Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
Add more filters

Country/Region as subject
Publication year range
1.
N Engl J Med ; 387(7): 599-610, 2022 08 18.
Article in English | MEDLINE | ID: mdl-36070710

ABSTRACT

BACKGROUND: Early treatment to prevent severe coronavirus disease 2019 (Covid-19) is an important component of the comprehensive response to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. METHODS: In this phase 3, double-blind, randomized, placebo-controlled trial, we used a 2-by-3 factorial design to test the effectiveness of three repurposed drugs - metformin, ivermectin, and fluvoxamine - in preventing serious SARS-CoV-2 infection in nonhospitalized adults who had been enrolled within 3 days after a confirmed diagnosis of infection and less than 7 days after the onset of symptoms. The patients were between the ages of 30 and 85 years, and all had either overweight or obesity. The primary composite end point was hypoxemia (≤93% oxygen saturation on home oximetry), emergency department visit, hospitalization, or death. All analyses used controls who had undergone concurrent randomization and were adjusted for SARS-CoV-2 vaccination and receipt of other trial medications. RESULTS: A total of 1431 patients underwent randomization; of these patients, 1323 were included in the primary analysis. The median age of the patients was 46 years; 56% were female (6% of whom were pregnant), and 52% had been vaccinated. The adjusted odds ratio for a primary event was 0.84 (95% confidence interval [CI], 0.66 to 1.09; P = 0.19) with metformin, 1.05 (95% CI, 0.76 to 1.45; P = 0.78) with ivermectin, and 0.94 (95% CI, 0.66 to 1.36; P = 0.75) with fluvoxamine. In prespecified secondary analyses, the adjusted odds ratio for emergency department visit, hospitalization, or death was 0.58 (95% CI, 0.35 to 0.94) with metformin, 1.39 (95% CI, 0.72 to 2.69) with ivermectin, and 1.17 (95% CI, 0.57 to 2.40) with fluvoxamine. The adjusted odds ratio for hospitalization or death was 0.47 (95% CI, 0.20 to 1.11) with metformin, 0.73 (95% CI, 0.19 to 2.77) with ivermectin, and 1.11 (95% CI, 0.33 to 3.76) with fluvoxamine. CONCLUSIONS: None of the three medications that were evaluated prevented the occurrence of hypoxemia, an emergency department visit, hospitalization, or death associated with Covid-19. (Funded by the Parsemus Foundation and others; COVID-OUT ClinicalTrials.gov number, NCT04510194.).


Subject(s)
COVID-19 Drug Treatment , COVID-19 , Fluvoxamine , Ivermectin , Metformin , Adult , Aged , Aged, 80 and over , COVID-19/complications , COVID-19 Vaccines , Double-Blind Method , Female , Fluvoxamine/therapeutic use , Humans , Hypoxia/etiology , Ivermectin/therapeutic use , Male , Metformin/therapeutic use , Middle Aged , Obesity/complications , Overweight/complications , Pregnancy , Pregnancy Complications, Infectious/drug therapy , SARS-CoV-2
2.
Clin Infect Dis ; 2024 May 01.
Article in English | MEDLINE | ID: mdl-38690892

ABSTRACT

BACKGROUND: Metformin has antiviral activity against RNA viruses including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The mechanism appears to be suppression of protein translation via targeting the host mechanistic target of rapamycin pathway. In the COVID-OUT randomized trial for outpatient coronavirus disease 2019 (COVID-19), metformin reduced the odds of hospitalizations/death through 28 days by 58%, of emergency department visits/hospitalizations/death through 14 days by 42%, and of long COVID through 10 months by 42%. METHODS: COVID-OUT was a 2 × 3 randomized, placebo-controlled, double-blind trial that assessed metformin, fluvoxamine, and ivermectin; 999 participants self-collected anterior nasal swabs on day 1 (n = 945), day 5 (n = 871), and day 10 (n = 775). Viral load was quantified using reverse-transcription quantitative polymerase chain reaction. RESULTS: The mean SARS-CoV-2 viral load was reduced 3.6-fold with metformin relative to placebo (-0.56 log10 copies/mL; 95% confidence interval [CI], -1.05 to -.06; P = .027). Those who received metformin were less likely to have a detectable viral load than placebo at day 5 or day 10 (odds ratio [OR], 0.72; 95% CI, .55 to .94). Viral rebound, defined as a higher viral load at day 10 than day 5, was less frequent with metformin (3.28%) than placebo (5.95%; OR, 0.68; 95% CI, .36 to 1.29). The metformin effect was consistent across subgroups and increased over time. Neither ivermectin nor fluvoxamine showed effect over placebo. CONCLUSIONS: In this randomized, placebo-controlled trial of outpatient treatment of SARS-CoV-2, metformin significantly reduced SARS-CoV-2 viral load, which may explain the clinical benefits in this trial. Metformin is pleiotropic with other actions that are relevant to COVID-19 pathophysiology. CLINICAL TRIALS REGISTRATION: NCT04510194.

3.
Am Heart J ; 275: 62-73, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38795793

ABSTRACT

The limitations of the explanatory clinical trial framework include the high expense of implementing explanatory trials, restrictive entry criteria for participants, and redundant logistical processes. These limitations can result in slow evidence generation that is not responsive to population health needs, yielding evidence that is not generalizable. Clinically integrated trials, which integrate clinical research into routine care, represent a potential solution to this challenge and an opportunity to support learning health systems. The operational and design features of clinically integrated trials include a focused scope, simplicity in design and requirements, the leveraging of existing data structures, and patient participation in the entire trial process. These features are designed to minimize barriers to participation and trial execution and reduce additional research burdens for participants and clinicians alike. Broad adoption and scalability of clinically integrated trials are dependent, in part, on continuing regulatory, healthcare system, and payer support. This analysis presents a framework of the strengths and challenges of clinically integrated trials and is based on a multidisciplinary expert "Think Tank" panel discussion that included representatives from patient populations, academia, non-profit funding agencies, the U.S. Food and Drug Administration, and industry.

4.
Clin Infect Dis ; 76(3): e1-e9, 2023 02 08.
Article in English | MEDLINE | ID: mdl-36124697

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination has decreasing protection from acquiring any infection with emergence of new variants; however, vaccination continues to protect against progression to severe coronavirus disease 2019 (COVID-19). The impact of vaccination status on symptoms over time is less clear. METHODS: Within a randomized trial on early outpatient COVID-19 therapy testing metformin, ivermectin, and/or fluvoxamine, participants recorded symptoms daily for 14 days. Participants were given a paper symptom diary allowing them to circle the severity of 14 symptoms as none (0), mild (1), moderate (2), or severe (3). This is a secondary analysis of clinical trial data on symptom severity over time using generalized estimating equations comparing those unvaccinated, SARS-CoV-2 vaccinated with primary vaccine series only, or vaccine-boosted. RESULTS: The parent clinical trial prospectively enrolled 1323 participants, of whom 1062 (80%) prospectively recorded some daily symptom data. Of these, 480 (45%) were unvaccinated, 530 (50%) were vaccinated with primary series only, and 52 (5%) vaccine-boosted. Overall symptom severity was least for the vaccine-boosted group and most severe for unvaccinated at baseline and over the 14 days (P < .001). Individual symptoms were least severe in the vaccine-boosted group including cough, chills, fever, nausea, fatigue, myalgia, headache, and diarrhea, as well as smell and taste abnormalities. Results were consistent over Delta and Omicron variant time periods. CONCLUSIONS: SARS-CoV-2 vaccine-boosted participants had the least severe symptoms during COVID-19, which abated the quickest over time. Clinical Trial Registration. NCT04510194.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/prevention & control , COVID-19 Vaccines , Vaccination
5.
Curr Diab Rep ; 23(8): 207-216, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37284921

ABSTRACT

PURPOSE OF REVIEW: Multiple studies report an increased incidence of diabetes following SARS-CoV-2 infection. Given the potential increased global burden of diabetes, understanding the effect of SARS-CoV-2 in the epidemiology of diabetes is important. Our aim was to review the evidence pertaining to the risk of incident diabetes after COVID-19 infection. RECENT FINDINGS: Incident diabetes risk increased by approximately 60% compared to patients without SARS-CoV-2 infection. Risk also increased compared to non-COVID-19 respiratory infections, suggesting SARS-CoV-2-mediated mechanisms rather than general morbidity after respiratory illness. Evidence is mixed regarding the association between SARS-CoV-2 infection and T1D. SARS-CoV-2 infection is associated with an elevated risk of T2D, but it is unclear whether the incident diabetes is persistent over time or differs in severity over time. SARS-CoV-2 infection is associated with an increased risk of incident diabetes. Future studies should evaluate vaccination, viral variant, and patient- and treatment-related factors that influence risk.


Subject(s)
COVID-19 , Diabetes Mellitus , Humans , SARS-CoV-2 , Diabetes Mellitus/epidemiology , Incidence
6.
J Biomed Inform ; 139: 104295, 2023 03.
Article in English | MEDLINE | ID: mdl-36716983

ABSTRACT

Healthcare datasets obtained from Electronic Health Records have proven to be extremely useful for assessing associations between patients' predictors and outcomes of interest. However, these datasets often suffer from missing values in a high proportion of cases, whose removal may introduce severe bias. Several multiple imputation algorithms have been proposed to attempt to recover the missing information under an assumed missingness mechanism. Each algorithm presents strengths and weaknesses, and there is currently no consensus on which multiple imputation algorithm works best in a given scenario. Furthermore, the selection of each algorithm's parameters and data-related modeling choices are also both crucial and challenging. In this paper we propose a novel framework to numerically evaluate strategies for handling missing data in the context of statistical analysis, with a particular focus on multiple imputation techniques. We demonstrate the feasibility of our approach on a large cohort of type-2 diabetes patients provided by the National COVID Cohort Collaborative (N3C) Enclave, where we explored the influence of various patient characteristics on outcomes related to COVID-19. Our analysis included classic multiple imputation techniques as well as simple complete-case Inverse Probability Weighted models. Extensive experiments show that our approach can effectively highlight the most promising and performant missing-data handling strategy for our case study. Moreover, our methodology allowed a better understanding of the behavior of the different models and of how it changed as we modified their parameters. Our method is general and can be applied to different research fields and on datasets containing heterogeneous types.


Subject(s)
COVID-19 , Humans , Algorithms , Research Design , Bias , Probability
7.
JAMA ; 330(20): 2000-2015, 2023 11 28.
Article in English | MEDLINE | ID: mdl-38015216

ABSTRACT

Importance: Obesity affects approximately 42% of US adults and is associated with increased rates of type 2 diabetes, hypertension, cardiovascular disease, sleep disorders, osteoarthritis, and premature death. Observations: A body mass index (BMI) of 25 or greater is commonly used to define overweight, and a BMI of 30 or greater to define obesity, with lower thresholds for Asian populations (BMI ≥25-27.5), although use of BMI alone is not recommended to determine individual risk. Individuals with obesity have higher rates of incident cardiovascular disease. In men with a BMI of 30 to 39, cardiovascular event rates are 20.21 per 1000 person-years compared with 13.72 per 1000 person-years in men with a normal BMI. In women with a BMI of 30 to 39.9, cardiovascular event rates are 9.97 per 1000 person-years compared with 6.37 per 1000 person-years in women with a normal BMI. Among people with obesity, 5% to 10% weight loss improves systolic blood pressure by about 3 mm Hg for those with hypertension, and may decrease hemoglobin A1c by 0.6% to 1% for those with type 2 diabetes. Evidence-based obesity treatment includes interventions addressing 5 major categories: behavioral interventions, nutrition, physical activity, pharmacotherapy, and metabolic/bariatric procedures. Comprehensive obesity care plans combine appropriate interventions for individual patients. Multicomponent behavioral interventions, ideally consisting of at least 14 sessions in 6 months to promote lifestyle changes, including components such as weight self-monitoring, dietary and physical activity counseling, and problem solving, often produce 5% to 10% weight loss, although weight regain occurs in 25% or more of participants at 2-year follow-up. Effective nutritional approaches focus on reducing total caloric intake and dietary strategies based on patient preferences. Physical activity without calorie reduction typically causes less weight loss (2-3 kg) but is important for weight-loss maintenance. Commonly prescribed medications such as antidepressants (eg, mirtazapine, amitriptyline) and antihyperglycemics such as glyburide or insulin cause weight gain, and clinicians should review and consider alternatives. Antiobesity medications are recommended for nonpregnant patients with obesity or overweight and weight-related comorbidities in conjunction with lifestyle modifications. Six medications are currently approved by the US Food and Drug Administration for long-term use: glucagon-like peptide receptor 1 (GLP-1) agonists (semaglutide and liraglutide only), tirzepatide (a glucose-dependent insulinotropic polypeptide/GLP-1 agonist), phentermine-topiramate, naltrexone-bupropion, and orlistat. Of these, tirzepatide has the greatest effect, with mean weight loss of 21% at 72 weeks. Endoscopic procedures (ie, intragastric balloon and endoscopic sleeve gastroplasty) can attain 10% to 13% weight loss at 6 months. Weight loss from metabolic and bariatric surgeries (ie, laparoscopic sleeve gastrectomy and Roux-en-Y gastric bypass) ranges from 25% to 30% at 12 months. Maintaining long-term weight loss is difficult, and clinical guidelines support the use of long-term antiobesity medications when weight maintenance is inadequate with lifestyle interventions alone. Conclusion and Relevance: Obesity affects approximately 42% of adults in the US. Behavioral interventions can attain approximately 5% to 10% weight loss, GLP-1 agonists and glucose-dependent insulinotropic polypeptide/GLP-1 receptor agonists can attain approximately 8% to 21% weight loss, and bariatric surgery can attain approximately 25% to 30% weight loss. Comprehensive, evidence-based obesity treatment combines behavioral interventions, nutrition, physical activity, pharmacotherapy, and metabolic/bariatric procedures as appropriate for individual patients.


Subject(s)
Anti-Obesity Agents , Obesity Management , Obesity , Adult , Female , Humans , Male , Anti-Obesity Agents/therapeutic use , Cardiovascular Diseases/epidemiology , Diabetes Mellitus, Type 2/epidemiology , Gastric Balloon , Glucagon-Like Peptide 1 , Glucose , Hypertension/epidemiology , Obesity/diagnosis , Obesity/epidemiology , Obesity/therapy , Obesity Management/methods , Overweight/diagnosis , Overweight/epidemiology , Overweight/therapy , Peptides , United States/epidemiology , Weight Loss , Body Mass Index
8.
JAMA ; 330(24): 2354-2363, 2023 12 26.
Article in English | MEDLINE | ID: mdl-37976072

ABSTRACT

Importance: The effect of higher-dose fluvoxamine in reducing symptom duration among outpatients with mild to moderate COVID-19 remains uncertain. Objective: To assess the effectiveness of fluvoxamine, 100 mg twice daily, compared with placebo, for treating mild to moderate COVID-19. Design, Setting, and Participants: The ACTIV-6 platform randomized clinical trial aims to evaluate repurposed medications for mild to moderate COVID-19. Between August 25, 2022, and January 20, 2023, a total of 1175 participants were enrolled at 103 US sites for evaluating fluvoxamine; participants were 30 years or older with confirmed SARS-CoV-2 infection and at least 2 acute COVID-19 symptoms for 7 days or less. Interventions: Participants were randomized to receive fluvoxamine, 50 mg twice daily on day 1 followed by 100 mg twice daily for 12 additional days (n = 601), or placebo (n = 607). Main Outcomes and Measures: The primary outcome was time to sustained recovery (defined as at least 3 consecutive days without symptoms). Secondary outcomes included time to death; time to hospitalization or death; a composite of hospitalization, urgent care visit, emergency department visit, or death; COVID-19 clinical progression scale score; and difference in mean time unwell. Follow-up occurred through day 28. Results: Among 1208 participants who were randomized and received the study drug, the median (IQR) age was 50 (40-60) years, 65.8% were women, 45.5% identified as Hispanic/Latino, and 76.8% reported receiving at least 2 doses of a SARS-CoV-2 vaccine. Among 589 participants who received fluvoxamine and 586 who received placebo included in the primary analysis, differences in time to sustained recovery were not observed (adjusted hazard ratio [HR], 0.99 [95% credible interval, 0.89-1.09]; P for efficacy = .40]). Additionally, unadjusted median time to sustained recovery was 10 (95% CI, 10-11) days in both the intervention and placebo groups. No deaths were reported. Thirty-five participants reported health care use events (a priori defined as death, hospitalization, or emergency department/urgent care visit): 14 in the fluvoxamine group compared with 21 in the placebo group (HR, 0.69 [95% credible interval, 0.27-1.21]; P for efficacy = .86) There were 7 serious adverse events in 6 participants (2 with fluvoxamine and 4 with placebo) but no deaths. Conclusions and Relevance: Among outpatients with mild to moderate COVID-19, treatment with fluvoxamine does not reduce duration of COVID-19 symptoms. Trial Registration: ClinicalTrials.gov Identifier: NCT04885530.


Subject(s)
COVID-19 , Humans , Female , Middle Aged , Male , Fluvoxamine/therapeutic use , SARS-CoV-2 , Outpatients , COVID-19 Vaccines , Treatment Outcome , COVID-19 Drug Treatment , Double-Blind Method
9.
Int J Obes (Lond) ; 46(2): 359-365, 2022 02.
Article in English | MEDLINE | ID: mdl-34718333

ABSTRACT

BACKGROUND: There are limited data comparing the relative associations of various BMI metrics with adiposity and cardiometabolic risk factors in youth. OBJECTIVE: Examine correlations of 7 different BMI metrics with adiposity, cardiometabolic risk factors, and biomarkers (i.e. blood pressure, waist circumference, cholesterol, leptin, insulin, high molecular weight adiponectin, high-sensitivity c-reactive protein (hsCRP)). METHODS: This was a cross-sectional analysis of youth in all BMI categories. BMI metrics: BMI z-score (BMIz), extended BMIz (ext.BMIz), BMI percentile (BMIp), percent of the BMI 95th percentile (%BMIp95), percent of the BMI median (%BMIp50), triponderal mass index (TMI), and BMI (BMI). Correlations between these BMI metrics and adiposity, visceral adiposity, cardiometabolic risk factors and biomarkers were summarized using Pearson's correlations. RESULTS: Data from 371 children and adolescents ages 8-21 years old were included in our analysis: 52% were female; 20.2% with Class I obesity, 20.5% with Class II, and 14.3% with Class III obesity. BMIp consistently demonstrated lower correlations with adiposity, risk factors, and biomarkers (r = 0.190-0.768) than other BMI metrics. The %BMIp95 and %BMIp50 were marginally more strongly correlated with measures of adiposity as compared to other BMI metrics. The ext.BMIz did not meaningfully outperform BMIz. CONCLUSION: Out of all the BMI metrics evaluated, %BMIp95 and %BMIp50 were the most strongly correlated with measures of adiposity. %BMIp95 has the benefit of being used currently to define obesity and severe obesity in both clinical and research settings. BMIp consistently had the lowest correlations. Future research should evaluate the longitudinal stability of various BMI metrics and their relative associations with medium to long-term changes in adiposity and cardiometabolic outcomes in the context of intervention trials.


Subject(s)
Adiposity/physiology , Body Mass Index , Cardiometabolic Risk Factors , Pediatric Obesity/blood , Adolescent , Biomarkers/analysis , Child , Cross-Sectional Studies , Female , Humans , Male , Minnesota , Pediatric Obesity/complications , Pediatric Obesity/physiopathology , Young Adult
10.
JAMA ; 328(16): 1595-1603, 2022 10 25.
Article in English | MEDLINE | ID: mdl-36269852

ABSTRACT

Importance: The effectiveness of ivermectin to shorten symptom duration or prevent hospitalization among outpatients in the US with mild to moderate symptomatic COVID-19 is unknown. Objective: To evaluate the efficacy of ivermectin, 400 µg/kg, daily for 3 days compared with placebo for the treatment of early mild to moderate COVID-19. Design, Setting, and Participants: ACTIV-6, an ongoing, decentralized, double-blind, randomized, placebo-controlled platform trial, was designed to evaluate repurposed therapies in outpatients with mild to moderate COVID-19. A total of 1591 participants aged 30 years and older with confirmed COVID-19, experiencing 2 or more symptoms of acute infection for 7 days or less, were enrolled from June 23, 2021, through February 4, 2022, with follow-up data through May 31, 2022, at 93 sites in the US. Interventions: Participants were randomized to receive ivermectin, 400 µg/kg (n = 817), daily for 3 days or placebo (n = 774). Main Outcomes and Measures: Time to sustained recovery, defined as at least 3 consecutive days without symptoms. There were 7 secondary outcomes, including a composite of hospitalization or death by day 28. Results: Among 1800 participants who were randomized (mean [SD] age, 48 [12] years; 932 women [58.6%]; 753 [47.3%] reported receiving at least 2 doses of a SARS-CoV-2 vaccine), 1591 completed the trial. The hazard ratio (HR) for improvement in time to recovery was 1.07 (95% credible interval [CrI], 0.96-1.17; posterior P value [HR >1] = .91). The median time to recovery was 12 days (IQR, 11-13) in the ivermectin group and 13 days (IQR, 12-14) in the placebo group. There were 10 hospitalizations or deaths in the ivermectin group and 9 in the placebo group (1.2% vs 1.2%; HR, 1.1 [95% CrI, 0.4-2.6]). The most common serious adverse events were COVID-19 pneumonia (ivermectin [n = 5]; placebo [n = 7]) and venous thromboembolism (ivermectin [n = 1]; placebo [n = 5]). Conclusions and Relevance: Among outpatients with mild to moderate COVID-19, treatment with ivermectin, compared with placebo, did not significantly improve time to recovery. These findings do not support the use of ivermectin in patients with mild to moderate COVID-19. Trial Registration: ClinicalTrials.gov Identifier: NCT04885530.


Subject(s)
Anti-Infective Agents , COVID-19 Drug Treatment , COVID-19 , Hospitalization , Ivermectin , Female , Humans , Middle Aged , COVID-19/mortality , COVID-19/prevention & control , COVID-19 Vaccines/therapeutic use , Double-Blind Method , Ivermectin/adverse effects , Ivermectin/therapeutic use , SARS-CoV-2 , Treatment Outcome , Anti-Infective Agents/adverse effects , Anti-Infective Agents/therapeutic use , Ambulatory Care , Drug Repositioning , Time Factors , Recovery of Function , Male , Adult
11.
J Med Virol ; 93(4): 1843-1846, 2021 04.
Article in English | MEDLINE | ID: mdl-33314219

ABSTRACT

In this commentary, we shed light on the role of the mammalian target of rapamycin (mTOR) pathway in viral infections. The mTOR pathway has been demonstrated to be modulated in numerous RNA viruses. Frequently, inhibiting mTOR results in suppression of virus growth and replication. Recent evidence points towards modulation of mTOR in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. We discuss the current literature on mTOR in SARS-CoV-2 and highlight evidence in support of a role for mTOR inhibitors in the treatment of coronavirus disease 2019.


Subject(s)
COVID-19 Drug Treatment , RNA Viruses/physiology , SARS-CoV-2/physiology , TOR Serine-Threonine Kinases/antagonists & inhibitors , Animals , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , COVID-19/virology , Humans , Middle East Respiratory Syndrome Coronavirus/genetics , Middle East Respiratory Syndrome Coronavirus/pathogenicity , Middle East Respiratory Syndrome Coronavirus/physiology , RNA Viruses/genetics , RNA Viruses/pathogenicity , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , Signal Transduction/drug effects , TOR Serine-Threonine Kinases/metabolism , Virus Replication
12.
J Med Virol ; 93(7): 4273-4279, 2021 07.
Article in English | MEDLINE | ID: mdl-33580540

ABSTRACT

Observational studies suggest outpatient metformin use is associated with reduced mortality from coronavirus disease-2019 (COVID-19). Metformin is known to decrease interleukin-6 and tumor-necrosis factor-α, which appear to contribute to morbidity in COVID-19. We sought to understand whether outpatient metformin use was associated with reduced odds of severe COVID-19 disease in a large US healthcare data set. Retrospective cohort analysis of electronic health record (EHR) data that was pooled across multiple EHR systems from 12 hospitals and 60 primary care clinics in the Midwest between March 4, 2020 and December 4, 2020. Inclusion criteria: data for body mass index (BMI) > 25 kg/m2 and a positive SARS-CoV-2 polymerase chain reaction test; age ≥ 30 and ≤85 years. Exclusion criteria: patient opt-out of research. Metformin is the exposure of interest, and death, admission, and intensive care unit admission are the outcomes of interest. Metformin was associated with a decrease in mortality from COVID-19, OR 0.32 (0.15, 0.66; p = .002), and in the propensity-matched cohorts, OR 0.38 (0.16, 0.91; p = .030). Metformin was associated with a nonsignificant decrease in hospital admission for COVID-19 in the overall cohort, OR 0.78 (0.58-1.04, p = .087). Among the subgroup with a hemoglobin HbA1c available (n = 1193), the adjusted odds of hospitalization (including adjustment for HbA1c) for metformin users was OR 0.75 (0.53-1.06, p = .105). Outpatient metformin use was associated with lower mortality and a trend towards decreased admission for COVID-19. Given metformin's low cost, established safety, and the mounting evidence of reduced severity of COVID-19 disease, metformin should be prospectively assessed for outpatient treatment of COVID-19.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , Metformin/therapeutic use , SARS-CoV-2/drug effects , Body Mass Index , Glycated Hemoglobin/analysis , Hospitalization/statistics & numerical data , Humans , Interleukin-6/blood , Obesity , Retrospective Studies , Treatment Outcome
13.
J Med Internet Res ; 23(5): e24003, 2021 05 27.
Article in English | MEDLINE | ID: mdl-34042604

ABSTRACT

BACKGROUND: There is growing interest in identifying and recruiting research participants from health systems using electronic health records (EHRs). However, few studies have described the practical aspects of the recruitment process or compared electronic recruitment methods to in-person recruitment, particularly across health systems. OBJECTIVE: The objective of this study was to describe the steps and efficiency of the recruitment process and participant characteristics by recruitment strategy. METHODS: EHR-based eligibility criteria included being an adult patient engaged in outpatient primary or bariatric surgery care at one of 5 health systems in the PaTH Clinical Research Network and having ≥2 weight measurements and 1 height measurement recorded in their EHR within the last 5 years. Recruitment strategies varied by site and included one or more of the following methods: (1) in-person recruitment by study staff from clinical sites, (2) US postal mail recruitment letters, (3) secure email, and (4) direct EHR recruitment through secure patient web portals. We used descriptive statistics to evaluate participant characteristics and proportion of patients recruited (ie, efficiency) by modality. RESULTS: The total number of eligible patients from the 5 health systems was 5,051,187. Of these, 40,048 (0.8%) were invited to enter an EHR-based cohort study and 1085 were enrolled. Recruitment efficiency was highest for in-person recruitment (33.5%), followed by electronic messaging (2.9%), including email (2.9%) and EHR patient portal messages (2.9%). Overall, 779 (65.7%) patients were enrolled through electronic messaging, which also showed greater rates of recruitment of Black patients compared with the other strategies. CONCLUSIONS: We recruited a total of 1085 patients from primary care and bariatric surgery settings using 4 recruitment strategies. The recruitment efficiency was 2.9% for email and EHR patient portals, with the majority of participants recruited electronically. This study can inform the design of future research studies using EHR-based recruitment.


Subject(s)
Electronic Health Records , Patient Portals , Adult , Cohort Studies , Cross-Sectional Studies , Humans , Patient Selection
15.
J Gen Intern Med ; 34(9): 1775-1781, 2019 09.
Article in English | MEDLINE | ID: mdl-31313111

ABSTRACT

BACKGROUND: Greater than 60% of adults have overweight or obesity. Self-weighing is an effective weight loss and weight maintenance tool. However, little is known about self-weighing habits among the primary care patient population. Our objective was to examine the frequency of patient-reported self-weighing, and to evaluate the associations of self-weighing with demographic characteristics and self-monitoring behaviors. METHODS: We conducted an analysis of survey data collected as part of the PaTH Clinical Data Research Network, which recruited a cohort of 1,021 primary care patients at 4 academic medical centers. Patients of all body mass index (BMI) categories were included. RESULTS: Response rate of 6-month survey was 727 (71%). The mean age was 56 years, and most were female (68%), White (78%), college graduates (66%), and employed/retired (85%). The mean BMI was 30.2 kg/m2, 80% of participants had a BMI â‰§ 25 kg/m2. Of patients with BMI â‰§ 25 kg/m2, 35% of participants self-weighed weekly and 23% daily. Participants who reported self-weighing at least weekly were more likely to be older (59 vs 54 years, p < 0.01), married (p = 0.01), college graduates (p = 0.03), White (p < 0.01), and employed vs disabled/unemployed (p < 0.01). Patients who self-weighed daily had a lower BMI (29 kg/m2 vs 31 kg/m2, p = 0.04). Patients who tracked exercise or food intake were more likely to self-weigh daily (p < 0.01), as were patients wanting to lose or maintain weight (p < 0.01). CONCLUSIONS: Despite its potential for primary and secondary obesity prevention, only 35% of primary care patients with overweight or obesity engage in self-weighing weekly and less than a quarter (23%) self-weigh daily. Socioeconomic status appears to be a factor influencing regular self-weighing in this population, potentially contributing to greater health disparities in obesity rates. Patients who self-weighed daily had a lower BMI, suggesting that it may play a role in primary prevention of obesity. More work is needed to explore self-weighing among patients.


Subject(s)
Body Weight , Health Behavior , Self Care/methods , Adult , Aged , Cohort Studies , Female , Humans , Male , Middle Aged , Obesity/therapy , Primary Health Care/statistics & numerical data , Self Care/statistics & numerical data , Socioeconomic Factors , Surveys and Questionnaires
16.
Diabetes Spectr ; 30(4): 237-243, 2017 Nov.
Article in English | MEDLINE | ID: mdl-29151713

ABSTRACT

IN BRIEF More than 90% of patients with diabetes have overweight or obesity. Whereas weight gain and obesity worsen insulin resistance, weight loss slows the progression of diabetes complications. Given the elevated risk for diabetes complications in patients with obesity, clinicians must understand how to treat obesity in their patients with diabetes, including providing counseling and behavioral management, referral to weight loss programs, and medication management. This article summarizes guidelines for diagnosing and managing obesity in people with diabetes.

17.
Clin Epidemiol ; 16: 379-393, 2024.
Article in English | MEDLINE | ID: mdl-38836048

ABSTRACT

Background: Observed activity of metformin in reducing the risk of severe COVID-19 suggests a potential use of the anti-hyperglycemic in the prevention of post-acute sequelae of SARS-CoV-2 infection (PASC). We assessed the 3-month and 6-month risk of PASC among patients with type 2 diabetes mellitus (T2DM) comparing metformin users to sulfonylureas (SU) or dipeptidyl peptidase-4 inhibitors (DPP4i) users. Methods: We used de-identified patient level electronic health record data from the National Covid Cohort Collaborative (N3C) between October 2021 and April 2023. Participants were adults ≥ 18 years with T2DM who had at least one outpatient healthcare encounter in health institutions in the United States prior to COVID-19 diagnosis. The outcome of PASC was defined based on the presence of a diagnosis code for the illness or using a predicted probability based on a machine learning algorithm. We estimated the 3-month and 6-month risk of PASC and calculated crude and weighted risk ratios (RR), risk differences (RD), and differences in mean predicted probability. Results: We identified 5596 (mean age: 61.1 years; SD: 12.6) and 1451 (mean age: 64.9 years; SD 12.5) eligible prevalent users of metformin and SU/DPP4i respectively. We did not find a significant difference in risk of PASC at 3 months (RR = 0.86 [0.56; 1.32], RD = -3.06 per 1000 [-12.14; 6.01]), or at 6 months (RR = 0.81 [0.55; 1.20], RD = -4.91 per 1000 [-14.75, 4.93]) comparing prevalent users of metformin to prevalent users of SU/ DPP4i. Similar observations were made for the outcome definition using the ML algorithm. Conclusion: The observed estimates in our study are consistent with a reduced risk of PASC among prevalent users of metformin, however the uncertainty of our confidence intervals warrants cautious interpretations of the results. A standardized clinical definition of PASC is warranted for thorough evaluation of the effectiveness of therapies under assessment for the prevention of PASC.


Previous research suggests that metformin, due to its anti-viral, anti-inflammatory, and anti-thrombotic properties may reduce the risk of severe COVID-19. Given the shared etiology of COVID-19 and the post-acute sequelae of SARS-CoV-2 (PASC), and the proposed inflammatory processes of PASC, metformin may also be a beneficial preventive option. We investigated the benefit of metformin for PASC prevention in a population of type 2 diabetes mellitus patients with a COVID-19 diagnosis who were on metformin or two other anti-hyperglycemic medications prior to infection with SARS-CoV-2. Our results were consistent with a reduction in the risk of PASC with the use of metformin, however, the imprecise confidence intervals obtained warrants further investigation of this association of the potential beneficial effect of metformin for preventing PASC in patients with medication-managed diabetes.

18.
JAMA Pediatr ; 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38884967

ABSTRACT

Importance: Adolescent severe obesity is usually not effectively treated with traditional lifestyle modification therapy. Meal replacement therapy (MRT) shows short-term efficacy for body mass index (BMI; calculated as weight in kilograms divided by height in meters squared) reduction in adolescents, and financial incentives (FIs) may be an appropriate adjunct intervention to enhance long-term efficacy. Objective: To evaluate the effect of MRT plus FIs vs MRT alone on BMI, body fat, and cardiometabolic risk factors in adolescents with severe obesity. Design, Setting, and Participants: This was a randomized clinical trial of MRT plus FIs vs MRT alone at a large academic health center in the Midwest conducted from 2018 to 2022. Participants were adolescents (ages 13-17 y) with severe obesity (≥120% of the 95th BMI percentile based on sex and age or ≥35 BMI, whichever was lower) who were unaware of the FI component of the trial until they were randomized to MRT plus FIs or until the end of the trial. Study staff members collecting clinical measures were blinded to treatment condition. Data were analyzed from March 2022 to February 2024. Interventions: MRT included provision of preportioned, calorie-controlled meals (~1200 kcals/d). In the MRT plus FI group, incentives were provided based on reduction in body weight from baseline. Main Outcomes and Measures: The primary end point was mean BMI percentage change from randomization to 52 weeks. Secondary end points included total body fat and cardiometabolic risk factors: blood pressure, triglyceride to high-density lipoprotein ratio, heart rate variability, and arterial stiffness. Cost-effectiveness was additionally evaluated. Safety was assessed through monthly adverse event monitoring and frequent assessment of unhealthy weight-control behaviors. Results: Among 126 adolescents with severe obesity (73 female [57.9%]; mean [SD] age, 15.3 [1.2] years), 63 participants received MRT plus FIs and 63 participants received only MRT. At 52 weeks, the mean BMI reduction was greater by -5.9 percentage points (95% CI, -9.9 to -1.9 percentage points; P = .004) in the MRT plus FI compared with the MRT group. The MRT plus FI group had a greater reduction in mean total body fat mass by -4.8 kg (95% CI, -9.1 to -0.6 kg; P = .03) and was cost-effective (incremental cost-effectiveness ratio, $39 178 per quality-adjusted life year) compared with MRT alone. There were no significant differences in cardiometabolic risk factors or unhealthy weight-control behaviors between groups. Conclusions and Relevance: In this study, adding FIs to MRT resulted in greater reductions in BMI and total body fat in adolescents with severe obesity without increased unhealthy weight-control behaviors. FIs were cost-effective and possibly promoted adherence to health behaviors. Trial Registration: ClinicalTrials.gov Identifier: NCT03137433.

19.
Contemp Clin Trials ; 138: 107444, 2024 03.
Article in English | MEDLINE | ID: mdl-38219798

ABSTRACT

BACKGROUND: Severe obesity is a complex, chronic disease affecting nearly 9% of adolescents in the U.S. Although the current mainstay of treatment is lifestyle therapy, pediatric clinical practice guidelines recommend the addition of adjunct anti-obesity medication (AOM), such as phentermine and topiramate. However, guidance regarding when adjunct AOM should be started and how AOM should be used is unclear. Furthermore, an inherent limitation of current treatment guidelines is their "one-size-fits-all" approach, which does not account for the heterogeneous nature of obesity and high degree of patient variability in response to all interventions. METHODS: This paper describes the study design and methods of a sequential multiple assignment randomized trial (SMART), "SMART Use of Medications for the Treatment of Adolescent Severe Obesity." The trial will examine 1) when to start AOM (specifically phentermine) in adolescents who are not responding to lifestyle therapy and 2) how to modify AOM when there is a sub-optimal response to the initial pharmacological intervention (specifically, for phentermine non-responders, is it better to add topiramate to phentermine or switch to topiramate monotherapy). Critically, participant characteristics that may differentially affect response to treatment will be assessed and evaluated as potential moderators of intervention efficacy. CONCLUSION: Data from this study will be used to inform the development of an adaptive intervention for the treatment of adolescent severe obesity that includes empirically-derived decision rules regarding when and how to use AOM. Future research will test this adaptive intervention against standard "one-size-fits-all" treatments.


Subject(s)
Anti-Obesity Agents , Obesity, Morbid , Pediatric Obesity , Adolescent , Child , Humans , Anti-Obesity Agents/therapeutic use , Anti-Obesity Agents/pharmacology , Fructose/therapeutic use , Pediatric Obesity/drug therapy , Phentermine/therapeutic use , Topiramate/therapeutic use , Weight Loss , Randomized Controlled Trials as Topic
20.
Open Forum Infect Dis ; 11(7): ofae224, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38947738

ABSTRACT

This study describes decentralized recruitment and enrollment for a COVID-19 treatment trial, while comparing 5 primary recruitment methods: search engine ads, paid advertising within a national testing company, paid advertising within a regional testing company, electronic health record messages, and word of mouth. These are compared across patient demographics, efficiency, and cost. Clinical Trials Registration: NCT04510194.

SELECTION OF CITATIONS
SEARCH DETAIL