Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
1.
J Neurosci ; 43(13): 2291-2304, 2023 03 29.
Article in English | MEDLINE | ID: mdl-36828637

ABSTRACT

Increasing spike rates drive greater neuronal energy demand. In turn, mitochondrial ATP production leads to the generation of reactive oxygen species (ROS) that can modulate ion channel gating. Does ROS production autoregulate the excitability of a neuron? We investigated the links between retinal ganglion cell (RGC) excitability and spike activity-driven ROS production in male and female mice. Changes to the light-evoked and current-evoked spike patterns of functionally identified αRGC subtypes, along with their NaV channel-gating properties, were recorded during experimentally induced decreases and increases of intracellular ROS. During periods of highest spike rates (e.g., following light onset in ON sustained RGCs and light offset in OFF sustained RGCs), these αRGC subtypes responded to reductions of ROS (induced by catalase or glutathione monoethyl ester) with higher spike rates. Increases in ROS (induced by mercaptosuccinate, antimycin-A, or H2O2) lowered spike rates. In ON and OFF transient RGCs, there were no changes in spike rate during ROS decreases but increased ROS increased spiking. This suggests that endogenous ROS are intrinsic neuromodulators in RGCs having high metabolic demands but not in RGCs with lower energy needs. We identified ROS-induced shifts in the voltage-dependent gating of specific isoforms of NaV channels that account for the modulation of ON and OFF sustained RGC spike frequency by ROS-mediated feedback. ROS-induced changes to NaV channel gating, affecting activation and inactivation kinetics, are consistent with the differing spike pattern alterations observed in RGC subtypes. Cell-autonomous generation of ROS during spiking contributes to tuning the spike patterns of RGCs.SIGNIFICANCE STATEMENT Energy production within retinal ganglion cells (RGCs) is accompanied by metabolic by-products harmful to cellular function. How these by-products modulate the excitability of RGCs bears heavily on visual function and the etiology of optic neuropathies. A novel hypothesis of how RGC metabolism can produce automodulation of electrical signaling was tested by identifying the characteristics and biophysical origins of changes to the excitability of RGCs caused by oxidizing by-products in the retina. This impacts our understanding of the pathophysiology of RGC dysfunction, supporting an emerging model in which increases in oxidizing chemical species during energy production, but not necessarily bioenergetic failure, lead to preferential degeneration of specific subtypes of RGCs, yielding loss of different aspects of visual capacity.


Subject(s)
Hydrogen Peroxide , Retinal Ganglion Cells , Mice , Female , Male , Animals , Reactive Oxygen Species , Retinal Ganglion Cells/physiology , Retina , Signal Transduction
2.
PLoS Biol ; 17(4): e3000200, 2019 04.
Article in English | MEDLINE | ID: mdl-30933967

ABSTRACT

The stream of visual information sent from photoreceptors to second-order bipolar cells is intercepted by laterally interacting horizontal cells that generate feedback to optimize and improve the efficiency of signal transmission. The mechanisms underlying the regulation of graded photoreceptor synaptic output in this nonspiking network have remained elusive. Here, we analyze with patch clamp recording the novel mechanisms by which horizontal cells control pH in the synaptic cleft to modulate photoreceptor neurotransmitter release. First, we show that mammalian horizontal cells respond to their own GABA release and that the results of this autaptic action affect cone voltage-gated Ca2+ channel (CaV channel) gating through changes in pH. As a proof-of-principle, we demonstrate that chemogenetic manipulation of horizontal cells with exogenous anion channel expression mimics GABA-mediated cone CaV channel inhibition. Activation of these GABA receptor anion channels can depolarize horizontal cells and increase cleft acidity via Na+/H+ exchanger (NHE) proton extrusion, which results in inhibition of cone CaV channels. This action is effectively counteracted when horizontal cells are sufficiently hyperpolarized by increased GABA receptor (GABAR)-mediated HCO3- efflux, alkalinizing the cleft and disinhibiting cone CaV channels. This demonstrates how hybrid actions of GABA operate in parallel to effect voltage-dependent pH changes, a novel mechanism for regulating synaptic output.


Subject(s)
Photoreceptor Cells, Vertebrate/physiology , Retinal Horizontal Cells/metabolism , gamma-Aminobutyric Acid/metabolism , gamma-Aminobutyric Acid/physiology , Animals , Calcium Channels/metabolism , Feedback , Feedback, Physiological/physiology , Female , Guinea Pigs , Hydrogen-Ion Concentration , Male , Membrane Potentials/physiology , Mice , Mice, Inbred C57BL , Patch-Clamp Techniques , Rats , Rats, Sprague-Dawley , Receptors, GABA/metabolism , Retina/cytology , Retina/metabolism , Retina/physiology , Retinal Cone Photoreceptor Cells/physiology , Retinal Horizontal Cells/physiology , Signal Transduction/physiology , Synapses/metabolism , Synaptic Transmission/physiology
3.
J Neurosci ; 38(3): 723-732, 2018 01 17.
Article in English | MEDLINE | ID: mdl-29217689

ABSTRACT

The vertebrate retina has the remarkable ability to support visual function under conditions of limited illumination, including the processing of signals evoked by single photons. Dim-light vision is regulated by several adaptive mechanisms. The mechanism explored in this study is responsible for increasing the light sensitivity and operational range of rod bipolar cells, the retinal neurons operating immediately downstream of rod photoreceptors. This sensitization is achieved through the sustained dopamine-dependent GABA release from other retinal neurons. Our goals were to identify the cell type responsible for the GABA release and the site of its modulation by dopamine. Previous studies have suggested the involvement of amacrine and/or horizontal cells. We now demonstrate, using mice of both sexes, that horizontal cells do not participate in this mechanism. Instead, sustained GABA input is provided by a subpopulation of wide-field amacrine cells, which stimulate the GABAC receptors at rod bipolar cell axons. We also found that dopamine does not act directly on either of these cells. Rather, it suppresses inhibition imposed on these wide-field cells by another subpopulation of upstream GABAergic amacrine cells, thereby sustaining the GABAC receptor activation required for rod bipolar cell sensitization.SIGNIFICANCE STATEMENT The vertebrate retina has an exquisite ability to adjust information processing to ever-changing conditions of ambient illumination, from bright sunlight to single-photon counting under dim starlight. Operation under each of these functional regimes requires an engagement of specific adaptation mechanisms. Here, we describe a mechanism optimizing the performance of the dim-light channel of vision, which consists of sensitizing rod bipolar cells by a sustained GABAergic input originating from a population of wide-field amacrine cells. Wide-field amacrine cells span large segments of the retina, making them uniquely equipped to normalize and optimize response sensitivity across distant receptive fields and preclude any bias toward local light-intensity fluctuations.


Subject(s)
Amacrine Cells/metabolism , Dopamine/metabolism , Retinal Bipolar Cells/metabolism , gamma-Aminobutyric Acid/metabolism , Animals , Female , Male , Mice , Mice, Inbred C57BL
4.
Proc Natl Acad Sci U S A ; 112(41): 12840-5, 2015 Oct 13.
Article in English | MEDLINE | ID: mdl-26420868

ABSTRACT

Neuronal output is modulated by inhibition onto both dendrites and axons. It is unknown whether inhibitory synapses at these two cellular compartments of an individual neuron are regulated coordinately or separately during in vivo development. Because neurotransmission influences synapse maturation and circuit development, we determined how loss of inhibition affects the expression of diverse types of inhibitory receptors on the axon and dendrites of mouse retinal bipolar cells. We found that axonal GABA but not glycine receptor expression depends on neurotransmission. Importantly, axonal and dendritic GABAA receptors comprise distinct subunit compositions that are regulated differentially by GABA release: Axonal GABAA receptors are down-regulated but dendritic receptors are up-regulated in the absence of inhibition. The homeostatic increase in GABAA receptors on bipolar cell dendrites is pathway-specific: Cone but not rod bipolar cell dendrites maintain an up-regulation of receptors in the transmission deficient mutants. Furthermore, the bipolar cell GABAA receptor alterations are a consequence of impaired vesicular GABA release from amacrine but not horizontal interneurons. Thus, inhibitory neurotransmission regulates in vivo postsynaptic maturation of inhibitory synapses with contrasting modes of action specific to synapse type and location.


Subject(s)
Axons/metabolism , Dendrites/metabolism , Receptors, GABA-A/metabolism , Retinal Bipolar Cells/metabolism , Synapses/metabolism , Synaptic Transmission/physiology , Animals , Dendrites/genetics , Mice , Mice, Transgenic , Receptors, GABA-A/genetics , Receptors, Glycine/genetics , Receptors, Glycine/metabolism , Synapses/genetics
5.
J Physiol ; 595(13): 4449-4465, 2017 07 01.
Article in English | MEDLINE | ID: mdl-28374528

ABSTRACT

KEY POINTS: Large conductance, Ca2+ -activated K+ (BKCa ) channels play important roles in mammalian retinal neurons, including photoreceptors, bipolar cells, amacrine cells and ganglion cells, but they have not been identified in horizontal cells. BKCa channel blockers paxilline and iberiotoxin, as well as Ca2+ free solutions and divalent cation Cav channel blockers, eliminate the outwardly rectifying current, while NS1619 enhances it. In symmetrical 150 mm K+ , single channels had a conductance close to 250 pS, within the range of all known BKCa channels. In current clamped horizontal cells, BKCa channels subdue depolarizing membrane potential excursions, reduce the average resting potential and decrease oscillations. The results show that BKCa channel activation puts a ceiling on horizontal cell depolarization and regulates the temporal responsivity of the cells. ABSTRACT: Large conductance, calcium-activated potassium (BKCa ) channels have numerous roles in neurons including the regulation of membrane excitability, intracellular [Ca2+ ] regulation, and neurotransmitter release. In the retina, they have been identified in photoreceptors, bipolar cells, amacrine cells and ganglion cells, but have not been conclusively identified in mammalian horizontal cells. We found that outward current recorded between -30 and +60 mV is carried primarily in BKCa channels in isolated horizontal cells of rats and mice. Whole-cell outward currents were maximal at +50 mV and declined at membrane potentials positive to this value. This current was eliminated by the selective BKCa channel blocker paxilline (100 nm), iberiotoxin (10 µm), Ca2+ free solutions and divalent cation Cav channel blockers. It was activated by the BKCa channel activator NS1619 (30 µm). Single channel recordings revealed the conductance of the channels to be 244 ± 11 pS (n = 17; symmetrical 150 mm K+ ) with open probability being both voltage- and Ca2+ -dependent. The channels showed fast activation kinetics in response to Ca2+ influx and inactivation gating that could be modified by intracellular protease treatment, which suggests ß subunit involvement. Under current clamp, block of BKCa current increased depolarizing membrane potential excursions, raising the average resting potential and producing oscillations. BKCa current activation with NS1619 inhibited oscillations and hyperpolarized the resting potential. These effects underscore the functional role of BKCa current in limiting depolarization of the horizontal cell membrane potential and suggest actions of these channels in regulating the temporal responsivity of the cells.


Subject(s)
Action Potentials , Large-Conductance Calcium-Activated Potassium Channels/metabolism , Retinal Neurons/metabolism , Animals , Benzimidazoles , Cells, Cultured , Indoles/pharmacology , Large-Conductance Calcium-Activated Potassium Channels/antagonists & inhibitors , Mice , Mice, Inbred C57BL , Peptides/pharmacology , Potassium Channel Blockers/pharmacology , Rats , Rats, Sprague-Dawley , Retinal Neurons/physiology
6.
J Neurosci ; 35(48): 15955-70, 2015 Dec 02.
Article in English | MEDLINE | ID: mdl-26631476

ABSTRACT

An inner retinal microcircuit composed of dopamine (DA)-containing amacrine cells and melanopsin-containing, intrinsically photosensitive retinal ganglion cells (M1 ipRGCs) process information about the duration and intensity of light exposures, mediating light adaptation, circadian entrainment, pupillary reflexes, and other aspects of non-image-forming vision. The neural interaction is reciprocal: M1 ipRGCs excite DA amacrine cells, and these, in turn, feed inhibition back onto M1 ipRGCs. We found that the neuropeptide somatostatin [somatotropin release inhibiting factor (SRIF)] also inhibits the intrinsic light response of M1 ipRGCs and postulated that, to tune the bidirectional interaction of M1 ipRGCs and DA amacrine cells, SRIF amacrine cells would provide inhibitory modulation to both cell types. SRIF amacrine cells, DA amacrine cells, and M1 ipRGCs form numerous contacts. DA amacrine cells and M1 ipRGCs express the SRIF receptor subtypes sst(2A) and sst4 respectively. SRIF modulation of the microcircuit was investigated with targeted patch-clamp recordings of DA amacrine cells in TH-RFP mice and M1 ipRGCs in OPN4-EGFP mice. SRIF increases K(+) currents, decreases Ca(2+) currents, and inhibits spike activity in both cell types, actions reproduced by the selective sst(2A) agonist L-054,264 (N-[(1R)-2-[[[(1S*,3R*)-3-(aminomethyl)cyclohexyl]methyl]amino]-1-(1H-indol-3-ylmethyl)-2-oxoethyl]spiro[1H-indene-1,4'-piperidine]-1'-carboxamide) in DA amacrine cells and the selective sst4 agonist L-803,087 (N(2)-[4-(5,7-difluoro-2-phenyl-1H-indol-3-yl)-1-oxobutyl]-L-arginine methyl ester trifluoroacetate) in M1 ipRGCs. These parallel actions of SRIF may serve to counteract the disinhibition of M1 ipRGCs caused by SRIF inhibition of DA amacrine cells. This allows the actions of SRIF on DA amacrine cells to proceed with adjusting retinal DA levels without destabilizing light responses by M1 ipRGCs, which project to non-image-forming targets in the brain.


Subject(s)
Amacrine Cells/physiology , Dopamine/metabolism , Neural Inhibition/physiology , Retina/cytology , Retinal Ganglion Cells/physiology , Visual Pathways/physiology , Amacrine Cells/drug effects , Amides/pharmacology , Animals , Calcium/metabolism , Excitatory Amino Acid Agents/pharmacology , GABA Agents/pharmacology , In Vitro Techniques , Indoles/pharmacology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Nerve Tissue Proteins/metabolism , Neural Inhibition/drug effects , Neural Inhibition/genetics , Photic Stimulation , Piperidines/pharmacology , Rod Opsins/genetics , Rod Opsins/metabolism , Somatostatin/agonists , Somatostatin/antagonists & inhibitors , Somatostatin/metabolism
7.
J Neurophysiol ; 116(2): 686-97, 2016 08 01.
Article in English | MEDLINE | ID: mdl-27193322

ABSTRACT

Horizontal cells form the first laterally interacting network of inhibitory interneurons in the retina. Dopamine released onto horizontal cells under photic and circadian control modulates horizontal cell function. Using isolated, identified horizontal cells from a connexin-57-iCre × ROSA26-tdTomato transgenic mouse line, we investigated dopaminergic modulation of calcium channel currents (ICa) with whole cell patch-clamp techniques. Dopamine (10 µM) blocked 27% of steady-state ICa, an action blunted to 9% in the presence of the L-type Ca channel blocker verapamil (50 µM). The dopamine type 1 receptor (D1R) agonist SKF38393 (20 µM) inhibited ICa by 24%. The D1R antagonist SCH23390 (20 µM) reduced dopamine and SKF38393 inhibition. Dopamine slowed ICa activation, blocking ICa by 38% early in a voltage step. Enhanced early inhibition of ICa was eliminated by applying voltage prepulses to +120 mV for 100 ms, increasing ICa by 31% and 11% for early and steady-state currents, respectively. Voltage-dependent facilitation of ICa and block of dopamine inhibition after preincubation with a Gßγ-blocking peptide suggested involvement of Gßγ proteins in the D1R-mediated modulation. When the G protein activator guanosine 5'-O-(3-thiotriphosphate) (GTPγS) was added intracellularly, ICa was smaller and showed the same slowed kinetics seen during D1R activation. With GTPγS in the pipette, additional block of ICa by dopamine was only 6%. Strong depolarizing voltage prepulses restored the GTPγS-reduced early ICa amplitude by 36% and steady-state ICa amplitude by 3%. These results suggest that dopaminergic inhibition of ICa via D1Rs is primarily mediated through the action of Gßγ proteins in horizontal cells.


Subject(s)
Calcium Channels/physiology , Membrane Potentials/physiology , Receptors, Dopamine D1/metabolism , Retinal Horizontal Cells/physiology , 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/pharmacology , Animals , Biophysical Phenomena/drug effects , Biophysical Phenomena/genetics , Calcium/metabolism , Calcium Channel Blockers/pharmacology , Connexins/genetics , Connexins/metabolism , Dopamine/pharmacology , Dopamine Agonists/pharmacology , Dopamine Antagonists/pharmacology , Membrane Potentials/drug effects , Mice , Mice, Inbred C57BL , Mice, Transgenic , Plant Lectins/genetics , Plant Lectins/metabolism , RNA, Untranslated/genetics , RNA, Untranslated/metabolism , Retina/cytology , Retinal Horizontal Cells/drug effects , Spiperone/pharmacology , omega-Conotoxin GVIA/pharmacology
8.
Vis Neurosci ; 31(1): 47-55, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24801623

ABSTRACT

The α2δ auxiliary subunits of voltage-gated Ca2+ channels (VGCCs) are important modulators of VGCC function. Gabapentin interacts with α2δ1 and α2δ2 subunits and is reported to reduce Ca2+ channel current amplitude (ICa). This study aimed to determine the effects of gabapentin on VGCCs in retinal ganglion cells (RGCs). Whole cell patch clamp was used to record ICa in isolated RGCs, and calcium imaging was used to measure Ca2+ transients from RGCs in situ. Immunohistochemistry was used to detect the presence of α2δ1-containing VGCCs in isolated RGCs in the absence and presence of gabapentin pretreatment. Acute administration of gabapentin reduced ICa and Ca2+ transients compared to control conditions. In isolated RGCs, pretreatment with gabapentin (4-18 h) reduced ICa, and cell surface α2δ1 staining was reduced compared to nonpretreated cells. Acute administration of gabapentin to isolated RGCs that had been pretreated further reduced ICa. These results show that gabapentin has both short-term and long-term mechanisms to reduce ICa in isolated RGCs. Some Ca2+ channel blockers have been shown to protect RGCs in retinal trauma suggesting that modulation of VGCCs by gabapentin may prevent the deleterious effects of elevated Ca2+ levels in RGCs in trauma and disease.


Subject(s)
Amines/pharmacology , Calcium Channel Blockers/pharmacology , Calcium Channels/drug effects , Calcium Channels/metabolism , Cyclohexanecarboxylic Acids/pharmacology , Retinal Ganglion Cells/metabolism , gamma-Aminobutyric Acid/pharmacology , Animals , Cells, Cultured , Gabapentin , Membrane Potentials/drug effects , Patch-Clamp Techniques , Rats, Long-Evans , Retinal Ganglion Cells/drug effects , Retinal Ganglion Cells/ultrastructure
9.
Invest Ophthalmol Vis Sci ; 65(1): 28, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38224335

ABSTRACT

Purpose: Intrinsically photosensitive retinal ganglion cells (ipRGCs) play a crucial role in non-image-forming visual functions. Given their significant loss observed in various ocular degenerative diseases at early stages, this study aimed to assess changes in both the morphology and associated behavioral functions of ipRGCs in mice between 6 (mature) and 12 (late adult) months old. The findings contribute to understanding the preservation of ipRGCs in late adults and their potential as a biomarker for early ocular degenerative diseases. Methods: Female and male C57BL/6J mice were used to assess the behavioral consequences of aging to mature and old adults, including pupillary light reflex, light aversion, visual acuity, and contrast sensitivity. Immunohistochemistry on retinal wholemounts from these mice was then conducted to evaluate ipRGC dendritic morphology in the ganglion cell layer (GCL) and inner nuclear layer (INL). Results: Morphological analysis showed that ipRGC dendritic field complexity was remarkably stable through 12 months old of age. Similarly, the pupillary light reflex, visual acuity, and contrast sensitivity were stable in mature and old adults. Although alterations were observed in ipRGC-independent light aversion distinct from the pupillary light reflex, aged wild-type mice continuously showed enhanced light aversion with dilation. No effect of sex was observed in any tests. Conclusions: The preservation of both ipRGC morphology and function highlights the potential of ipRGC-mediated function as a valuable biomarker for ocular diseases characterized by early ipRGC loss. The consistent stability of ipRGCs in mature and old adult mice suggests that detected changes in ipRGC-mediated functions could serve as early indicators or diagnostic tools for early-onset conditions such as Alzheimer's disease, Parkinson's disease, and diabetes, where ipRGC loss has been documented.


Subject(s)
Retina , Retinal Ganglion Cells , Female , Male , Animals , Mice , Mice, Inbred C57BL , Visual Acuity , Biomarkers
10.
J Physiol ; 591(13): 3309-24, 2013 Jul 01.
Article in English | MEDLINE | ID: mdl-23613534

ABSTRACT

Horizontal cells send inhibitory feedback to photoreceptors, helping form antagonistic receptive fields in the retina, but the neurotransmitter and the mechanisms underlying this signalling are not known. Since the proteins responsible for conventional Ca(2+)-dependent release of GABAergic synaptic vesicles are present in mammalian horizontal cells, we investigated this conventional mechanism as the means by which horizontal cells inhibit photoreceptors. Using Ca(2+) imaging in rat retinal slices, we confirm that horizontal cell depolarization with kainate inhibits and horizontal cell hyperpolarization with NBQX disinhibits the Ca(2+) signals produced by pH-sensitive activation of voltage-gated calcium channels (Ca channels) in photoreceptors. We show that while 100 µm Co(2+) reduces photoreceptor Ca(2+) signals, it disinhibits them at 10 µm, an effect reminiscent of earlier studies where low [Co(2+)] eliminated feedback. The low [Co(2+)] disinhibition is pH sensitive. We localized L-, N- and P/Q-type Ca channels in rat horizontal cells, and showed that both the N-type Ca channel blocker -conotoxin GVIA and the P/Q-type Ca channel blocker -agatoxin IVA increased Ca(2+) signals in photoreceptors in a pH-sensitive manner. Pronounced actions of GABAergic agents on feedback signals to photoreceptors were observed, and are pH sensitive, but are inconsistent with direct inhibition by GABA of photoreceptor [Ca(2+)]. Patch-clamp studies revealed that GABA activates a conductance having high bicarbonate permeability in isolated horizontal cells, suggesting that the commonality of pH sensitivity throughout the results could arise from a GABA autofeedback action in horizontal cells. This could change cleft pH with concomitant inhibitory influences on photoreceptor Ca channels.


Subject(s)
Calcium Channels/physiology , Photoreceptor Cells/physiology , Retinal Horizontal Cells/physiology , gamma-Aminobutyric Acid/physiology , Animals , Feedback, Physiological , Female , Hydrogen-Ion Concentration , In Vitro Techniques , Male , Membrane Potentials , Rats , Rats, Sprague-Dawley , Receptors, GABA/physiology
11.
Res Sq ; 2023 Aug 08.
Article in English | MEDLINE | ID: mdl-37609217

ABSTRACT

The precise wiring of the nervous system relies on neurons extending their processes at the right time and place to find their appropriate synaptic partner. The mechanisms that determine when and where neurons extend their neurites during synaptogenesis remains a central question in the field. In the present study, we developed a cell culture system coupled with live imaging to investigate the wiring mechanisms in the developing nervous system. We focused on horizontal cells which are interneurons in the mammalian outer retina known to synapse selectively to distinct photoreceptors. Our data shows cultured horizontal cells extend neurites in a similar manner as in vivo with horizontal cells isolated from young mice extending more complex processes compared to those from adult retinas. In addition, horizontal cells cultured alone do not extend neurites and require other retinal cells for neurite extension suggesting that there must be extrinsic cues that promote neurite outgrowth. Moreover, these extrinsic cues do not appear to be solely secreted factors as supernatant from wild-type retinas is not sufficient to promote neurite outgrowth. In summary, we established a new system that can be used to decipher the mechanisms involved in neuronal wiring of the developing central nervous system.

12.
Front Neuroanat ; 15: 629244, 2021.
Article in English | MEDLINE | ID: mdl-34093139

ABSTRACT

Manipulation of the phosphatase and tensin homolog (PTEN) pathway has been suggested as a therapeutic approach to treat or prevent vision loss due to retinal disease. In this study, we investigated the effects of deleting one copy of Pten in a well-characterized class of retinal ganglion cells called α-ganglion cells in the mouse retina. In Pten +/- retinas, α-ganglion cells did not exhibit major changes in their dendritic structure, although most cells developed a few, unusual loop-forming dendrites. By contrast, α-ganglion cells exhibited a significant decrease in heterologous and homologous gap junction mediated cell coupling with other retinal ganglion and amacrine cells. Additionally, the majority of OFF α-ganglion cells (12/18 cells) formed novel coupling to displaced amacrine cells. The number of connexin36 puncta, the predominant connexin that mediates gap junction communication at electrical synapses, was decreased by at least 50% on OFF α-ganglion cells. Reduced and incorrect gap junction connectivity of α-ganglion cells will affect their functional properties and alter visual image processing in the retina. The anomalous connectivity of retinal ganglion cells would potentially limit future therapeutic approaches involving manipulation of the Pten pathway for treating ganglion cell degeneration in diseases like glaucoma, traumatic brain injury, Parkinson's, and Alzheimer's diseases.

13.
J Neurophysiol ; 104(3): 1347-54, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20573967

ABSTRACT

Somatostatin (somatotropin release-inhibiting factor [SRIF]) is known to modulate the excitability of retinal ganglion cells, but the membrane mechanisms responsible and the extent to which intracellular calcium signaling is affected have not been determined. We show that somatostatin receptor subtype 4 (sst(4)) is expressed specifically in rat ganglion cells and that the generation of repetitive action potentials by isolated ganglion cells is reduced in the presence of L-803,087, a selective sst(4) agonist (10 nM). Under voltage clamp, L-803,087 increased outward K(+) currents by 51.1 ± 13.1% at 0 mV and suppressed Ca(2+) channel currents by 32.5 ± 9.4% at -10 mV in whole cell patch-clamped ganglion cells. The N-type Ca(2+) channel blocker ω-conotoxin GVIA (CTX, 1 µM) reduced L-type Ca(2+) current (I(Ca)) in ganglion cells by 43.5 ± 7.2% at -10 mV, after which addition of L-803,087 further reduced I(Ca) by 28.0 ± 16.0% . In contrast, ganglion cells treated first with nifedipine (NIF, 10 µM), which blocked 46.1 ± 3.5% of the control current at -10 mV, did not undergo any further reduction in I(Ca) in the presence of L-803,087 (-3.5 ± 3.8% vs. NIF), showing that stimulation of sst(4) reduces Ca(2+) influx through L-type Ca(2+) channels. To assess the effects of sst(4) stimulation on intracellular Ca(2+) levels ([Ca(2+)](i)) in ganglion cells, fura-2 was used to measure changes in [Ca(2+)](i) in response to depolarization induced by elevated [K(+)](o). [Ca(2+)](i) was increased to a lesser extent (86%) in the presence of L-803,087 compared with recordings made in the absence of the sst(4) agonist and this effect was blocked by NIF (10 µM). Suppression of spiking and Ca(2+) signaling via sst(4) may contribute to the reported neuroprotective actions of somatostatin and promote ganglion cell survival following ischemia and axonal trauma.


Subject(s)
Ion Channel Gating/physiology , Receptors, Somatostatin/physiology , Retinal Ganglion Cells/physiology , Action Potentials/genetics , Action Potentials/physiology , Animals , Animals, Newborn , Cells, Cultured , Ion Channel Gating/genetics , Rats , Rats, Long-Evans , Receptors, Somatostatin/biosynthesis , Receptors, Somatostatin/genetics
14.
Eur J Neurosci ; 31(8): 1388-401, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20384779

ABSTRACT

Horizontal cells are lateral interneurons that participate in visual processing in the outer retina but the cellular mechanisms underlying transmitter release from these cells are not fully understood. In non-mammalian horizontal cells, GABA release has been shown to occur by a non-vesicular mechanism. However, recent evidence in mammalian horizontal cells favors a vesicular mechanism as they lack plasmalemmal GABA transporters and some soluble NSF attachment protein receptor (SNARE) core proteins have been identified in rodent horizontal cells. Moreover, immunoreactivity for GABA and the molecular machinery to synthesize GABA have been found in guinea pig horizontal cells, suggesting that if components of the SNARE complex are expressed they could contribute to the vesicular release of GABA. In this study we investigated whether these vesicular and synaptic proteins are expressed by guinea pig horizontal cells using immunohistochemistry with well-characterized antibodies to evaluate their cellular distribution. Components of synaptic vesicles including vesicular GABA transporter, synapsin I and synaptic vesicle protein 2A were localized to horizontal cell processes and endings, along with the SNARE core complex proteins, syntaxin-1a, syntaxin-4 and synaptosomal-associated protein 25 (SNAP-25). Complexin I/II, a cytosolic protein that stabilizes the activated SNARE fusion core, strongly immunostained horizontal cell soma and processes. In addition, the vesicular Ca(2+)-sensor, synaptotagmin-2, which is essential for Ca(2+)-mediated vesicular release, was also localized to horizontal cell processes and somata. These morphological findings from guinea pig horizontal cells suggest that mammalian horizontal cells have the capacity to utilize a regulated Ca(2+)-dependent vesicular pathway to release neurotransmitter, and that this mechanism may be shared among many mammalian species.


Subject(s)
Neurotransmitter Agents/metabolism , Retinal Horizontal Cells/metabolism , SNARE Proteins/metabolism , Synaptic Vesicles/metabolism , Animals , Female , GABA Plasma Membrane Transport Proteins/metabolism , Guinea Pigs , Immunohistochemistry , Male , Microscopy, Confocal , Nerve Tissue Proteins/metabolism
15.
Front Cell Neurosci ; 14: 595064, 2020.
Article in English | MEDLINE | ID: mdl-33328894

ABSTRACT

How neurons in the eye feed signals back to photoreceptors to optimize sensitivity to patterns of light appears to be mediated by one or more unconventional mechanisms. Via these mechanisms, horizontal cells control photoreceptor synaptic gain and enhance key aspects of temporal and spatial center-surround receptive field antagonism. After the transduction of light energy into an electrical signal in photoreceptors, the next key task in visual processing is the transmission of an optimized signal to the follower neurons in the retina. For this to happen, the release of the excitatory neurotransmitter glutamate from photoreceptors is carefully regulated via horizontal cell feedback, which acts as a thermostat to keep the synaptic transmission in an optimal range during changes to light patterns and intensities. Novel findings of a recently described model that casts a classical neurotransmitter system together with ion transport mechanisms to adjust the alkaline milieu outside the synapse are reviewed. This novel inter-neuronal messaging system carries feedback signals using two separate, but interwoven regulated systems. The complex interplay between these two signaling modalities, creating synaptic modulation-at-a-distance, has obscured it's being defined. The foundations of our understanding of the feedback mechanism from horizontal cells to photoreceptors have been long established: Horizontal cells have broad receptive fields, suitable for providing surround inhibition, their membrane potential, a function of stimulus intensity and size, regulates inhibition of photoreceptor voltage-gated Ca2+ channels, and strong artificial pH buffering eliminates this action. This review compares and contrasts models of how these foundations are linked, focusing on a recent report in mammals that shows tonic horizontal cell release of GABA activating Cl- and HCO3 - permeable GABA autoreceptors. The membrane potential of horizontal cells provides the driving force for GABAR-mediated HCO3 - efflux, alkalinizing the cleft when horizontal cells are hyperpolarized by light or adding to their depolarization in darkness and contributing to cleft acidification via NHE-mediated H+ efflux. This model challenges interpretations of earlier studies that were considered to rule out a role for GABA in feedback to cones.

16.
Front Cell Neurosci ; 14: 600777, 2020.
Article in English | MEDLINE | ID: mdl-33335476

ABSTRACT

Feedback inhibition by horizontal cells regulates rod and cone photoreceptor calcium channels that control their release of the neurotransmitter glutamate. This inhibition contributes to synaptic gain control and the formation of the center-surround antagonistic receptive fields passed on to all downstream neurons, which is important for contrast sensitivity and color opponency in vision. In contrast to the plasmalemmal GABA transporter found in non-mammalian horizontal cells, there is evidence that the mechanism by which mammalian horizontal cells inhibit photoreceptors involves the vesicular release of the inhibitory neurotransmitter GABA. Historically, inconsistent findings of GABA and its biosynthetic enzyme, L-glutamate decarboxylase (GAD) in horizontal cells, and the apparent lack of surround response block by GABAergic agents diminished support for GABA's role in feedback inhibition. However, the immunolocalization of the vesicular GABA transporter (VGAT) in the dendritic and axonal endings of horizontal cells that innervate photoreceptor terminals suggested GABA was released via vesicular exocytosis. To test the idea that GABA is released from vesicles, we localized GABA and GAD, multiple SNARE complex proteins, synaptic vesicle proteins, and Cav channels that mediate exocytosis to horizontal cell dendritic tips and axonal terminals. To address the perceived relative paucity of synaptic vesicles in horizontal cell endings, we used conical electron tomography on mouse and guinea pig retinas that revealed small, clear-core vesicles, along with a few clathrin-coated vesicles and endosomes in horizontal cell processes within photoreceptor terminals. Some small-diameter vesicles were adjacent to the plasma membrane and plasma membrane specializations. To assess vesicular release, a functional assay involving incubation of retinal slices in luminal VGAT-C antibodies demonstrated vesicles fused with the membrane in a depolarization- and calcium-dependent manner, and these labeled vesicles can fuse multiple times. Finally, targeted elimination of VGAT in horizontal cells resulted in a loss of tonic, autaptic GABA currents, and of inhibitory feedback modulation of the cone photoreceptor Cai, consistent with the elimination of GABA release from horizontal cell endings. These results in mammalian retina identify the central role of vesicular release of GABA from horizontal cells in the feedback inhibition of photoreceptors.

17.
Elife ; 92020 05 07.
Article in English | MEDLINE | ID: mdl-32378514

ABSTRACT

Structural changes in pre and postsynaptic neurons that accompany synapse formation often temporally and spatially overlap. Thus, it has been difficult to resolve which processes drive patterned connectivity. To overcome this, we use the laminated outer murine retina. We identify the serine/threonine kinase LKB1 as a key driver of synapse layer emergence. The absence of LKB1 in the retina caused a marked mislocalization and delay in synapse layer formation. In parallel, LKB1 modulated postsynaptic horizontal cell refinement and presynaptic photoreceptor axon growth. Mislocalized horizontal cell processes contacted aberrant cone axons in LKB1 mutants. These defects coincided with altered synapse protein organization, and horizontal cell neurites were misdirected to ectopic synapse protein regions. Together, these data suggest that LKB1 instructs the timing and location of connectivity in the outer retina via coordinate regulation of pre and postsynaptic neuron structure and the localization of synapse-associated proteins.


Subject(s)
Neurites/enzymology , Neurogenesis , Photoreceptor Cells/enzymology , Protein Serine-Threonine Kinases/metabolism , Synapses/enzymology , AMP-Activated Protein Kinases , Animals , Female , Male , Mice, Knockout , Mutation , Protein Serine-Threonine Kinases/genetics , Protein Transport , Vesicular Glutamate Transport Protein 1/metabolism
18.
Neuron ; 108(1): 111-127.e6, 2020 10 14.
Article in English | MEDLINE | ID: mdl-32795398

ABSTRACT

Cajal recognized that the elaborate shape of neurons is fundamental to their function in the brain. However, there are no simple and generalizable genetic methods to study neuronal or glial cell morphology in the mammalian brain. Here, we describe four mouse lines conferring Cre-dependent sparse cell labeling based on mononucleotide repeat frameshift (MORF) as a stochastic translational switch. Notably, the optimized MORF3 mice, with a membrane-bound multivalent immunoreporter, confer Cre-dependent sparse and bright labeling of thousands of neurons, astrocytes, or microglia in each brain, revealing their intricate morphologies. MORF3 mice are compatible with imaging in tissue-cleared thick brain sections and with immuno-EM. An analysis of 151 MORF3-labeled developing retinal horizontal cells reveals novel morphological cell clusters and axonal maturation patterns. Our study demonstrates a conceptually novel, simple, generalizable, and scalable mouse genetic solution to sparsely label and illuminate the morphology of genetically defined neurons and glia in the mammalian brain.


Subject(s)
Astrocytes/ultrastructure , Brain/ultrastructure , Microglia/ultrastructure , Neurons/ultrastructure , Retinal Horizontal Cells/ultrastructure , Animals , Astrocytes/metabolism , Astrocytes/pathology , Brain/metabolism , Brain/pathology , Frameshift Mutation/genetics , Green Fluorescent Proteins/genetics , Integrases , Mice , Mice, Transgenic , Microglia/metabolism , Microglia/pathology , Microsatellite Repeats/genetics , Neurons/metabolism , Neurons/pathology , Retinal Horizontal Cells/metabolism , Retinal Horizontal Cells/pathology
19.
J Neurosci Res ; 87(5): 1107-14, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19006083

ABSTRACT

Galanin activates three receptors, the galanin receptor 1 (GalR1), GalR2, and GalR3. In the gastrointestinal tract, GalR1 mediates the galanin inhibition of cholinergic transmission to the longitudinal muscle and reduction of peristalsis efficiency in the small intestine. Galanin has also been shown to inhibit depolarization-evoked Ca2+ increases in cultured myenteric neurons. Because GalR1 immunoreactivity is localized to cholinergic myenteric neurons, we hypothesized that this inhibitory action of galanin on myenteric neurons is mediated by GalR1. We investigated the effect of galanin 1-16, which has high affinity for GalR1 and GalR2, in the presence or absence of the selective GalR1 antagonist, RWJ-57408, and of galanin 2-11, which has high affinity for GalR2 and GalR3, on Ca2+ influx through voltage-dependent Ca2+ channels in cultured myenteric neurons. Myenteric neurons were loaded with fluo-4 and depolarized by high K+ concentration to activate voltage-dependent Ca2+ channels. Intracellular Ca2+ levels were quantified with confocal microscopy. Galanin 1-16 (0.01-1 microM) inhibited the depolarization-evoked Ca2+ increase in a dose-dependent manner with an EC(50) of 0.172 microM. The selective GalR1 antagonist, RWJ-57408 (10 microM), blocked the galanin 1-16 (1 microM)-mediated inhibition of voltage-dependent Ca2+ channel. By contrast, the GalR2/GalR3 agonist, galanin 2-11 did not affect the K+-evoked Ca2+ influx in myenteric neurons. GalR1 immunoreactivity was localized solely to myenteric neurons in culture, as previously observed in intact tissue. These findings indicate that the inhibition of depolarization-evoked Ca2+ influx in myenteric neurons in culture is mediated by GalR1 and confirm the presence of functional GalR1 in the myenteric plexus. This is consonant with the hypothesis that GalR1 mediates galanin inhibition of transmitter release from myenteric neurons.


Subject(s)
Calcium Channels/metabolism , Calcium/metabolism , Galanin/metabolism , Myenteric Plexus/metabolism , Neurons/metabolism , Receptor, Galanin, Type 1/metabolism , Aniline Compounds , Animals , Cells, Cultured , Female , Male , Membrane Potentials , Microscopy, Confocal , Myenteric Plexus/cytology , Peptide Fragments/metabolism , Potassium/metabolism , Rats , Rats, Sprague-Dawley , Receptor, Galanin, Type 1/antagonists & inhibitors , Receptor, Galanin, Type 2/agonists , Receptor, Galanin, Type 3/agonists , Xanthenes
20.
Vis Neurosci ; 26(5-6): 453-65, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19930759

ABSTRACT

A DBA/2J (D2) transgenic mouse line with cyan fluorescent protein (CFP) reporter expression in ganglion cells was developed for the analysis of ganglion cells during progressive glaucoma. The Thy1-CFP D2 (CFP-D2) line was created by congenically breeding the D2 line, which develops pigmentary glaucoma, and the Thy1-CFP line, which expresses CFP in ganglion cells. Microsatellite marker analysis of CFP-D2 progeny verified the genetic inclusion of the D2 isa and ipd loci. Specific mutations within these loci lead to dysfunctional melanosomal proteins and glaucomatous phenotype in D2 mice. Polymerase chain reaction analysis confirmed the inclusion of the Thy1-CFP transgene. CFP-fluorescent ganglion cells, 6-20 microm in diameter, were distributed in all retinal regions, CFP processes were throughout the inner plexiform layer, and CFP-fluorescent axons were in the fiber layer and optic nerve head. Immunohistochemistry with antibodies to ganglion cell markers NF-L, NeuN, Brn3a, and SMI32 was used to confirm CFP expression in ganglion cells. Immunohistochemistry with antibodies to amacrine cell markers HPC-1 and ChAT was used to confirm weak CFP expression in cholinergic amacrine cells. CFP-D2 mice developed a glaucomatous phenotype, including iris disease, ganglion cell loss, attrition of the fiber layer, and elevated intraocular pressure. A CFP-D2 transgenic line with CFP-expressing ganglion cells was developed, which has (1) a predominantly D2 genetic background, (2) CFP-expressing ganglion cells, and (3) age-related progressive glaucoma. This line will be of value for experimental studies investigating ganglion cells and their axons in vivo and in vitro during the progressive development of glaucoma.


Subject(s)
Green Fluorescent Proteins/biosynthesis , Recombinant Fusion Proteins/biosynthesis , Retinal Ganglion Cells/metabolism , Thy-1 Antigens/genetics , Amacrine Cells/metabolism , Amacrine Cells/pathology , Animals , Axons/metabolism , Axons/pathology , Breeding , DNA-Binding Proteins , Genetic Markers , Glaucoma, Open-Angle/metabolism , Glaucoma, Open-Angle/pathology , Green Fluorescent Proteins/genetics , Mice , Mice, Inbred DBA , Mice, Transgenic , Nerve Growth Factors/metabolism , Nerve Tissue Proteins/metabolism , Nuclear Proteins/metabolism , Recombinant Fusion Proteins/genetics , Retinal Ganglion Cells/pathology , Syntaxin 1/metabolism , Transcription Factor Brn-3A/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL