects on tissue integrity, which can lead to organ failure. Bruton's tyrosine kinase (Btk) is expressed in neutrophils and constitutes a promising pharmacological target for neutrophil-mediated tissue damage. Here, we evaluate a selective reversible inhibitor of Btk, PRN473, for its ability to dampen neutrophil influx via inhibition of adhesion receptor signalling pathways. EXPERIMENTAL APPROACH: In vitro assays were used to assess fMLP receptor 1 (Fpr-1)-mediated binding of ligands to the adhesion receptors macrophage antigen-1 (Mac-1) and lymphocyte function antigen-1. Intravital microscopy of the murine cremaster was used to evaluate post-adhesion strengthening and endoluminal crawling. Finally, neutrophil influx was visualized in a clinically relevant model of sterile liver injury in vivo. Btk knockout animals were used as points of reference for Btk functions. KEY RESULTS: Pharmacological inhibition of Btk by PRN473 reduced fMLP-induced phosphorylation of Btk and Mac-1 activation. Biochemical experiments demonstrated the specificity of the inhibitor. PRN473 (20 mg·kg-1 ) significantly reduced intravascular crawling and neutrophil recruitment into inflamed tissue in a model of sterile liver injury, down to levels seen in Btk-deficient animals. A higher dose did not provide additional reduction of intravascular crawling and neutrophil recruitment. CONCLUSIONS AND IMPLICATIONS: PRN473, a highly selective inhibitor of Btk, potently attenuates sterile liver injury by inhibiting the activation of the ß2 -integrin Mac-1 and subsequently neutrophil recruitment into inflamed tissue.


Subject(s)
Macrophage-1 Antigen/metabolism , Neutrophil Infiltration/drug effects , Protein Kinase Inhibitors/pharmacology , Protein-Tyrosine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/metabolism , Signal Transduction/physiology , Agammaglobulinaemia Tyrosine Kinase , Animals , Chemical and Drug Induced Liver Injury/metabolism , Dose-Response Relationship, Drug , Mice , Mice, Inbred C57BL , Mice, Knockout , Neutrophil Infiltration/physiology , Neutrophils/drug effects , Neutrophils/metabolism , Signal Transduction/drug effects
13.
Mol Cancer Ther ; 16(12): 2668-2676, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28978721

ABSTRACT

An increasing number of cancers are known to harbor mutations, translocations, or amplifications in the fibroblast growth factor receptor (FGFR) family of kinases. The FGFR inhibitors evaluated in clinical trials to date have shown promise at treating these cancers. Here, we describe PRN1371, an irreversible covalent inhibitor of FGFR1-4 targeting a cysteine within the kinase active site. PRN1371 demonstrated strong FGFR potency and excellent kinome-wide selectivity in a number of biochemical and cellular assays, including in various cancer cell lines exhibiting FGFR alterations. Furthermore, PRN1371 maintained FGFR inhibition in vivo, not only when circulating drug levels were high but also after the drug had been cleared from circulation, indicating the possibility of sustained FGFR inhibition in the clinic without the need for continuous drug exposure. Durable tumor regression was also obtained in multiple tumor xenografts and patient-derived tumor xenograft models and was sustained even using an intermittent dosing strategy that provided drug holidays. PRN1371 is currently under clinical investigation for treatment of patients with solid tumors. Mol Cancer Ther; 16(12); 2668-76. ©2017 AACR.


Subject(s)
Pyridones/therapeutic use , Pyrimidines/therapeutic use , Receptors, Fibroblast Growth Factor/antagonists & inhibitors , Animals , Cell Line, Tumor , Cell Proliferation , Humans , Mice , Pyridones/pharmacology , Pyrimidines/pharmacology , Signal Transduction , Xenograft Model Antitumor Assays
14.
J Med Chem ; 60(15): 6516-6527, 2017 08 10.
Article in English | MEDLINE | ID: mdl-28665128

ABSTRACT

Aberrant signaling of the FGF/FGFR pathway occurs frequently in cancers and is an oncogenic driver in many solid tumors. Clinical validation of FGFR as a therapeutic target has been demonstrated in bladder, liver, lung, breast, and gastric cancers. Our goal was to develop an irreversible covalent inhibitor of FGFR1-4 for use in oncology indications. An irreversible covalent binding mechanism imparts many desirable pharmacological benefits including high potency, selectivity, and prolonged target inhibition. Herein we report the structure-based design, medicinal chemistry optimization, and unique ADME assays of our irreversible covalent drug discovery program which culminated in the discovery of compound 34 (PRN1371), a highly selective and potent FGFR1-4 inhibitor.


Subject(s)
Antineoplastic Agents/pharmacology , Neoplasms/drug therapy , Pyridones/pharmacology , Pyrimidines/pharmacology , Receptors, Fibroblast Growth Factor/antagonists & inhibitors , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacokinetics , Cell Line, Tumor , Dogs , Drug Design , Drug Stability , Female , Humans , Intestinal Absorption , Macaca fascicularis , Male , Pyridones/administration & dosage , Pyridones/chemical synthesis , Pyridones/pharmacokinetics , Pyrimidines/administration & dosage , Pyrimidines/chemical synthesis , Pyrimidines/pharmacokinetics , Rats, Sprague-Dawley , Receptor, Fibroblast Growth Factor, Type 1/antagonists & inhibitors , Receptor, Fibroblast Growth Factor, Type 2/antagonists & inhibitors , Receptor, Fibroblast Growth Factor, Type 3/antagonists & inhibitors , Receptor, Fibroblast Growth Factor, Type 4/antagonists & inhibitors , Solubility , Structure-Activity Relationship
15.
Adv Protein Chem ; 61: 161-210, 2002.
Article in English | MEDLINE | ID: mdl-12461824

ABSTRACT

In this chapter, we have described the biophysical investigations which have dissected the mechanisms of SH2 domain function. Due to nearly a decade and a half of investigation on SH2 domains, much about their binding mechanism has been characterized. SH2 domains have been found to have a positively charged binding cavity, largely conserved between different SH2 domains, which coordinates binding of the pTyr in the target. The ionic interactions between this pocket and the pTyr, in particular, between Arg beta B5 and the phosphate, provide the majority of the binding energy stabilizing SH2 domain-target interactions. The specificity in SH2 domain-target interactions emanates most often from the interactions between the residues C-terminal to the pTyr in the target and the specificity determining residues in the C-terminal half of the SH2 domain. However, the interactions in the specificity determining region of SH2 domains are weak, and hence single SH2 domains show only a modest level of specificity for tyrosine phosphorylated targets. Greater specificity in SH2 domain-containing protein-tyrosine phosphorylated target interactions can be achieved by placing SH2 domains in tandem (as is often found) or possibly through specific localization of SH2 domain-containing proteins within the cell. Although a relatively good understanding of how SH2 domains function in isolation has been obtained, the ways in which SH2 domain binding is coupled to allosteric transmission of signals in larger SH2 domain-containing proteins are still not clear. Hence, the future should bring further investigations of the mechanisms by which SH2 domain ligation alters the enzymatic activity and cellular localization of SH2 domain-containing proteins.


Subject(s)
src Homology Domains/physiology , src-Family Kinases/chemistry , src-Family Kinases/metabolism , Binding Sites , Models, Biological , Models, Molecular , Phospholipids/chemistry , Phospholipids/metabolism , Phosphopeptides/chemistry , Phosphopeptides/genetics , Phosphopeptides/metabolism , Phosphotyrosine/chemistry , Phosphotyrosine/metabolism , Protein Binding , Protein Structure, Secondary , Structure-Activity Relationship , Substrate Specificity , Thermodynamics
16.
Assay Drug Dev Technol ; 10(4): 353-64, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22663019

ABSTRACT

p75(NTR) is a neurotrophin receptor that can mediate either survival or death of neurons depending on the cell context. Modulation of p75(NTR) is a promising strategy to promote neuronal survival for treatment of cognitive disorders such as Alzheimer's disease. Despite years of investigation into the signaling mechanisms of p75(NTR), no p75(NTR) signaling assay has yet been developed that is compatible with efficient screening of small-molecule modulators. In this work, we developed a homogeneous cell-based assay for screening p75(NTR) modulators and studying p75(NTR) function. Stimulation of p75(NTR)-transfected cells using either nerve growth factor (NGF) or Pro-NGF resulted in an enhanced caspase-3 activity as assessed by cleavage of a fluorescent caspase-3 substrate. Optimization of the assay with respect to time, cell density, NGF and Pro-NGF concentration, and other factors provided a twofold increase in the caspase-3 activity compared to background. Withdrawal of serum during the NGF or Pro-NGF treatment period was found to be essential for p75(NTR)-dependent caspase-3 activation. We validated the method by demonstrating that a signaling-incompetent p75(NTR) mutant could not substitute for wild-type p75(NTR) in mediating caspase-3 activation. A focused library screen identified new inhibitors of p75(NTR) signaling. This method will be useful for identifying small-molecule modulators of p75(NTR) as well as further characterizing downstream signaling events.


Subject(s)
Caspase 3/drug effects , Drug Evaluation, Preclinical/methods , Enzyme Activation/drug effects , Nerve Tissue Proteins/physiology , Receptors, Nerve Growth Factor/physiology , Signal Transduction/drug effects , Animals , Cell Survival/drug effects , Fluorescent Antibody Technique , HEK293 Cells , Humans , Microscopy, Fluorescence , Nerve Growth Factor/pharmacology , Rats , Receptor, trkA/drug effects , Small Molecule Libraries , Transfection
17.
Protein Sci ; 20(2): 428-36, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21280133

ABSTRACT

Bruton's tyrosine kinase (BTK) plays a key role in B cell receptor signaling and is considered a promising drug target for lymphoma and inflammatory diseases. We have determined the X-ray crystal structures of BTK kinase domain in complex with six inhibitors from distinct chemical classes. Five different BTK protein conformations are stabilized by the bound inhibitors, providing insights into the structural flexibility of the Gly-rich loop, helix C, the DFG sequence, and activation loop. The conformational changes occur independent of activation loop phosphorylation and do not correlate with the structurally unchanged WEI motif in the Src homology 2-kinase domain linker. Two novel activation loop conformations and an atypical DFG conformation are observed representing unique inactive states of BTK. Two regions within the activation loop are shown to structurally transform between 3(10)- and α-helices, one of which collapses into the adenosine-5'-triphosphate binding pocket. The first crystal structure of a Tec kinase family member in the pharmacologically important DFG-out conformation and bound to a type II kinase inhibitor is described. The different protein conformations observed provide insights into the structural flexibility of BTK, the molecular basis of its regulation, and the structure-based design of specific inhibitors.


Subject(s)
Protein Kinase Inhibitors/chemistry , Protein-Tyrosine Kinases/chemistry , Agammaglobulinaemia Tyrosine Kinase , Animals , Mice , Models, Molecular , Nuclear Magnetic Resonance, Biomolecular , Oxazines/chemistry , Oxazines/metabolism , Protein Kinase Inhibitors/metabolism , Protein Structure, Tertiary , Protein-Tyrosine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/metabolism , Pyridines/chemistry , Pyridines/metabolism , X-Ray Diffraction
18.
Cell Signal ; 22(8): 1175-84, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20206686

ABSTRACT

The Src, Syk, and Tec family kinases are three of the most well characterized tyrosine kinase families found in the human genome. Members of these kinase families function downstream of antigen and F(c) receptors in hematopoietic cells and transduce signals leading to calcium mobilization, altered gene expression, cytokine production, and cell proliferation. Over the last several years, structural and biochemical studies have begun to uncover the molecular mechanisms regulating activation of these kinases. It appears that each kinase family functions as a distinct type of molecular switch. This review discusses the activation of the Src, Syk, and Tec kinases from the perspective of structure, phosphorylation, allosteric regulation, and kinetics. The multiple factors that regulate the Src, Syk, and Tec families illustrate the important role played by each of these kinases in immune cell signaling.


Subject(s)
Intracellular Signaling Peptides and Proteins/metabolism , Protein-Tyrosine Kinases/metabolism , src-Family Kinases/metabolism , Enzyme Activation , Humans , Intracellular Signaling Peptides and Proteins/chemistry , Lymphocytes/enzymology , Protein-Tyrosine Kinases/chemistry , Signal Transduction , Syk Kinase , src-Family Kinases/chemistry
19.
J Biol Chem ; 283(47): 32650-9, 2008 Nov 21.
Article in English | MEDLINE | ID: mdl-18818202

ABSTRACT

Many immune signaling pathways require activation of the Syk tyrosine kinase to link ligation of surface receptors to changes in gene expression. Despite the central role of Syk in these pathways, the Syk activation process remains poorly understood. In this work we quantitatively characterized the molecular mechanism of Syk activation in vitro using a real time fluorescence kinase assay, mutagenesis, and other biochemical techniques. We found that dephosphorylated full-length Syk demonstrates a low initial rate of substrate phosphorylation that increases during the kinase reaction due to autophosphorylation. The initial rate of Syk activity was strongly increased by either pre-autophosphorylation or binding of phosphorylated immune tyrosine activation motif peptides, and each of these factors independently fully activated Syk. Deletion mutagenesis was used to identify regions of Syk important for regulation, and residues 340-356 of the SH2 kinase linker region were identified to be important for suppression of activity before activation. Comparison of the activation processes of Syk and Zap-70 revealed that Syk is more readily activated by autophosphorylation than Zap-70, although both kinases are rapidly activated by Src family kinases. We also studied Syk activity in B cell lysates and found endogenous Syk is also activated by phosphorylation and immune tyrosine activation motif binding. Together these experiments show that Syk functions as an "OR-gate" type of molecular switch. This mechanism of switch-like activation helps explain how Syk is both rapidly activated after receptor binding but also sustains activity over time to facilitate longer term changes in gene expression.


Subject(s)
Intracellular Signaling Peptides and Proteins/metabolism , Protein-Tyrosine Kinases/metabolism , Amino Acid Motifs , B-Lymphocytes/metabolism , Gene Deletion , Humans , Immune System , Intracellular Signaling Peptides and Proteins/chemistry , Kinetics , Models, Biological , Mutagenesis , Peptides/chemistry , Phosphorylation , Protein-Tyrosine Kinases/chemistry , Spectrometry, Fluorescence/methods , Substrate Specificity , Syk Kinase , Tyrosine/chemistry , ZAP-70 Protein-Tyrosine Kinase/chemistry
20.
Biochemistry ; 46(13): 4017-27, 2007 Apr 03.
Article in English | MEDLINE | ID: mdl-17352496

ABSTRACT

Calmodulin (CaM) trapping by Ca2+/calmodulin-dependent protein kinase II (CaMKII) is a phenomenon whereby the affinity of CaM for CaMKII increases >1000-fold following CaMKII autophosphorylation. The molecular basis of this effect is not entirely understood. Binding of CaM to the phosphorylated and the unphosphorylated states of CaMKII is well mimicked by the interaction of CaM with two different length peptides taken from the CaM-binding region of CaMKII, peptides we refer to as the long and intermediate peptides. To better understand the conformational change accompanying CaM trapping, we have used isothermal titration calorimetry (ITC) to compare the binding thermodynamics of CaM to these peptides as well as to a shorter CaMKII-based peptide. Calorimetric analysis revealed that the enthalpy, rather than the entropy, distinguished binding of these three peptides. Furthermore, the heat capacity change was found to be similar for the long and intermediate peptides but smaller in magnitude for the short peptide. Direct titration of CaM with peptide provided the Kd value for the short peptide (Kd = 5.9 +/- 2.4 microM), but a novel, two-phased competitive binding strategy was necessary to ascertain the affinities of the intermediate (Kd = 0.17 +/- 0.06 nM) and long (Kd = 0.07 +/- 0.04 pM) peptides. To our knowledge, the Kd for the long peptide is the most potent measured to date using ITC. Together, the findings reported here support a model whereby the final conformational change accompanying CaM trapping buries little additional surface area but does involve formation of new hydrogen bonds and van der Waals contacts that contribute to formation of the high-affinity, CaM-trapped state.


Subject(s)
Binding, Competitive , Calcium-Calmodulin-Dependent Protein Kinases/metabolism , Calmodulin/metabolism , Animals , Binding Sites , Calcium-Calmodulin-Dependent Protein Kinase Type 2 , Calorimetry , Kinetics , Models, Molecular , Peptide Fragments/metabolism , Phosphorylation , Protein Conformation , Rats , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL