Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Mol Pharmacol ; 75(4): 901-7, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19129426

ABSTRACT

Ghrelin is a 28-amino acid peptide secreted mainly by the stomach. Acyl-ghrelin, which binds to and activates the growth hormone secretagogue receptor type 1a (GHS-R1a), is considered to be the active form for its orexigenic effects. It has been demonstrated that peripheral administration of ghrelin stimulates food intake and adiposity in rodents and humans. Accordingly, different approaches to antagonize ghrelin/GHS-R1a signaling have been pursued for the treatment of obesity. In the present study, we generated and characterized high-affinity anti-acyl ghrelin-specific monoclonal antibodies (mAbs). In vitro, the lead mAb (33A) displayed specific binding to acyl-ghrelin, with an estimated K(d) value < 100 pM. In recombinant receptor cell-based assays, 33A dose-dependently inhibited the ghrelin-mediated calcium signal, with an IC(50) of approximately 3.5 nM. In vivo, ghrelin dose-dependently stimulated food intake in mice, and this effect was fully blocked by a single injection of 33A. In a 4-week chronic study, 33A was shown to effectively bind to endogenous acyl-ghrelin; however, long-term administration of 33A did not affect food intake or body weight gain in a mouse model of diet-induced obesity. Our results indicate that peripheral neutralization of ghrelin can suppress appetite stimulated by a transient surge in ghrelin levels. The lack of long-term effects on body weight control by 33A suggests that compensatory mechanisms may contribute to the regulation of energy balance.


Subject(s)
Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/metabolism , Eating/physiology , Ghrelin/antagonists & inhibitors , Ghrelin/physiology , Obesity/metabolism , Animals , Antibodies, Monoclonal/pharmacology , Appetite Depressants/administration & dosage , Appetite Depressants/metabolism , CHO Cells , Cricetinae , Cricetulus , Disease Models, Animal , Eating/drug effects , Energy Metabolism/drug effects , Energy Metabolism/physiology , Ghrelin/immunology , Ghrelin/metabolism , Humans , Male , Mice , Mice, Inbred C57BL , Obesity/etiology , Obesity/prevention & control , Weight Gain/drug effects , Weight Gain/physiology
2.
ACS Pharmacol Transl Sci ; 2(6): 485-490, 2019 Dec 13.
Article in English | MEDLINE | ID: mdl-32259079

ABSTRACT

In 2018, the United States Food and Drug Administration (FDA) approved Aimovig (erenumab) for the prevention of migraine. Erenumab is the first FDA approved antibody therapeutic against a G-protein-coupled receptor, the canonical receptor of calcitonin gene related peptide (CGRP-R). A novel, epitope-focused antigen was created to reconstruct the extracellular domains of the CGRP-R in a stable conformation. Successful inoculation of XenoMouse animals and careful screening yielded multiple candidate molecules for high potency and exquisite selectivity toward the CGRP-R over related receptors. These efforts led to the discovery of erenumab which has demonstrated the desired efficacy and safety profiles in multiple clinical studies for the prevention of migraine. The innovation developed in the discovery of erenumab furthers the ability to target G-coupled protein receptors using antibody approaches.

3.
Nat Biotechnol ; 21(4): 414-21, 2003 Apr.
Article in English | MEDLINE | ID: mdl-12612588

ABSTRACT

Delivery of protein therapeutics often requires frequent injections because of low activity or rapid clearance, thereby placing a burden on patients and caregivers. Using glycoengineering, we have increased and prolonged the activity of proteins, thus allowing reduced frequency of administration. Glycosylation analogs with new N-linked glycosylation consensus sequences introduced into the protein were screened for the presence of additional N-linked carbohydrates and retention of in vitro activity. Suitable consensus sequences were combined in one molecule, resulting in glycosylation analogs of rHuEPO, leptin, and Mpl ligand. All three molecules had substantially increased in vivo activity and prolonged duration of action. Because these proteins were of three different classes (rHuEPO is an N-linked glycoprotein, Mpl ligand an O-linked glycoprotein, and leptin contains no carbohydrate), glycoengineering may be generally applicable as a strategy for increasing the in vivo activity and duration of action of proteins. This strategy has been validated clinically for glycoengineered rHuEPO (darbopoetin alfa).


Subject(s)
Drug Delivery Systems/methods , Glycoproteins/biosynthesis , Glycoproteins/genetics , Protein Engineering/methods , Proteins/therapeutic use , Anemia/drug therapy , Animals , CHO Cells/metabolism , COS Cells/metabolism , Cricetinae , Erythropoietin/genetics , Erythropoietin/metabolism , Erythropoietin/therapeutic use , Excipients/chemistry , Female , Genetic Enhancement/methods , Glycoproteins/metabolism , Humans , Leptin/biosynthesis , Leptin/deficiency , Leptin/genetics , Leptin/therapeutic use , Mice , Mice, Inbred BALB C , Proteins/administration & dosage , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Recombinant Proteins/therapeutic use , Thrombopoietin/biosynthesis , Thrombopoietin/therapeutic use
4.
Autoimmunity ; 42(3): 171-82, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19301198

ABSTRACT

IP-10 secretion is induced by pro-inflammatory cytokines and mediates the migration of CXCR3+ cells. Its elevation in clinical samples has been associated with multiple inflammatory diseases and its antagonism has been reported to be effective in several animal models of inflammatory disease. We generated a mouse anti-mouse IP-10 monoclonal antibody (mAb; Clone 20A9) that specifically bound murine IP-10 with high affinity and inhibited in vitro IP-10 induced BaF3/mCXCR3 cell migration with an IC(50) of approximately 4 nM. The 20A9 mAb was completely absorbed in vivo and had dose proportional pharmacokinetic exposure with a serum half life of 2.4-6 days. The 20A9 mAb inhibited IP-10 mediated T-cell recruitment to the airways, indicating that it is effective in vivo. However, administration of the 20A9 mAb had no significant effect on disease in mouse models of delayed type hypersensitivity, collagen induced arthritis, cardiac allograft transplantation tolerance, EAE or CD4+ CD45RBHi T-cell transfer-induced IBD. These data suggest that the 20A9 mAb can antagonize IP-10 mediated chemotaxis in vitro and in vivo and that this is insufficient to cause a therapeutic benefit in multiple mouse models of inflammatory disease.


Subject(s)
Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , Cell Movement/drug effects , Chemokine CXCL10/antagonists & inhibitors , Chemokine CXCL10/immunology , Animals , Antibodies, Monoclonal/pharmacokinetics , Arthritis, Experimental/pathology , Arthritis, Experimental/therapy , Bronchoalveolar Lavage Fluid/cytology , CD8-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/drug effects , Cell Movement/immunology , Disease Models, Animal , Encephalomyelitis, Autoimmune, Experimental/pathology , Encephalomyelitis, Autoimmune, Experimental/therapy , Female , Graft Rejection/prevention & control , Heart Transplantation/immunology , Inflammation/pathology , Inflammation/therapy , Inflammatory Bowel Diseases/pathology , Inflammatory Bowel Diseases/therapy , Male , Mice , Mice, Inbred BALB C , Mice, Inbred DBA , Mice, Inbred Strains , Mice, SCID , Precursor Cells, B-Lymphoid/cytology , Precursor Cells, B-Lymphoid/drug effects , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL