Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 241
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Proc Natl Acad Sci U S A ; 119(35): e2202764119, 2022 08 30.
Article in English | MEDLINE | ID: mdl-35998220

ABSTRACT

The use of spoken and written language is a fundamental human capacity. Individual differences in reading- and language-related skills are influenced by genetic variation, with twin-based heritability estimates of 30 to 80% depending on the trait. The genetic architecture is complex, heterogeneous, and multifactorial, but investigations of contributions of single-nucleotide polymorphisms (SNPs) were thus far underpowered. We present a multicohort genome-wide association study (GWAS) of five traits assessed individually using psychometric measures (word reading, nonword reading, spelling, phoneme awareness, and nonword repetition) in samples of 13,633 to 33,959 participants aged 5 to 26 y. We identified genome-wide significant association with word reading (rs11208009, P = 1.098 × 10-8) at a locus that has not been associated with intelligence or educational attainment. All five reading-/language-related traits showed robust SNP heritability, accounting for 13 to 26% of trait variability. Genomic structural equation modeling revealed a shared genetic factor explaining most of the variation in word/nonword reading, spelling, and phoneme awareness, which only partially overlapped with genetic variation contributing to nonword repetition, intelligence, and educational attainment. A multivariate GWAS of word/nonword reading, spelling, and phoneme awareness maximized power for follow-up investigation. Genetic correlation analysis with neuroimaging traits identified an association with the surface area of the banks of the left superior temporal sulcus, a brain region linked to the processing of spoken and written language. Heritability was enriched for genomic elements regulating gene expression in the fetal brain and in chromosomal regions that are depleted of Neanderthal variants. Together, these results provide avenues for deciphering the biological underpinnings of uniquely human traits.


Subject(s)
Genome-Wide Association Study , Individuality , Reading , Speech , Adolescent , Adult , Child , Child, Preschool , Genetic Loci , Humans , Language , Polymorphism, Single Nucleotide , Young Adult
2.
Psychol Med ; 54(8): 1651-1660, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38131344

ABSTRACT

BACKGROUND: The modulation of brain circuits of emotion is a promising pathway to treat borderline personality disorder (BPD). Precise and scalable approaches have yet to be established. Two studies investigating the amygdala-related electrical fingerprint (Amyg-EFP) in BPD are presented: one study addressing the deep-brain correlates of Amyg-EFP, and a second study investigating neurofeedback (NF) as a means to improve brain self-regulation. METHODS: Study 1 combined electroencephalography (EEG) and simultaneous functional magnetic resonance imaging to investigate the replicability of Amyg-EFP-related brain activation found in the reference dataset (N = 24 healthy subjects, 8 female; re-analysis of published data) in the replication dataset (N = 16 female individuals with BPD). In the replication dataset, we additionally explored how the Amyg-EFP would map to neural circuits defined by the research domain criteria. Study 2 investigated a 10-session Amyg-EFP NF training in parallel to a 12-weeks residential dialectical behavior therapy (DBT) program. Fifteen patients with BPD completed the training, N = 15 matched patients served as DBT-only controls. RESULTS: Study 1 replicated previous findings and showed significant amygdala blood oxygenation level dependent activation in a whole-brain regression analysis with the Amyg-EFP. Neurocircuitry activation (negative affect, salience, and cognitive control) was correlated with the Amyg-EFP signal. Study 2 showed Amyg-EFP modulation with NF training, but patients received reversed feedback for technical reasons, which limited interpretation of results. CONCLUSIONS: Recorded via scalp EEG, the Amyg-EFP picks up brain activation of high relevance for emotion. Administering Amyg-EFP NF in addition to standardized BPD treatment was shown to be feasible. Clinical utility remains to be investigated.


Subject(s)
Amygdala , Borderline Personality Disorder , Electroencephalography , Magnetic Resonance Imaging , Neurofeedback , Humans , Borderline Personality Disorder/therapy , Borderline Personality Disorder/physiopathology , Neurofeedback/methods , Female , Amygdala/physiopathology , Amygdala/diagnostic imaging , Adult , Male , Young Adult , Proof of Concept Study , Behavior Therapy/methods
3.
Eur Child Adolesc Psychiatry ; 33(9): 3055-3066, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38329535

ABSTRACT

Disruptive behavior disorders [including conduct disorder (CD) and oppositional defiant disorder (ODD)] are common childhood and adolescent psychiatric conditions often linked to altered arousal. The recommended first-line treatment is multi-modal therapy and includes psychosocial and behavioral interventions. Their modest effect sizes along with clinically and biologically heterogeneous phenotypes emphasize the need for innovative personalized treatment targeting impaired functions such as arousal dysregulation. A total of 37 children aged 8-14 years diagnosed with ODD/CD were randomized to 20 sessions of individualized arousal biofeedback using skin conductance levels (SCL-BF) or active treatment as usual (TAU) including psychoeducation and cognitive-behavioral elements. The primary outcome was the change in parents´ ratings of aggressive behavior measured by the Modified Overt Aggression Scale. Secondary outcome measures were subscales from the Child Behavior Checklist, the Inventory of Callous-Unemotional traits, and the Reactive-Proactive Aggression Questionnaire. The SCL-BF treatment was neither superior nor inferior to the active TAU. Both groups showed reduced aggression after treatment with small effects for the primary outcome and large effects for some secondary outcomes. Importantly, successful learning of SCL self-regulation was related to reduced aggression at post-assessment. Individualized SCL-BF was not inferior to active TAU for any treatment outcome with improvements in aggression. Further, participants were on average able to self-regulate their SCL, and those who best learned self-regulation showed the highest clinical improvement, pointing to specificity of SCL-BF regulation for improving aggression. Further studies with larger samples and improved methods, for example by developing BF for mobile use in ecologically more valid settings are warranted.


Subject(s)
Aggression , Arousal , Attention Deficit and Disruptive Behavior Disorders , Biofeedback, Psychology , Humans , Child , Adolescent , Male , Female , Attention Deficit and Disruptive Behavior Disorders/therapy , Arousal/physiology , Aggression/psychology , Biofeedback, Psychology/methods , Galvanic Skin Response/physiology , Treatment Outcome , Cognitive Behavioral Therapy/methods , Conduct Disorder/therapy , Conduct Disorder/psychology
4.
Br J Psychiatry ; 222(3): 100-111, 2023 03.
Article in English | MEDLINE | ID: mdl-36700346

ABSTRACT

BACKGROUND: Reward processing has been proposed to underpin the atypical social feature of autism spectrum disorder (ASD). However, previous neuroimaging studies have yielded inconsistent results regarding the specificity of atypicalities for social reward processing in ASD. AIMS: Utilising a large sample, we aimed to assess reward processing in response to reward type (social, monetary) and reward phase (anticipation, delivery) in ASD. METHOD: Functional magnetic resonance imaging during social and monetary reward anticipation and delivery was performed in 212 individuals with ASD (7.6-30.6 years of age) and 181 typically developing participants (7.6-30.8 years of age). RESULTS: Across social and monetary reward anticipation, whole-brain analyses showed hypoactivation of the right ventral striatum in participants with ASD compared with typically developing participants. Further, region of interest analysis across both reward types yielded ASD-related hypoactivation in both the left and right ventral striatum. Across delivery of social and monetary reward, hyperactivation of the ventral striatum in individuals with ASD did not survive correction for multiple comparisons. Dimensional analyses of autism and attention-deficit hyperactivity disorder (ADHD) scores were not significant. In categorical analyses, post hoc comparisons showed that ASD effects were most pronounced in participants with ASD without co-occurring ADHD. CONCLUSIONS: Our results do not support current theories linking atypical social interaction in ASD to specific alterations in social reward processing. Instead, they point towards a generalised hypoactivity of ventral striatum in ASD during anticipation of both social and monetary rewards. We suggest this indicates attenuated reward seeking in ASD independent of social content and that elevated ADHD symptoms may attenuate altered reward seeking in ASD.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Autism Spectrum Disorder , Autistic Disorder , Humans , Autism Spectrum Disorder/diagnostic imaging , Brain/diagnostic imaging , Brain Mapping , Reward , Magnetic Resonance Imaging/methods
5.
Psychol Med ; 53(9): 4012-4021, 2023 07.
Article in English | MEDLINE | ID: mdl-35450543

ABSTRACT

BACKGROUND: Disruptive behavior disorders (DBD) are heterogeneous at the clinical and the biological level. Therefore, the aims were to dissect the heterogeneous neurodevelopmental deviations of the affective brain circuitry and provide an integration of these differences across modalities. METHODS: We combined two novel approaches. First, normative modeling to map deviations from the typical age-related pattern at the level of the individual of (i) activity during emotion matching and (ii) of anatomical images derived from DBD cases (n = 77) and controls (n = 52) aged 8-18 years from the EU-funded Aggressotype and MATRICS consortia. Second, linked independent component analysis to integrate subject-specific deviations from both modalities. RESULTS: While cases exhibited on average a higher activity than would be expected for their age during face processing in regions such as the amygdala when compared to controls these positive deviations were widespread at the individual level. A multimodal integration of all functional and anatomical deviations explained 23% of the variance in the clinical DBD phenotype. Most notably, the top marker, encompassing the default mode network (DMN) and subcortical regions such as the amygdala and the striatum, was related to aggression across the whole sample. CONCLUSIONS: Overall increased age-related deviations in the amygdala in DBD suggest a maturational delay, which has to be further validated in future studies. Further, the integration of individual deviation patterns from multiple imaging modalities allowed to dissect some of the heterogeneity of DBD and identified the DMN, the striatum and the amygdala as neural signatures that were associated with aggression.


Subject(s)
Brain , Magnetic Resonance Imaging , Humans , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Aggression/psychology , Emotions , Attention Deficit and Disruptive Behavior Disorders , Brain Mapping
6.
Mol Psychiatry ; 27(1): 212-219, 2022 01.
Article in English | MEDLINE | ID: mdl-33972692

ABSTRACT

The nature and magnitude of placebo and nocebo responses to ADHD medications and the extent to which response to active medications and placebo are inter-correlated is unclear. To assess the magnitude of placebo and nocebo responses to ADHD and their association with active treatment response. We searched literature until June 26, 2019, for published/unpublished double-blind, randomised placebo-controlled trials (RCTs) of ADHD medication. Authors were contacted for additional data. We assessed placebo effects on efficacy and nocebo effects on tolerability using random effects meta-analysis. We assessed the association of study design and patient features with placebo/nocebo response. We analysed 128 RCTs (10,578 children/adolescents and 9175 adults) and found significant and heterogenous placebo effects for all efficacy outcomes, with no publication bias. The placebo effect was greatest for clinician compared with other raters. We found nocebo effects on tolerability outcomes. Efficacy outcomes from most raters showed significant positive correlations between the baseline to endpoint placebo effects and the baseline to endpoint drug effects. Placebo and nocebo effects did not differ among drugs. Baseline severity and type of rating scale influenced the findings. Shared non-specific factors influence response to both placebo and active medication. Although ADHD medications are superior to placebo, and placebo treatment in clinical practice is not feasible, clinicians should attempt to incorporate factors associated with placebo effects into clinical care. Future studies should explore how such effects influence response to medication treatment. Upon publication, data will be available in Mendeley Data: PROSPERO (CRD42019130292).


Subject(s)
Attention Deficit Disorder with Hyperactivity , Nocebo Effect , Adolescent , Adult , Attention Deficit Disorder with Hyperactivity/drug therapy , Child , Double-Blind Method , Humans , Placebo Effect , Randomized Controlled Trials as Topic
7.
Eur Child Adolesc Psychiatry ; 32(8): 1337-1361, 2023 Aug.
Article in English | MEDLINE | ID: mdl-34677682

ABSTRACT

ADHD is the most common neurodevelopmental disorder presenting to child and adolescent mental health, paediatric, and primary care services. Timely and effective interventions to address core ADHD symptoms and co-occurring problems are a high priority for healthcare and society more widely. While much research has reported on the benefits and adverse effects of different interventions for ADHD, these individual research reports and the reviews, meta-analyses and guidelines summarizing their findings are sometimes inconsistent and difficult to interpret. We have summarized the current evidence and identified several methodological issues and gaps in the current evidence that we believe are important for clinicians to consider when evaluating the evidence and making treatment decisions. These include understanding potential impact of bias such as inadequate blinding and selection bias on study outcomes; the relative lack of high-quality data comparing different treatments and assessing long-term effectiveness, adverse effects and safety for both pharmacological and non-pharmacological treatments; and the problems associated with observational studies, including those based on large national registries and comparing treatments with each other. We highlight key similarities across current international clinical guidelines and discuss the reasons for divergence where these occur. We discuss the integration of these different perspective into a framework for person/family-centered evidence-based practice approach to care that aims to achieve optimal outcomes that prioritize individual strengths and impairments, as well as the personal treatment targets of children and their families. Finally, we consider how access to care for this common and impairing disorder can be improved in different healthcare systems.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Child , Humans , Adolescent , Attention Deficit Disorder with Hyperactivity/therapy , Attention Deficit Disorder with Hyperactivity/drug therapy , Mental Health , Ambulatory Care Facilities
8.
Eur Child Adolesc Psychiatry ; 32(12): 2415-2425, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36127566

ABSTRACT

Youth with disruptive behavior showing high callous-unemotional (CU) traits and proactive aggression are often assumed to exhibit distinct impairments in emotion recognition from those showing mainly reactive aggression. Yet, reactive and proactive aggression and CU traits may co-occur to varying degrees across individuals. We aimed to investigate emotion recognition in more homogeneous clusters based on these three dimensions. In a sample of 243 youth (149 with disruptive behavior problems and 94 controls) aged 8-18 years, we used model-based clustering on self-report measures of CU traits and reactive and proactive aggression and compared the resulting clusters on emotion recognition (accuracy and response bias) and working memory. In addition to a Low and Low-Moderate symptom cluster, we identified two high CU clusters. The CU-Reactive cluster showed high reactive and low-to-medium proactive aggression; the CU-Mixed cluster showed high reactive and proactive aggression. Both CU clusters showed impaired fear recognition and working memory, whereas the CU-Reactive cluster also showed impaired recognition of disgust and sadness, partly explained by poor working memory, as well as a response bias for anger and happiness. Our results confirm the importance of CU traits as a core dimension along which youth with disruptive behavior may be characterized, yet challenge the view that high CU traits are closely linked to high proactive aggression per se. Notably, distinct neurocognitive processes may play a role in youth with high CU traits and reactive aggression with lower versus higher proactive aggression.


Subject(s)
Conduct Disorder , Problem Behavior , Humans , Adolescent , Conduct Disorder/psychology , Emotions/physiology , Aggression/psychology , Fear
9.
Hum Brain Mapp ; 43(1): 452-469, 2022 01.
Article in English | MEDLINE | ID: mdl-33570244

ABSTRACT

Age has a major effect on brain volume. However, the normative studies available are constrained by small sample sizes, restricted age coverage and significant methodological variability. These limitations introduce inconsistencies and may obscure or distort the lifespan trajectories of brain morphometry. In response, we capitalized on the resources of the Enhancing Neuroimaging Genetics through Meta-Analysis (ENIGMA) Consortium to examine age-related trajectories inferred from cross-sectional measures of the ventricles, the basal ganglia (caudate, putamen, pallidum, and nucleus accumbens), the thalamus, hippocampus and amygdala using magnetic resonance imaging data obtained from 18,605 individuals aged 3-90 years. All subcortical structure volumes were at their maximum value early in life. The volume of the basal ganglia showed a monotonic negative association with age thereafter; there was no significant association between age and the volumes of the thalamus, amygdala and the hippocampus (with some degree of decline in thalamus) until the sixth decade of life after which they also showed a steep negative association with age. The lateral ventricles showed continuous enlargement throughout the lifespan. Age was positively associated with inter-individual variability in the hippocampus and amygdala and the lateral ventricles. These results were robust to potential confounders and could be used to examine the functional significance of deviations from typical age-related morphometric patterns.


Subject(s)
Amygdala/anatomy & histology , Corpus Striatum/anatomy & histology , Hippocampus/anatomy & histology , Human Development/physiology , Neuroimaging , Thalamus/anatomy & histology , Adolescent , Adult , Aged , Aged, 80 and over , Amygdala/diagnostic imaging , Child , Child, Preschool , Corpus Striatum/diagnostic imaging , Female , Hippocampus/diagnostic imaging , Humans , Male , Middle Aged , Thalamus/diagnostic imaging , Young Adult
10.
Hum Brain Mapp ; 43(1): 37-55, 2022 01.
Article in English | MEDLINE | ID: mdl-32420680

ABSTRACT

Neuroimaging has been extensively used to study brain structure and function in individuals with attention deficit/hyperactivity disorder (ADHD) and autism spectrum disorder (ASD) over the past decades. Two of the main shortcomings of the neuroimaging literature of these disorders are the small sample sizes employed and the heterogeneity of methods used. In 2013 and 2014, the ENIGMA-ADHD and ENIGMA-ASD working groups were respectively, founded with a common goal to address these limitations. Here, we provide a narrative review of the thus far completed and still ongoing projects of these working groups. Due to an implicitly hierarchical psychiatric diagnostic classification system, the fields of ADHD and ASD have developed largely in isolation, despite the considerable overlap in the occurrence of the disorders. The collaboration between the ENIGMA-ADHD and -ASD working groups seeks to bring the neuroimaging efforts of the two disorders closer together. The outcomes of case-control studies of subcortical and cortical structures showed that subcortical volumes are similarly affected in ASD and ADHD, albeit with small effect sizes. Cortical analyses identified unique differences in each disorder, but also considerable overlap between the two, specifically in cortical thickness. Ongoing work is examining alternative research questions, such as brain laterality, prediction of case-control status, and anatomical heterogeneity. In brief, great strides have been made toward fulfilling the aims of the ENIGMA collaborations, while new ideas and follow-up analyses continue that include more imaging modalities (diffusion MRI and resting-state functional MRI), collaborations with other large databases, and samples with dual diagnoses.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Autism Spectrum Disorder , Brain , Neuroimaging , Attention Deficit Disorder with Hyperactivity/diagnostic imaging , Attention Deficit Disorder with Hyperactivity/pathology , Autism Spectrum Disorder/diagnostic imaging , Autism Spectrum Disorder/pathology , Brain/diagnostic imaging , Brain/pathology , Humans , Multicenter Studies as Topic , Neurosciences
11.
Hum Brain Mapp ; 43(1): 470-499, 2022 01.
Article in English | MEDLINE | ID: mdl-33044802

ABSTRACT

For many traits, males show greater variability than females, with possible implications for understanding sex differences in health and disease. Here, the ENIGMA (Enhancing Neuro Imaging Genetics through Meta-Analysis) Consortium presents the largest-ever mega-analysis of sex differences in variability of brain structure, based on international data spanning nine decades of life. Subcortical volumes, cortical surface area and cortical thickness were assessed in MRI data of 16,683 healthy individuals 1-90 years old (47% females). We observed significant patterns of greater male than female between-subject variance for all subcortical volumetric measures, all cortical surface area measures, and 60% of cortical thickness measures. This pattern was stable across the lifespan for 50% of the subcortical structures, 70% of the regional area measures, and nearly all regions for thickness. Our findings that these sex differences are present in childhood implicate early life genetic or gene-environment interaction mechanisms. The findings highlight the importance of individual differences within the sexes, that may underpin sex-specific vulnerability to disorders.


Subject(s)
Biological Variation, Population/physiology , Brain/anatomy & histology , Brain/diagnostic imaging , Human Development/physiology , Magnetic Resonance Imaging , Neuroimaging , Sex Characteristics , Brain Cortical Thickness , Cerebral Cortex/anatomy & histology , Cerebral Cortex/diagnostic imaging , Female , Humans , Male
12.
Hum Brain Mapp ; 43(1): 431-451, 2022 01.
Article in English | MEDLINE | ID: mdl-33595143

ABSTRACT

Delineating the association of age and cortical thickness in healthy individuals is critical given the association of cortical thickness with cognition and behavior. Previous research has shown that robust estimates of the association between age and brain morphometry require large-scale studies. In response, we used cross-sectional data from 17,075 individuals aged 3-90 years from the Enhancing Neuroimaging Genetics through Meta-Analysis (ENIGMA) Consortium to infer age-related changes in cortical thickness. We used fractional polynomial (FP) regression to quantify the association between age and cortical thickness, and we computed normalized growth centiles using the parametric Lambda, Mu, and Sigma method. Interindividual variability was estimated using meta-analysis and one-way analysis of variance. For most regions, their highest cortical thickness value was observed in childhood. Age and cortical thickness showed a negative association; the slope was steeper up to the third decade of life and more gradual thereafter; notable exceptions to this general pattern were entorhinal, temporopolar, and anterior cingulate cortices. Interindividual variability was largest in temporal and frontal regions across the lifespan. Age and its FP combinations explained up to 59% variance in cortical thickness. These results may form the basis of further investigation on normative deviation in cortical thickness and its significance for behavioral and cognitive outcomes.


Subject(s)
Cerebral Cortex/anatomy & histology , Cerebral Cortex/diagnostic imaging , Human Development/physiology , Neuroimaging , Adolescent , Adult , Aged , Aged, 80 and over , Child , Child, Preschool , Cross-Sectional Studies , Female , Humans , Male , Middle Aged , Young Adult
13.
Psychol Med ; 52(3): 476-484, 2022 02.
Article in English | MEDLINE | ID: mdl-32624021

ABSTRACT

BACKGROUND: Brain imaging studies have shown altered amygdala activity during emotion processing in children and adolescents with oppositional defiant disorder (ODD) and conduct disorder (CD) compared to typically developing children and adolescents (TD). Here we aimed to assess whether aggression-related subtypes (reactive and proactive aggression) and callous-unemotional (CU) traits predicted variation in amygdala activity and skin conductance (SC) response during emotion processing. METHODS: We included 177 participants (n = 108 cases with disruptive behaviour and/or ODD/CD and n = 69 TD), aged 8-18 years, across nine sites in Europe, as part of the EU Aggressotype and MATRICS projects. All participants performed an emotional face-matching functional magnetic resonance imaging task. RESULTS: Differences between cases and TD in affective processing, as well as specificity of activation patterns for aggression subtypes and CU traits, were assessed. Simultaneous SC recordings were acquired in a subsample (n = 63). Cases compared to TDs showed higher amygdala activity in response to negative faces (fearful and angry) v. shapes. Subtyping cases according to aggression-related subtypes did not significantly influence on amygdala activity; while stratification based on CU traits was more sensitive and revealed decreased amygdala activity in the high CU group. SC responses were significantly lower in cases and negatively correlated with CU traits, reactive and proactive aggression. CONCLUSIONS: Our results showed differences in amygdala activity and SC responses to emotional faces between cases with ODD/CD and TD, while CU traits moderate both central (amygdala) and peripheral (SC) responses. Our insights regarding subtypes and trait-specific aggression could be used for improved diagnostics and personalized treatment.


Subject(s)
Conduct Disorder , Problem Behavior , Adolescent , Aggression/psychology , Amygdala/diagnostic imaging , Attention Deficit and Disruptive Behavior Disorders , Child , Emotions/physiology , Humans
14.
Mol Psychiatry ; 26(7): 3004-3017, 2021 07.
Article in English | MEDLINE | ID: mdl-33057169

ABSTRACT

Developmental dyslexia (DD) is a learning disorder affecting the ability to read, with a heritability of 40-60%. A notable part of this heritability remains unexplained, and large genetic studies are warranted to identify new susceptibility genes and clarify the genetic bases of dyslexia. We carried out a genome-wide association study (GWAS) on 2274 dyslexia cases and 6272 controls, testing associations at the single variant, gene, and pathway level, and estimating heritability using single-nucleotide polymorphism (SNP) data. We also calculated polygenic scores (PGSs) based on large-scale GWAS data for different neuropsychiatric disorders and cortical brain measures, educational attainment, and fluid intelligence, testing them for association with dyslexia status in our sample. We observed statistically significant (p < 2.8 × 10-6) enrichment of associations at the gene level, for LOC388780 (20p13; uncharacterized gene), and for VEPH1 (3q25), a gene implicated in brain development. We estimated an SNP-based heritability of 20-25% for DD, and observed significant associations of dyslexia risk with PGSs for attention deficit hyperactivity disorder (at pT = 0.05 in the training GWAS: OR = 1.23[1.16; 1.30] per standard deviation increase; p = 8 × 10-13), bipolar disorder (1.53[1.44; 1.63]; p = 1 × 10-43), schizophrenia (1.36[1.28; 1.45]; p = 4 × 10-22), psychiatric cross-disorder susceptibility (1.23[1.16; 1.30]; p = 3 × 10-12), cortical thickness of the transverse temporal gyrus (0.90[0.86; 0.96]; p = 5 × 10-4), educational attainment (0.86[0.82; 0.91]; p = 2 × 10-7), and intelligence (0.72[0.68; 0.76]; p = 9 × 10-29). This study suggests an important contribution of common genetic variants to dyslexia risk, and novel genomic overlaps with psychiatric conditions like bipolar disorder, schizophrenia, and cross-disorder susceptibility. Moreover, it revealed the presence of shared genetic foundations with a neural correlate previously implicated in dyslexia by neuroimaging evidence.


Subject(s)
Dyslexia , Multifactorial Inheritance , Polymorphism, Single Nucleotide , Attention Deficit Disorder with Hyperactivity/genetics , Dyslexia/genetics , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Intracellular Signaling Peptides and Proteins/genetics
15.
J Child Psychol Psychiatry ; 63(2): 187-198, 2022 02.
Article in English | MEDLINE | ID: mdl-34165190

ABSTRACT

BACKGROUND: Neurofeedback is considered a promising intervention for the treatment of attention-deficit hyperactivity disorder (ADHD). NEWROFEED is a prospective, multicentre, randomized (3:2), reference drug-controlled trial in children with ADHD aged between 7 and 13 years. The main objective of NEWROFEED was to demonstrate the noninferiority of personalized at-home neurofeedback (NF) training versus methylphenidate in the treatment of children with ADHD. METHODS: The NF group (n = 111) underwent eight visits and two treatment phases of 16 to 20 at-home sessions with down-training of the theta/beta ratio (TBR) for children with high TBR and enhancing the sensorimotor rhythm (SMR) for the others. The control group (n = 67) received optimally titrated long-acting methylphenidate. The primary endpoint was the change between baseline and endpoint in the Clinician ADHD-RS-IV total score in the per-protocol population (90 NF/59 controls). TRIAL REGISTRATION: US National Institute of Health, ClinicalTrials.gov #NCT02778360. RESULTS: Our study failed to demonstrate noninferiority of NF versus methylphenidate (mean between-group difference 8.09 90% CI [8.09; 10.56]). However, both treatment groups showed significant pre-post improvements in core ADHD symptoms and in a broader range of problems. Reduction in the Clinician ADHD-RS-IV total score between baseline and final visit (D90) was 26.7% (SMD = 0.89) in the NF and 46.9% (SMD = 2.03) in the control group. NF effects increased whereas those of methylphenidate were stable between intermediate and final visit. CONCLUSIONS: Based on clinicians' reports, the effects of at-home NF were inferior to those of methylphenidate as a stand-alone treatment.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Central Nervous System Stimulants , Methylphenidate , Neurofeedback , Adolescent , Attention Deficit Disorder with Hyperactivity/drug therapy , Central Nervous System Stimulants/pharmacology , Child , Humans , Methylphenidate/pharmacology , Methylphenidate/therapeutic use , Neurofeedback/methods , Prospective Studies , Treatment Outcome
16.
Eur Child Adolesc Psychiatry ; 31(8): 1-10, 2022 Aug.
Article in English | MEDLINE | ID: mdl-33861383

ABSTRACT

Conduct problems (CP) in patients with disruptive behavior disorders have been linked to impaired prefrontal processing of negative facial affect compared to controls. However, it is unknown whether associations with prefrontal activity during affective face processing hold along the CP dimension in a healthy population sample, and how subcortical processing is affected. We measured functional brain responses during negative affective face processing in 1444 healthy adolescents [M = 14.39 years (SD = 0.40), 51.5% female] from the European IMAGEN multicenter study. To determine the effects of CP, we applied a two-step approach: (a) testing matched subgroups of low versus high CP, extending into the clinical range [N = 182 per group, M = 14.44 years, (SD = 0.41), 47.3% female] using analysis of variance, and (b) considering (non)linear effects along the CP dimension in the full sample and in the high CP group using multiple regression. We observed no significant cortical or subcortical effect of CP group on brain responses to negative facial affect. In the full sample, regression analyses revealed a significant linear increase of left orbitofrontal cortex (OFC) activity with increasing CP up to the clinical range. In the high CP group, a significant inverted u-shaped effect indicated that left OFC responses decreased again in individuals with high CP. Left OFC activity during negative affective processing which is increasing with CP and decreasing in the highest CP range may reflect on the importance of frontal control mechanisms that counteract the consequences of severe CP by facilitating higher social engagement and better evaluation of social content in adolescents.


Subject(s)
Conduct Disorder , Problem Behavior , Adolescent , Brain , Conduct Disorder/psychology , Facial Expression , Female , Humans , Magnetic Resonance Imaging , Male , Prefrontal Cortex
17.
Eur Child Adolesc Psychiatry ; 31(1): 51-66, 2022 Jan.
Article in English | MEDLINE | ID: mdl-33147348

ABSTRACT

Disruptive behavior during childhood and adolescence is heterogeneous and associated with several psychiatric disorders. The identification of more homogeneous subgroups might help identify different underlying pathways and tailor treatment strategies. Children and adolescents (aged 8-18) with disruptive behaviors (N = 121) and healthy controls (N = 100) were included in a European multi-center cognition and brain imaging study. They were assessed via a battery of standardized semi-structured interviews and questionnaires. K-means cluster-model analysis was carried out to identify subgroups within the group with disruptive behaviors, based on clinical symptom profiles, callous-unemotional (CU) traits, and proactive and reactive aggression. The resulting subgroups were then compared to healthy controls with regard to these clinical variables. Three distinct subgroups were found within the group with disruptive behaviors. The High CU Traits subgroup presented elevated scores for CU traits, proactive aggression and conduct disorder (CD) symptoms, as well as a higher proportion of comorbidities (CD + oppositional defiant disorder + attention deficit hyperactivity disorder (ADHD). The ADHD and Affective Dysregulation subgroup showed elevated scores for internalizing and ADHD symptoms, as well as a higher proportion of females. The Low Severity subgroup had relatively low levels of psychopathology and aggressive behavior compared to the other two subgroups. The High CU Traits subgroup displayed more antisocial behaviors than the Low Severity subgroup, but did not differ when compared to the ADHD and Affective Dysregulation subgroup. All three subgroups differed significantly from the healthy controls in all the variables analyzed. The present study extends previous findings on subgrouping children and adolescents with disruptive behaviors using a multidimensional approach and describes levels of anxiety, affective problems, ADHD, proactive aggression and CU traits as key factors that differentiate conclusively between subgroups.


Subject(s)
Conduct Disorder , Problem Behavior , Adolescent , Aggression , Antisocial Personality Disorder , Attention Deficit and Disruptive Behavior Disorders , Child , Emotions , Female , Humans
18.
J Child Psychol Psychiatry ; 62(10): 1202-1219, 2021 10.
Article in English | MEDLINE | ID: mdl-33748971

ABSTRACT

OBJECTIVE: Some studies have suggested alterations of structural brain asymmetry in attention-deficit/hyperactivity disorder (ADHD), but findings have been contradictory and based on small samples. Here, we performed the largest ever analysis of brain left-right asymmetry in ADHD, using 39 datasets of the ENIGMA consortium. METHODS: We analyzed asymmetry of subcortical and cerebral cortical structures in up to 1,933 people with ADHD and 1,829 unaffected controls. Asymmetry Indexes (AIs) were calculated per participant for each bilaterally paired measure, and linear mixed effects modeling was applied separately in children, adolescents, adults, and the total sample, to test exhaustively for potential associations of ADHD with structural brain asymmetries. RESULTS: There was no evidence for altered caudate nucleus asymmetry in ADHD, in contrast to prior literature. In children, there was less rightward asymmetry of the total hemispheric surface area compared to controls (t = 2.1, p = .04). Lower rightward asymmetry of medial orbitofrontal cortex surface area in ADHD (t = 2.7, p = .01) was similar to a recent finding for autism spectrum disorder. There were also some differences in cortical thickness asymmetry across age groups. In adults with ADHD, globus pallidus asymmetry was altered compared to those without ADHD. However, all effects were small (Cohen's d from -0.18 to 0.18) and would not survive study-wide correction for multiple testing. CONCLUSION: Prior studies of altered structural brain asymmetry in ADHD were likely underpowered to detect the small effects reported here. Altered structural asymmetry is unlikely to provide a useful biomarker for ADHD, but may provide neurobiological insights into the trait.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Autism Spectrum Disorder , Adolescent , Adult , Brain/diagnostic imaging , Caudate Nucleus , Child , Humans , Magnetic Resonance Imaging
19.
Cereb Cortex ; 30(3): 1307-1317, 2020 03 14.
Article in English | MEDLINE | ID: mdl-31504259

ABSTRACT

Early adversity has been related to brain structure alterations and to an increased risk of psychiatric disorders. The orbitofrontal cortex (OFC) is a key region for emotional processing, with structural alterations being described in several mental disorders. However, little is known about how its cortical thickness (CT) is affected by the long-term impact of life stress (LS) at different developmental stages. The present study aimed to investigate the effect of LS during infancy, childhood, and adolescence on CT alterations in the OFC and on psychopathology in 190 adults of an ongoing prospective cohort study. Chronic stressful life events were assessed in regular intervals. Participants rated depressive symptoms at the ages of 22 and 23 years. Morphometric data were collected at the participants' age of 25 years. Chronic LS during infancy was associated with reduced CT in the right OFC and increased depressive symptoms. Moreover, the impact of chronic LS during infancy on OFC thickness was partially mediated by depressive symptoms in adulthood, suggesting an interplay of early LS, psychopathology, and CT alterations. Our findings highlight the long-term impact of early LS on an affective core brain structure and psychopathology later in life.


Subject(s)
Adverse Childhood Experiences , Prefrontal Cortex/pathology , Stress, Psychological/pathology , Adult , Depression/pathology , Female , Humans , Male , Organ Size , Young Adult
20.
Eur Child Adolesc Psychiatry ; 30(8): 1237-1249, 2021 Aug.
Article in English | MEDLINE | ID: mdl-32789793

ABSTRACT

There is increasing evidence for altered brain resting state functional connectivity in adolescents with disruptive behavior. While a considerable body of behavioral research points to differences between reactive and proactive aggression, it remains unknown whether these two subtypes have dissociable effects on connectivity. Additionally, callous-unemotional traits are important specifiers in subtyping aggressive behavior along the affective dimension. Accordingly, we examined associations between two aggression subtypes along with callous-unemotional traits using a seed-to-voxel approach. Six functionally relevant seeds were selected to probe the salience and the default mode network, based on their presumed role in aggression. The resting state sequence was acquired from 207 children and adolescents of both sexes [mean age (standard deviation) = 13.30 (2.60); range = 8.02-18.35] as part of a Europe-based multi-center study. One hundred eighteen individuals exhibiting disruptive behavior (conduct disorder/oppositional defiant disorder) with varying comorbid attention-deficit/hyperactivity disorder (ADHD) symptoms were studied, together with 89 healthy controls. Proactive aggression was associated with increased left amygdala-precuneus coupling, while reactive aggression related to hyper-connectivities of the posterior cingulate cortex (PCC) to the parahippocampus, the left amygdala to the precuneus and to hypo-connectivity between the right anterior insula and the nucleus caudate. Callous-unemotional traits were linked to distinct hyper-connectivities to frontal, parietal, and cingulate areas. Additionally, compared to controls, cases demonstrated reduced connectivity of the PCC and left anterior insula to left frontal areas, the latter only when controlling for ADHD scores. Taken together, this study revealed aggression-subtype-specific patterns involving areas associated with emotion, empathy, morality, and cognitive control.


Subject(s)
Conduct Disorder , Problem Behavior , Adolescent , Aggression , Amygdala , Attention Deficit and Disruptive Behavior Disorders , Child , Conduct Disorder/diagnostic imaging , Female , Humans , Magnetic Resonance Imaging , Male
SELECTION OF CITATIONS
SEARCH DETAIL