Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
1.
Immunity ; 47(5): 959-973.e9, 2017 11 21.
Article in English | MEDLINE | ID: mdl-29150241

ABSTRACT

Aortic aneurysms are life-threatening conditions with effective treatments mainly limited to emergency surgery or trans-arterial endovascular stent grafts, thus calling for the identification of specific molecular targets. Genetic studies have highlighted controversial roles of transforming growth factor ß (TGF-ß) signaling in aneurysm development. Here, we report on aneurysms developing in adult mice after smooth muscle cell (SMC)-specific inactivation of Smad4, an intracellular transducer of TGF-ß. The results revealed that Smad4 inhibition activated interleukin-1ß (IL-1ß) in SMCs. This danger signal later recruited innate immunity in the adventitia through chemokine (C-C motif) ligand 2 (CCL2) and modified the mechanical properties of the aortic wall, thus favoring vessel dilation. SMC-specific Smad4 deletion in Il1r1- or Ccr2-null mice resulted in milder aortic pathology. A chronic treatment with anti-IL-1ß antibody effectively hampered aneurysm development. These findings identify a mechanistic target for controlling the progression of aneurysms with compromised TGF-ß signaling, such as those driven by SMAD4 mutations.


Subject(s)
Aortic Aneurysm/prevention & control , Interleukin-1beta/antagonists & inhibitors , Signal Transduction/physiology , Transforming Growth Factor beta/physiology , Animals , Cells, Cultured , Chemokine CCL2/antagonists & inhibitors , Interleukin-1beta/biosynthesis , Mice , Myocytes, Smooth Muscle/immunology , NF-kappa B/physiology , Receptors, CCR2/antagonists & inhibitors , Smad4 Protein/physiology , Tamoxifen/pharmacology
2.
Am J Hum Genet ; 109(12): 2230-2252, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36351433

ABSTRACT

EMILIN1 (elastin-microfibril-interface-located-protein-1) is a structural component of the elastic fiber network and localizes to the interface between the fibrillin microfibril scaffold and the elastin core. How EMILIN1 contributes to connective tissue integrity is not fully understood. Here, we report bi-allelic EMILIN1 loss-of-function variants causative for an entity combining cutis laxa, arterial tortuosity, aneurysm formation, and bone fragility, resembling autosomal-recessive cutis laxa type 1B, due to EFEMP2 (FBLN4) deficiency. In both humans and mice, absence of EMILIN1 impairs EFEMP2 extracellular matrix deposition and LOX activity resulting in impaired elastogenesis, reduced collagen crosslinking, and aberrant growth factor signaling. Collagen fiber ultrastructure and histopathology in EMILIN1- or EFEMP2-deficient skin and aorta corroborate these findings and murine Emilin1-/- femora show abnormal trabecular bone formation and strength. Altogether, EMILIN1 connects elastic fiber network with collagen fibril formation, relevant for both bone and vascular tissue homeostasis.


Subject(s)
Bone Diseases, Metabolic , Cutis Laxa , Animals , Humans , Mice , Collagen/genetics , Cutis Laxa/genetics , Elastin/metabolism , Extracellular Matrix Proteins/metabolism
3.
J Pathol ; 260(4): 417-430, 2023 08.
Article in English | MEDLINE | ID: mdl-37272555

ABSTRACT

Despite a number of studies providing evidence that the extracellular matrix (ECM) is an active player in the pathogenesis of intestinal inflammation, knowledge on the actual contribution of specific ECM molecules in the progression of inflammatory bowel disease (IBD) remains scant. Here, we investigated the role of a major ECM protein, collagen VI (ColVI), in gut homeostasis and elucidated the impact of its deregulation on the pathophysiology of IBD. To this end, we combined in vivo and ex vivo studies on wild type and ColVI-deficient (Col6a1-/- ) mice both under physiological conditions and during experimentally induced acute colitis and its subsequent recovery, by means of gut histology and immunostaining, gene expression, bone marrow transplantation, flow cytometry of immune cell subpopulations, and lymph flow assessment. We found that ColVI displayed dynamic expression and ECM deposition during the acute inflammatory and recovery phases of experimentally induced colitis, whereas the genetic ablation of ColVI in Col6a1 null mice impaired the functionality of lymphatic vessels, which in turn affected the resolution of inflammation during colitis. Based on these findings, we investigated ColVI expression and deposition in ileal specimens from two cohorts of patients affected by Crohn's disease (CD) and correlated ColVI abundance to clinical outcome. Our results show that high ColVI immunoreactivity in ileal biopsies of CD patients at diagnosis correlates with increased risk of surgery and that ColVI expression in biopsies taken at the resection margin during surgery, and showing inactive disease, predict disease recurrence. Our data unveil a key role for ColVI in the intestinal microenvironment, where it is involved in lymphangiogenesis and intestinal inflammation. Altogether, these findings point at the dysregulation of ColVI expression as a novel factor contributing to the onset and maintenance of inflammation in CD via mechanisms impinging on the modulation of inflammatory cell recruitment and function. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Subject(s)
Colitis , Crohn Disease , Inflammatory Bowel Diseases , Animals , Mice , Lymphangiogenesis , Collagen Type VI/genetics , Colitis/chemically induced , Colitis/genetics , Mice, Knockout , Inflammation , Drainage
4.
Cell Mol Life Sci ; 80(8): 233, 2023 Jul 28.
Article in English | MEDLINE | ID: mdl-37505240

ABSTRACT

Microenvironmental factors are known fundamental regulators of the phenotype and aggressiveness of glioblastoma (GBM), the most lethal brain tumor, characterized by fast progression and marked resistance to treatments. In this context, the extracellular matrix (ECM) is known to heavily influence the behavior of cancer cells from several origins, contributing to stem cell niches, influencing tumor invasiveness and response to chemotherapy, mediating survival signaling cascades, and modulating inflammatory cell recruitment. Here, we show that collagen VI (COL6), an ECM protein widely expressed in both normal and pathological tissues, has a distinctive distribution within the GBM mass, strongly correlated with the most aggressive and phenotypically immature cells. Our data demonstrate that COL6 sustains the stem-like properties of GBM cells and supports the maintenance of an aggressive transcriptional program promoting cancer cell proliferation and survival. In particular, we identified a specific subset of COL6-transcriptionally co-regulated genes, required for the response of cells to replicative stress and DNA damage, supporting the concept that COL6 is an essential stimulus for the activation of GBM cell response and resistance to chemotherapy, through the ATM/ATR axis. Altogether, these findings indicate that COL6 plays a pivotal role in GBM tumor biology, exerting a pleiotropic action across different GBM hallmarks, including phenotypic identity and gene transcription, as well as response to treatments, thus providing valuable information for the understanding of the complex microenvironmental cues underlying GBM malignancy.


Subject(s)
Brain Neoplasms , Glioblastoma , Humans , Glioblastoma/drug therapy , Glioblastoma/genetics , Glioblastoma/metabolism , Collagen/metabolism , Signal Transduction , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Cell Line, Tumor , Neoplastic Stem Cells/metabolism
5.
Int J Mol Sci ; 24(2)2023 Jan 09.
Article in English | MEDLINE | ID: mdl-36674829

ABSTRACT

Dent disease (DD1) is a rare tubulopathy caused by mutations in the CLCN5 gene. Glomerulosclerosis was recently reported in DD1 patients and ClC-5 protein was shown to be expressed in human podocytes. Nephrin and actin cytoskeleton play a key role for podocyte functions and podocyte endocytosis seems to be crucial for slit diaphragm regulation. The aim of this study was to analyze whether ClC-5 loss in podocytes might be a direct consequence of the glomerular damage in DD1 patients. Three DD1 kidney biopsies presenting focal global glomerulosclerosis and four control biopsies were analyzed by immunofluorescence (IF) for nephrin and podocalyxin, and by immunohistochemistry (IHC) for ClC-5. ClC-5 resulted as down-regulated in DD1 vs. control (CTRL) biopsies in both tubular and glomerular compartments (p < 0.01). A significant down-regulation of nephrin (p < 0.01) in DD1 vs. CTRL was demonstrated. CRISPR/Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats/Caspase9) gene editing of CLCN5 in conditionally immortalized human podocytes was used to obtain clones with the stop codon mutation p.(R34Efs*14). We showed that ClC-5 and nephrin expression, analyzed by quantitative Reverse Transcription/Polymerase Chain Reaction (qRT/PCR) and In-Cell Western (ICW), was significantly downregulated in mutant clones compared to the wild type ones. In addition, F-actin staining with fluorescent phalloidin revealed actin derangements. Our results indicate that ClC-5 loss might alter podocyte function either through cytoskeleton disorganization or through impairment of nephrin recycling.


Subject(s)
Chloride Channels , Dent Disease , Glomerulosclerosis, Focal Segmental , Podocytes , Humans , Actins/genetics , Actins/metabolism , Dent Disease/genetics , Dent Disease/pathology , Glomerulosclerosis, Focal Segmental/metabolism , Kidney Glomerulus/metabolism , Podocytes/metabolism , Chloride Channels/metabolism
6.
Hum Mol Genet ; 27(13): 2262-2275, 2018 07 01.
Article in English | MEDLINE | ID: mdl-29648648

ABSTRACT

Skeletal abnormalities represent a major clinical burden in patients affected by the lysosomal storage disorder mucopolysaccharidosis type II (MPSII, OMIM #309900). While extensive research has emphasized the detrimental role of stored glycosaminoglycans (GAGs) in the bone marrow (BM), a limited understanding of primary cellular mechanisms underlying bone defects in MPSII has hampered the development of bone-targeted therapeutic strategies beyond enzyme replacement therapy (ERT). We here investigated the involvement of key signaling pathways related to the loss of iduronate-2-sulfatase activity in two different MPSII animal models, D. rerio and M. musculus. We found that FGF pathway activity is impaired during early stages of bone development in IDS knockout mice and in a newly generated Ids mutant fish. In both models the FGF signaling deregulation anticipated a slow but progressive defect in bone differentiation, regardless of any extensive GAGs storage. We also show that MPSII patient fibroblasts harboring different mutations spanning the IDS gene exhibit perturbed FGF signaling-related markers expression. Our work opens a new venue to discover possible druggable novel key targets in MPSII.


Subject(s)
Brain/metabolism , Fibroblast Growth Factors/genetics , Iduronate Sulfatase/genetics , Mucopolysaccharidosis II/genetics , Animals , Brain/pathology , Disease Models, Animal , Enzyme Replacement Therapy , Gene Expression Regulation , Glycosaminoglycans/genetics , Humans , Iduronate Sulfatase/therapeutic use , Mice , Mice, Knockout , Mucopolysaccharidosis II/pathology , Signal Transduction , Zebrafish/genetics
7.
J Hepatol ; 71(1): 130-142, 2019 07.
Article in English | MEDLINE | ID: mdl-30878582

ABSTRACT

BACKGROUND & AIMS: In vitro, cell function can be potently regulated by the mechanical properties of cells and of their microenvironment. Cells measure these features by developing forces via their actomyosin cytoskeleton, and respond accordingly by regulating intracellular pathways, including the transcriptional coactivators YAP/TAZ. Whether mechanical cues are relevant for in vivo regulation of adult organ homeostasis, and whether this occurs through YAP/TAZ, remains largely unaddressed. METHODS: We developed Capzb conditional knockout mice and obtained primary fibroblasts to characterize the role of CAPZ in vitro. In vivo functional analyses were carried out by inducing Capzb inactivation in adult hepatocytes, manipulating YAP/Hippo activity by hydrodynamic tail vein injections, and treating mice with the ROCK inhibitor, fasudil. RESULTS: We found that the F-actin capping protein CAPZ restrains actomyosin contractility: Capzb inactivation alters stress fiber and focal adhesion dynamics leading to enhanced myosin activity, increased traction forces, and increased liver stiffness. In vitro, this rescues YAP from inhibition by a small cellular geometry; in vivo, it induces YAP activation in parallel to the Hippo pathway, causing extensive hepatocyte proliferation and leading to striking organ overgrowth. Moreover, Capzb is required for the maintenance of the differentiated hepatocyte state, for metabolic zonation, and for gluconeogenesis. In keeping with changes in tissue mechanics, inhibition of the contractility regulator ROCK, or deletion of the Yap1 mechanotransducer, reverse the phenotypes emerging in Capzb-null livers. CONCLUSIONS: These results indicate a previously unsuspected role for CAPZ in tuning the mechanical properties of cells and tissues, which is required in hepatocytes for the maintenance of the differentiated state and to regulate organ size. More generally, it indicates for the first time that mechanotransduction has a physiological role in maintaining liver homeostasis in mammals. LAY SUMMARY: The mechanical properties of cells and tissues (i.e. whether they are soft or stiff) are thought to be important regulators of cell behavior. Herein, we found that inactivation of the protein CAPZ alters the mechanical properties of cells and liver tissues, leading to YAP hyperactivation. In turn, this profoundly alters liver physiology, causing organ overgrowth, defects in liver cell differentiation and metabolism. These results reveal a previously uncharacterized role for mechanical signals in the maintenance of adult liver homeostasis.


Subject(s)
Actins/metabolism , Adaptor Proteins, Signal Transducing/metabolism , CapZ Actin Capping Protein/metabolism , Cell Cycle Proteins/metabolism , Hepatocytes/physiology , Liver , Mechanotransduction, Cellular/physiology , Protein Serine-Threonine Kinases/metabolism , Animals , Cells, Cultured , Elasticity , Hippo Signaling Pathway , Humans , Intracellular Signaling Peptides and Proteins/physiology , Liver/growth & development , Liver/metabolism , Liver/physiopathology , Mice , Mice, Knockout , Signal Transduction , YAP-Signaling Proteins
8.
Arterioscler Thromb Vasc Biol ; 38(10): 2484-2497, 2018 10.
Article in English | MEDLINE | ID: mdl-30354220

ABSTRACT

Objective- EMILIN-1 (elastin microfibrils interface located protein-1) protein inhibits pro-TGF-ß (transforming growth factor-ß) proteolysis and limits TGF-ß bioavailability in vascular extracellular matrix. Emilin1-/- null mice display increased vascular TGF-ß signaling and are hypertensive. Because EMILIN-1 is expressed in vessels from embryonic life to adulthood, we aimed at unravelling whether the hypertensive phenotype of Emilin1-/- null mice results from a developmental defect or lack of homeostatic role in the adult. Approach and Results- By using a conditional gene targeting inactivating EMILIN-1 in smooth muscle cells of adult mice, we show that increased blood pressure in mice with selective smooth muscle cell ablation of EMILIN-1 depends on enhanced myogenic tone. Mechanistically, we unveil that higher TGF-ß signaling in smooth muscle cells stimulates HB-EGF (heparin-binding epidermal growth factor) expression and subsequent transactivation of EGFR (epidermal growth factor receptor). With increasing intraluminal pressure in resistance arteries, the cross talk established by TGF-ß and EGFR signals recruits TRPC6 (TRP [transient receptor potential] classical type 6) and TRPM4 (TRP melastatin type 4) channels, lastly stimulating voltage-dependent calcium channels and potentiating myogenic tone. We found reduced EMILIN-1 and enhanced myogenic tone, dependent on increased TGF-ß-EGFR signaling, in resistance arteries from hypertensive patients. Conclusions- Taken together, our findings implicate an unexpected role of the TGF-ß-EGFR pathway in hypertension with current translational perspectives.


Subject(s)
ErbB Receptors/metabolism , Hypertension/metabolism , Membrane Glycoproteins/metabolism , Mesenteric Arteries/metabolism , Transforming Growth Factor beta1/metabolism , Vasoconstriction , Animals , Blood Pressure , Calcium Channels/metabolism , Case-Control Studies , Cells, Cultured , Disease Models, Animal , Female , Heparin-binding EGF-like Growth Factor/metabolism , Humans , Hypertension/genetics , Hypertension/physiopathology , Male , Membrane Glycoproteins/deficiency , Membrane Glycoproteins/genetics , Mesenteric Arteries/drug effects , Mesenteric Arteries/physiopathology , Mice, Inbred C57BL , Mice, Knockout , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/physiopathology , Myocytes, Smooth Muscle/metabolism , Signal Transduction , TRPC Cation Channels/metabolism , TRPC6 Cation Channel , TRPM Cation Channels/metabolism , Transforming Growth Factor beta1/pharmacology , Vasoconstriction/drug effects
9.
J Cell Sci ; 129(8): 1671-84, 2016 Apr 15.
Article in English | MEDLINE | ID: mdl-26945058

ABSTRACT

Collagen VI myopathies are genetic disorders caused by mutations in collagen 6 A1, A2 and A3 genes, ranging from the severe Ullrich congenital muscular dystrophy to the milder Bethlem myopathy, which is recapitulated by collagen-VI-null (Col6a1(-/-)) mice. Abnormalities in mitochondria and autophagic pathway have been proposed as pathogenic causes of collagen VI myopathies, but the link between collagen VI defects and these metabolic circuits remains unknown. To unravel the expression profiling perturbation in muscles with collagen VI myopathies, we performed a deep RNA profiling in both Col6a1(-/-)mice and patients with collagen VI pathology. The interactome map identified common pathways suggesting a previously undetected connection between circadian genes and collagen VI pathology. Intriguingly, Bmal1(-/-)(also known as Arntl) mice, a well-characterized model displaying arrhythmic circadian rhythms, showed profound deregulation of the collagen VI pathway and of autophagy-related genes. The involvement of circadian rhythms in collagen VI myopathies is new and links autophagy and mitochondrial abnormalities. It also opens new avenues for therapies of hereditary myopathies to modulate the molecular clock or potential gene-environment interactions that might modify muscle damage pathogenesis.


Subject(s)
ARNTL Transcription Factors/genetics , Circadian Clocks/physiology , Collagen Type VI/genetics , Contracture/genetics , Mitochondria/physiology , Muscular Dystrophies/congenital , Mutation/genetics , Sclerosis/genetics , Animals , Autophagy/genetics , Gene Expression Profiling , Humans , Mice , Mice, Knockout , Microarray Analysis , Muscular Dystrophies/genetics , RNA/analysis
10.
Exp Dermatol ; 26(5): 435-438, 2017 05.
Article in English | MEDLINE | ID: mdl-27892605

ABSTRACT

EMILIN3 is an extracellular matrix glycoprotein that displays a dynamic and restricted expression pattern in connective tissues during post-natal life. In this study, we report the characterization of EMILIN3 deposition in the skin. In addition, to unravel the functions of this protein in skin homeostasis, we generated Emilin3 null mice and provide evidence that EMILIN3 is dispensable for hair follicle growth and maintenance throughout adult life.


Subject(s)
Extracellular Matrix Proteins/metabolism , Glycoproteins/metabolism , Hair Follicle/growth & development , Animals , Hair Follicle/metabolism , Mice
11.
Hum Mol Genet ; 23(20): 5353-63, 2014 Oct 15.
Article in English | MEDLINE | ID: mdl-24852368

ABSTRACT

Ullrich congenital muscular dystrophy (UCMD) and Bethlem myopathy (BM) are inherited muscle diseases due to mutations in the genes encoding the extracellular matrix protein collagen (Col) VI. Opening of the cyclosporin A-sensitive mitochondrial permeability transition pore (PTP) is a causative event in disease pathogenesis, and a potential target for therapy. Here, we have tested the effect of N-methyl-4-isoleucine-cyclosporin (NIM811), a non-immunosuppressive cyclophilin inhibitor, in a zebrafish model of ColVI myopathy obtained by deletion of the N-terminal region of the ColVI α1 triple helical domain, a common mutation of UCMD. Treatment with antisense morpholino sequences targeting col6a1 exon 9 at the 1-4 cell stage (within 1 h post fertilization, hpf) caused severe ultrastructural and motor abnormalities as assessed by electron and fluorescence microscopy, birefringence, spontaneous coiling events and touch-evoked responses measured at 24-48 hpf. Structural and functional abnormalities were largely prevented when NIM811--which proved significantly more effective than cyclosporin A--was administered at 21 hpf, while FK506 was ineffective. Beneficial effects of NIM811 were also detected (i) in primary muscle-derived cell cultures from UCMD and BM patients, where the typical mitochondrial alterations and depolarizing response to rotenone and oligomycin were significantly reduced; and (ii) in the Col6a1(-/-) myopathic mouse model, where apoptosis was prevented and muscle strength was increased. Since the PTP of zebrafish shares its key regulatory features with the mammalian pore, our results suggest that early treatment with NIM811 should be tested as a potential therapy for UCMD and BM.


Subject(s)
Collagen Type VI/genetics , Collagen Type VI/metabolism , Cyclosporine/administration & dosage , Muscular Dystrophies/drug therapy , Muscular Dystrophies/pathology , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism , Animals , Apoptosis/drug effects , Cells, Cultured , Cyclosporine/therapeutic use , Disease Models, Animal , Humans , Mice , Mitochondria/metabolism , Muscle Strength/drug effects , Muscular Dystrophies/congenital , Muscular Dystrophies/genetics , Zebrafish
13.
J Proteome Res ; 13(11): 5022-30, 2014 Nov 07.
Article in English | MEDLINE | ID: mdl-25211533

ABSTRACT

Mutations in the collagen VI genes cause the Ullrich congenital muscular dystrophy (UCMD), with severe phenotype, and Bethlem myopathy (BM) with mild to moderate phenotype. Both, UCMD and BM patients show dystrophic features with degeneration/regeneration and replacement of muscle with fat and fibrous connective tissue. At molecular level, UCMD patients show autophagic impairment and increased PTP opening; these features are less severe in BM. To elucidate the biochemical mechanisms adopted by the muscle to adapt to collagen VI deficiency in BM and UCMD patients, a proteome analysis was carried out on human muscle biopsies. Qualitative and quantitative differences were assessed by 2D-DIGE coupled to MALDI-ToF/ToF MS. Proteomics results, coupled with immunoblotting, indicate changes in UPR, hexosamine pathway, and amino acid and fatty acid metabolism, suggesting an association of ER stress, metabolic dysregulation, autophagic impairment, and alteration in mechanotransduction signaling. Overall, these results indicate that despite the common downregulation of hexosamine pathway in UCMD and BM, in BM the protein quality control system is sustained by a metabolic adaptation supporting energy requirements for the maintenance of autophagy, counteracting ER misfolded protein overload. In UCMD, this multilayered system may be disrupted and worsened by the metabolic rewiring, which leads to lipotoxicity.


Subject(s)
Contracture/metabolism , Muscle, Skeletal/metabolism , Muscular Dystrophies/congenital , Proteomics/methods , Sclerosis/metabolism , Biopsy , Case-Control Studies , Collagen Type VI/metabolism , Contracture/physiopathology , Endoplasmic Reticulum Stress , Fatty Acids/metabolism , Hexosamines/metabolism , Humans , Immunoblotting , Male , Muscle, Skeletal/physiopathology , Muscular Dystrophies/metabolism , Muscular Dystrophies/physiopathology , Reproducibility of Results , Sclerosis/physiopathology , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Two-Dimensional Difference Gel Electrophoresis , Unfolded Protein Response
14.
Mol Neurodegener ; 19(1): 22, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38454456

ABSTRACT

BACKGROUND: Mutations in the ß-glucocerebrosidase (GBA1) gene do cause the lysosomal storage Gaucher disease (GD) and are among the most frequent genetic risk factors for Parkinson's disease (PD). So far, studies on both neuronopathic GD and PD primarily focused on neuronal manifestations, besides the evaluation of microglial and astrocyte implication. White matter alterations were described in the central nervous system of paediatric type 1 GD patients and were suggested to sustain or even play a role in the PD process, although the contribution of oligodendrocytes has been so far scarcely investigated. METHODS: We exploited a system to study the induction of central myelination in vitro, consisting of Oli-neu cells treated with dibutyryl-cAMP, in order to evaluate the expression levels and function of ß-glucocerebrosidase during oligodendrocyte differentiation. Conduritol-B-epoxide, a ß-glucocerebrosidase irreversible inhibitor was used to dissect the impact of ß-glucocerebrosidase inactivation in the process of myelination, lysosomal degradation and α-synuclein accumulation in vitro. Moreover, to study the role of ß-glucocerebrosidase in the white matter in vivo, we developed a novel mouse transgenic line in which ß-glucocerebrosidase function is abolished in myelinating glia, by crossing the Cnp1-cre mouse line with a line bearing loxP sequences flanking Gba1 exons 9-11, encoding for ß-glucocerebrosidase catalytic domain. Immunofluorescence, western blot and lipidomic analyses were performed in brain samples from wild-type and knockout animals in order to assess the impact of genetic inactivation of ß-glucocerebrosidase on myelination and on the onset of early neurodegenerative hallmarks, together with differentiation analysis in primary oligodendrocyte cultures. RESULTS: Here we show that ß-glucocerebrosidase inactivation in oligodendrocytes induces lysosomal dysfunction and inhibits myelination in vitro. Moreover, oligodendrocyte-specific ß-glucocerebrosidase loss-of-function was sufficient to induce in vivo demyelination and early neurodegenerative hallmarks, including axonal degeneration, α-synuclein accumulation and astrogliosis, together with brain lipid dyshomeostasis and functional impairment. CONCLUSIONS: Our study sheds light on the contribution of oligodendrocytes in GBA1-related diseases and supports the need for better characterizing oligodendrocytes as actors playing a role in neurodegenerative diseases, also pointing at them as potential novel targets to set a brake to disease progression.


Subject(s)
Gaucher Disease , Parkinson Disease , Animals , Mice , alpha-Synuclein/metabolism , Animals, Genetically Modified/metabolism , Gaucher Disease/genetics , Gaucher Disease/metabolism , Glucosylceramidase/genetics , Glucosylceramidase/metabolism , Lipids , Mutation , Parkinson Disease/metabolism
15.
J Biol Chem ; 287(14): 11498-515, 2012 Mar 30.
Article in English | MEDLINE | ID: mdl-22334695

ABSTRACT

EMILIN-3 is a glycoprotein of the extracellular matrix belonging to a family that contains a characteristic N-terminal cysteine-rich EMI domain. Currently, EMILIN-3 is the least characterized member of the elastin microfibril interface-located protein (EMILIN)/Multimerin family. Using RNA, immunohistochemical, and protein chemistry approaches, we carried out a detailed characterization of the expression and biochemical properties of EMILIN-3 in mouse. During embryonic and postnatal development, EMILIN-3 showed a peculiar and dynamic pattern of gene expression and protein distribution. EMILIN-3 mRNA was first detected at E8.5-E9.5 in the tail bud and in the primitive gut, and at later stages it became abundant in the developing gonads and osteogenic mesenchyme. Interestingly and in contrast to other EMILIN/Multimerin genes, EMILIN-3 was not found in the cardiovascular system. Despite the absence of the globular C1q domain, immunoprecipitation and Western blot analyses demonstrated that EMILIN-3 forms disulfide-bonded homotrimers and higher order oligomers. Circular dichroism spectroscopy indicated that the most C-terminal part of EMILIN-3 has a substantial α-helical content and forms coiled coil structures involved in EMILIN-3 homo-oligomerization. Transfection experiments with recombinant constructs showed that the EMI domain contributes to the higher order self-assembly but was dispensable for homotrimer formation. EMILIN-3 was found to bind heparin with high affinity, a property mediated by the EMI domain, thus revealing a new function for this domain that may contribute to the interaction of EMILIN-3 with other extracellular matrix and/or cell surface molecules. Finally, in vitro experiments showed that EMILIN-3 is able to function as an extracellular regulator of the activity of TGF-ß ligands.


Subject(s)
Antigens, Surface/metabolism , Extracellular Matrix Proteins/metabolism , Gene Expression Regulation, Developmental , Glycoproteins/metabolism , Membrane Glycoproteins/metabolism , Protein Multimerization , Transforming Growth Factor beta/antagonists & inhibitors , Amino Acid Sequence , Animals , Antigens, Surface/chemistry , Antigens, Surface/genetics , Disulfides/chemistry , Extracellular Matrix Proteins/chemistry , Extracellular Matrix Proteins/genetics , Glycoproteins/chemistry , Glycoproteins/genetics , HEK293 Cells , Heparin/metabolism , Humans , Membrane Glycoproteins/chemistry , Membrane Glycoproteins/genetics , Mice , Molecular Sequence Data , Molecular Weight , Polysaccharides/metabolism , Protein Structure, Quaternary , Protein Structure, Tertiary , Protein Transport
16.
Arterioscler Thromb Vasc Biol ; 32(9): 2178-84, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22814752

ABSTRACT

OBJECTIVE: Emilin-1 is a protein of elastic extracellular matrix involved in blood pressure (BP) control by negatively affecting transforming growth factor (TGF)-ß processing. Emilin1 null mice are hypertensive. This study investigates how Emilin-1 deals with vascular mechanisms regulating BP. METHODS AND RESULTS: This study uses a phenotype rescue approach in which Emilin-1 is expressed in either endothelial cells or vascular smooth muscle cells of transgenic animals with the Emilin1(-/-) background. We found that normalization of BP required Emilin-1 expression in smooth muscle cells, whereas expression of the protein in endothelial cells did not modify the hypertensive phenotype of Emilin1(-/-) mice. We also explored the effect of treatment with anti-TGF-ß antibodies on the hypertensive phenotype of Emilin1(-/-) mice, finding that neutralization of TGF-ß in Emilin1 null mice normalized BP quite rapidly (2 weeks). Finally, we evaluated the vasoconstriction response of resistance arteries to perfusion pressure and neurohumoral agents in different transgenic mouse lines. Interestingly, we found that the hypertensive phenotype was coupled with an increased arteriolar myogenic response to perfusion pressure, while the vasoconstriction induced by neurohumoral agents remained unaffected. We further elucidate that, as for the hypertensive phenotype, the increased myogenic response was attributable to increased TGF-ß activity. CONCLUSIONS: Our findings clarify that Emilin-1 produced by vascular smooth muscle cells acts as a main regulator of resting BP levels by controlling the myogenic response in resistance arteries through TGF-ß.


Subject(s)
Blood Pressure , Hypertension/metabolism , Membrane Glycoproteins/metabolism , Muscle, Smooth, Vascular/metabolism , Vasoconstriction , Animals , Antibodies, Neutralizing/administration & dosage , Arterioles/metabolism , Arterioles/physiopathology , Blood Pressure/drug effects , Blood Pressure/genetics , Blood Pressure Monitoring, Ambulatory/methods , Dose-Response Relationship, Drug , Echocardiography, Doppler , Endothelial Cells/metabolism , Gene Expression Regulation , Genotype , Humans , Hypertension/genetics , Hypertension/physiopathology , Membrane Glycoproteins/deficiency , Membrane Glycoproteins/genetics , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/physiopathology , Nitric Oxide Synthase Type III/genetics , Nitric Oxide Synthase Type III/metabolism , Phenotype , Telemetry , Time Factors , Transforming Growth Factor beta/immunology , Transforming Growth Factor beta/metabolism , Vasoconstriction/drug effects , Vasoconstriction/genetics , Vasoconstrictor Agents/pharmacology
17.
Nat Genet ; 35(4): 367-71, 2003 Dec.
Article in English | MEDLINE | ID: mdl-14625552

ABSTRACT

Collagen VI is an extracellular matrix protein that forms a microfilamentous network in skeletal muscles and other organs. Inherited mutations in genes encoding collagen VI in humans cause two muscle diseases, Bethlem myopathy and Ullrich congenital muscular dystrophy. We previously generated collagen VI-deficient (Col6a1-/-) mice and showed that they have a muscle phenotype that strongly resembles Bethlem myopathy. The pathophysiological defects and mechanisms leading to the myopathic disorder were not known. Here we show that Col6a1-/- muscles have a loss of contractile strength associated with ultrastructural alterations of sarcoplasmic reticulum (SR) and mitochondria and spontaneous apoptosis. We found a latent mitochondrial dysfunction in myofibers of Col6a1-/- mice on incubation with the selective F1F(O)-ATPase inhibitor oligomycin, which caused mitochondrial depolarization, Ca2+ deregulation and increased apoptosis. These defects were reversible, as they could be normalized by plating Col6a1-/- myofibers on collagen VI or by addition of cyclosporin A (CsA), the inhibitor of mitochondrial permeability transition pore (PTP). Treatment of Col6a1-/- mice with CsA rescued the muscle ultrastructural defects and markedly decreased the number of apoptotic nuclei in vivo. These findings indicate that collagen VI myopathies have an unexpected mitochondrial pathogenesis that could be exploited for therapeutic intervention.


Subject(s)
Apoptosis , Collagen Type VI/deficiency , Mitochondria, Muscle/pathology , Mitochondrial Diseases/pathology , Muscular Diseases/pathology , Animals , Calcium/metabolism , Cyclosporine/pharmacology , Disease Models, Animal , Enzyme Inhibitors/pharmacology , Female , Fibroblasts/metabolism , Homozygote , Immunosuppressive Agents/pharmacology , In Situ Nick-End Labeling , Male , Membrane Potentials/drug effects , Mice , Mice, Inbred C57BL , Mice, Knockout , Muscle, Skeletal/drug effects , Oligomycins/pharmacology , Sarcoplasmic Reticulum/ultrastructure
18.
Autophagy ; 19(3): 984-999, 2023 03.
Article in English | MEDLINE | ID: mdl-35857791

ABSTRACT

Endoplasmic reticulum stress is an emerging significant player in the molecular pathology of connective tissue disorders. In response to endoplasmic reticulum stress, cells can upregulate macroautophagy/autophagy, a fundamental cellular homeostatic process used by cells to degrade and recycle proteins or remove damaged organelles. In these scenarios, autophagy activation can support cell survival. Here we demonstrated by in vitro and in vivo approaches that megakaryocytes derived from col6a1-/- (collagen, type VI, alpha 1) null mice display increased intracellular retention of COL6 polypeptides, endoplasmic reticulum stress and apoptosis. The unfolded protein response is activated in col6a1-/- megakaryocytes, as evidenced by the upregulation of molecular chaperones, by the increased splicing of Xbp1 mRNA and by the higher level of the pro-apoptotic regulator DDIT3/CHOP. Despite the endoplasmic reticulum stress, basal autophagy is impaired in col6a1-/- megakaryocytes, which show lower BECN1 levels and reduced autophagosome maturation. Starvation and rapamycin treatment rescue the autophagic flux in col6a1-/- megakaryocytes, leading to a decrease in intracellular COL6 polypeptide retention, endoplasmic reticulum stress and apoptosis. Furthermore, megakaryocytes cultured from peripheral blood hematopoietic progenitors of patients affected by Bethlem myopathy and Ullrich congenital muscular dystrophy, two COL6-related disorders, displayed increased apoptosis, endoplasmic reticulum stress and impaired autophagy. These data demonstrate that genetic disorders of collagens, endoplasmic reticulum stress and autophagy regulation in megakaryocytes may be interrelated.Abbreviations: 7-AAD: 7-amino-actinomycin D; ATF: activating transcriptional factor; BAX: BCL2 associated X protein; BCL2: B cell leukemia/lymphoma 2; BCL2L1/Bcl-xL: BCL2-like 1; BM: bone marrow; COL6: collagen, type VI; col6a1-/-: mice that are null for Col6a1; DDIT3/CHOP/GADD153: DNA-damage inducible transcript 3; EGFP: enhanced green fluorescent protein; ER: endoplasmic reticulum; reticulophagy: endoplasmic reticulum-selective autophagy; HSPA5/Bip: heat shock protein 5; HSP90B1/GRP94: heat shock protein 90, beta (Grp94), member 1; LAMP2: lysosomal associated membrane protein 2; MAP1LC3B/LC3B: microtubule-associated protein 1 light chain 3 beta; Mk: megakaryocytes; MTOR: mechanistic target of rapamycin kinase; NIMV: noninvasive mechanical ventilation; PI3K: phosphoinositide 3-kinase; PPP1R15A/GADD34: protein phosphatase 1, regulatory subunit 15A; RT-qPCR: reverse transcription-quantitative real-time PCR; ROS: reactive oxygen species; SERPINH1/HSP47: serine (or cysteine) peptidase inhibitor, clade H, member 1; sh-RNA: short hairpin RNA; SOCE: store operated calcium entry; UCMD: Ullrich congenital muscular dystrophy; UPR: unfolded protein response; WIPI2: WD repeat domain, phosphoinositide-interacting 2; WT: wild type; XBP1: X-box binding protein 1.


Subject(s)
Autophagy , Phosphatidylinositol 3-Kinases , Mice , Animals , Autophagy/physiology , Phosphatidylinositol 3-Kinases/metabolism , Megakaryocytes/metabolism , Collagen Type VI , Apoptosis/physiology , Apoptosis Regulatory Proteins/metabolism , Endoplasmic Reticulum Stress , Endoplasmic Reticulum Chaperone BiP , Proto-Oncogene Proteins c-bcl-2 , Sirolimus
19.
Hum Mol Genet ; 19(21): 4207-15, 2010 Nov 01.
Article in English | MEDLINE | ID: mdl-20716577

ABSTRACT

Several studies documented the key role of oxidative stress and abnormal production of reactive oxygen species (ROS) in the pathophysiology of muscular dystrophies (MDs). The sources of ROS, however, are still controversial as well as their major molecular targets. This study investigated whether ROS produced in mitochondria by monoamine oxidase (MAO) contributes to MD pathogenesis. Pargyline, an MAO inhibitor, reduced ROS accumulation along with a beneficial effect on the dystrophic phenotype of Col6a1(-/-) mice, a model of Bethlem myopathy and Ullrich congenital MD, and mdx mice, a model of Duchenne MD. Based on our previous observations on oxidative damage of myofibrillar proteins in heart failure, we hypothesized that MAO-dependent ROS might impair contractile function in dystrophic muscles. Indeed, oxidation of myofibrillar proteins, as probed by formation of disulphide cross-bridges in tropomyosin, was detected in both Col6a1(-/-) and mdx muscles. Notably, pargyline significantly reduced myofiber apoptosis and ameliorated muscle strength in Col6a1(-/-) mice. This study demonstrates a novel and determinant role of MAO in MDs, adding evidence of the pivotal role of mitochondria and suggesting a therapeutic potential for MAO inhibition.


Subject(s)
Monoamine Oxidase/metabolism , Muscular Dystrophy, Animal/pathology , Myofibrils/pathology , Oxidative Stress , Animals , Collagen Type VI/genetics , Collagen Type VI/physiology , Mice , Mice, Knockout , Phenotype
20.
J Biomed Biotechnol ; 2012: 897076, 2012.
Article in English | MEDLINE | ID: mdl-23091362

ABSTRACT

In Duchenne muscular dystrophy, the exon-skipping approach has obtained proof of concept in animal models, myogenic cell cultures, and following local and systemic administration in Duchenne patients. Indeed, we have previously demonstrated that low doses (7.5 mg/Kg/week) of 2'-O-methyl-phosphorothioate antisense oligoribonucleotides (AONs) adsorbed onto ZM2 nanoparticles provoke widespread dystrophin restoration 7 days after intraperitoneal treatment in mdx mice. In this study, we went on to test whether this dystrophin restoration was still measurable 90 days from the end of the same treatment. Interestingly, we found that both western blot and immunohistochemical analysis (up to 7% positive fibres) were still able to detect dystrophin protein in the skeletal muscles of ZM2-AON-treated mice at this time, and the level of exon-23 skipping could still be assessed by RT real-time PCR (up to 10% of skipping percentage). In contrast, the protein was undetectable by western blot analysis in the skeletal muscles of mdx mice treated with an identical dose of naked AON, and the percentage of dystrophin-positive fibres and exon-23 skipping were reminiscent of those of untreated mdx mice. Our data therefore demonstrate the long-term residual efficacy of this systemic low-dose treatment and confirm the protective effect nanoparticles exert on AON molecules.


Subject(s)
Dystrophin/metabolism , Muscular Dystrophy, Duchenne/drug therapy , Muscular Dystrophy, Duchenne/metabolism , Nanocapsules/administration & dosage , Oligonucleotides, Antisense/administration & dosage , Animals , Dystrophin/genetics , Injections, Intraperitoneal , Mice , Mice, Inbred mdx , Treatment Outcome , Up-Regulation/drug effects , Up-Regulation/genetics
SELECTION OF CITATIONS
SEARCH DETAIL