Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Am J Hum Genet ; 100(4): 676-688, 2017 Apr 06.
Article in English | MEDLINE | ID: mdl-28343629

ABSTRACT

Ubiquitination is a posttranslational modification that regulates many cellular processes including protein degradation, intracellular trafficking, cell signaling, and protein-protein interactions. Deubiquitinating enzymes (DUBs), which reverse the process of ubiquitination, are important regulators of the ubiquitin system. OTUD6B encodes a member of the ovarian tumor domain (OTU)-containing subfamily of deubiquitinating enzymes. Herein, we report biallelic pathogenic variants in OTUD6B in 12 individuals from 6 independent families with an intellectual disability syndrome associated with seizures and dysmorphic features. In subjects with predicted loss-of-function alleles, additional features include global developmental delay, microcephaly, absent speech, hypotonia, growth retardation with prenatal onset, feeding difficulties, structural brain abnormalities, congenital malformations including congenital heart disease, and musculoskeletal features. Homozygous Otud6b knockout mice were subviable, smaller in size, and had congenital heart defects, consistent with the severity of loss-of-function variants in humans. Analysis of peripheral blood mononuclear cells from an affected subject showed reduced incorporation of 19S subunits into 26S proteasomes, decreased chymotrypsin-like activity, and accumulation of ubiquitin-protein conjugates. Our findings suggest a role for OTUD6B in proteasome function, establish that defective OTUD6B function underlies a multisystemic human disorder, and provide additional evidence for the emerging relationship between the ubiquitin system and human disease.


Subject(s)
Abnormalities, Multiple/genetics , Endopeptidases/genetics , Intellectual Disability/genetics , Adolescent , Animals , Child , Child, Preschool , Disease Models, Animal , Female , Gene Deletion , Humans , Male , Mice , Pedigree , Proteasome Endopeptidase Complex/genetics , Proteasome Endopeptidase Complex/metabolism , Seizures/genetics
2.
Am J Hum Genet ; 99(3): 720-727, 2016 09 01.
Article in English | MEDLINE | ID: mdl-27545676

ABSTRACT

SON is a key component of the spliceosomal complex and a critical mediator of constitutive and alternative splicing. Additionally, SON has been shown to influence cell-cycle progression, genomic integrity, and maintenance of pluripotency in stem cell populations. The clear functional relevance of SON in coordinating essential cellular processes and its presence in diverse human tissues suggests that intact SON might be crucial for normal growth and development. However, the phenotypic effects of deleterious germline variants in SON have not been clearly defined. Herein, we describe seven unrelated individuals with de novo variants in SON and propose that deleterious variants in SON are associated with a severe multisystem disorder characterized by developmental delay, persistent feeding difficulties, and congenital malformations, including brain anomalies.


Subject(s)
Congenital Abnormalities/genetics , DNA-Binding Proteins/genetics , Developmental Disabilities/genetics , Failure to Thrive/genetics , Intellectual Disability/genetics , Minor Histocompatibility Antigens/genetics , Sequence Deletion/genetics , Adolescent , Brain/abnormalities , Child , Child, Preschool , DNA-Binding Proteins/chemistry , Exome/genetics , Female , Humans , Male , Minor Histocompatibility Antigens/chemistry , Pedigree , Young Adult
3.
J Genet Couns ; 24(4): 654-62, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25403901

ABSTRACT

The purpose of this study was to investigate how the American College of Medical Genetics and Genomics (ACMG) March 2013 recommendations for reporting incidental findings (IFs) have influenced current practices of genetic counselors involved in utilizing whole exome sequencing (WES) for clinical diagnosis. An online survey was sent to all members of the National Society of Genetic Counselors; members were eligible to participate if they currently offered WES for clinical diagnosis. Forty-six respondents completed the survey of whom 34 were in practice prior to the March 2013 ACMG recommendations. Half of respondents (N = 19, 54.9 %) in practice prior to March 2013 reported that the ACMG recommendations have had a significant impact on the content of their counseling sessions. Approximately half of respondents (N = 21, 45.5 %) report all IFs, regardless of patient age, while one third (N = 14, 30.4 %) consider factors such as age and parent preference in reporting IFs. Approximately 40 % (N = 18) of respondents reported that the testing laboratory's policy for returning IFs has an influence on their choice of laboratory; of those, 72.2 % (N = 13) reported that the option to opt out of receiving reports of IFs has a significant influence on their choice of laboratory. A majority of respondents (N = 43, 93.5 %) found that most patients want to receive reports of IFs. However, respondents report there are patients who wish to decline receiving this information. This study querying genetic counselors identified benefits and challenges that the 2013 ACMG recommendations elicited. Some challenges, such as not having the option to opt out of IFs, have been addressed by the ACMG's most recent updates to their recommendations. Further investigation into larger and more inclusive provider populations as well as patient populations will be valuable for the ongoing discussion surrounding IFs in WES.


Subject(s)
Exome/genetics , Genetic Counseling/methods , Genome-Wide Association Study , Guideline Adherence , Incidental Findings , Medical Records, Problem-Oriented , Sequence Analysis , Adult , Attitude of Health Personnel , Child , Female , Genetic Testing , Humans , Infant, Newborn , Male , Pregnancy , Surveys and Questionnaires
4.
Genome Med ; 11(1): 30, 2019 05 17.
Article in English | MEDLINE | ID: mdl-31101064

ABSTRACT

BACKGROUND: Exome sequencing (ES) has been successfully applied in clinical detection of single nucleotide variants (SNVs) and small indels. However, identification of copy number variants (CNVs) using ES data remains challenging. The purpose of this study is to understand the contribution of CNVs and copy neutral runs of homozygosity (ROH) in molecular diagnosis of patients referred for ES. METHODS: In a cohort of 11,020 consecutive ES patients, an Illumina SNP array analysis interrogating mostly coding SNPs was performed as a quality control (QC) measurement and for CNV/ROH detection. Among these patients, clinical chromosomal microarray analysis (CMA) was performed at Baylor Genetics (BG) on 3229 patients, either before, concurrently, or after ES. We retrospectively analyzed the findings from CMA and the QC array. RESULTS: The QC array can detect ~ 70% of pathogenic/likely pathogenic CNVs (PCNVs) detectable by CMA. Out of the 11,020 ES cases, the QC array identified PCNVs in 327 patients and uniparental disomy (UPD) disorder-related ROH in 10 patients. The overall PCNV/UPD detection rate was 5.9% in the 3229 ES patients who also had CMA at BG; PCNV/UPD detection rate was higher in concurrent ES and CMA than in ES with prior CMA (7.2% vs 4.6%). The PCNVs/UPD contributed to the molecular diagnoses in 17.4% (189/1089) of molecularly diagnosed ES cases with CMA and were estimated to contribute in 10.6% of all molecularly diagnosed ES cases. Dual diagnoses with both PCNVs and SNVs were detected in 38 patients. PCNVs affecting single recessive disorder genes in a compound heterozygous state with SNVs were detected in 4 patients, and homozygous deletions (mostly exonic deletions) were detected in 17 patients. A higher PCNV detection rate was observed for patients with syndromic phenotypes and/or cardiovascular abnormalities. CONCLUSIONS: Our clinical genomics study demonstrates that detection of PCNV/UPD through the QC array or CMA increases ES diagnostic rate, provides more precise molecular diagnosis for dominant as well as recessive traits, and enables more complete genetic diagnoses in patients with dual or multiple molecular diagnoses. Concurrent ES and CMA using an array with exonic coverage for disease genes enables most effective detection of both CNVs and SNVs and therefore is recommended especially in time-sensitive clinical situations.


Subject(s)
DNA Copy Number Variations , Exome Sequencing/methods , Genetic Testing/methods , Microarray Analysis/methods , Chromosome Aberrations , Female , Genetic Testing/standards , Homozygote , Humans , Limit of Detection , Male , Microarray Analysis/standards , Exome Sequencing/standards
SELECTION OF CITATIONS
SEARCH DETAIL