Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
1.
Brain ; 147(5): 1899-1913, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38242545

ABSTRACT

Aberrant cholesterol metabolism causes neurological disease and neurodegeneration, and mitochondria have been linked to perturbed cholesterol homeostasis via the study of pathological mutations in the ATAD3 gene cluster. However, whether the cholesterol changes were compensatory or contributory to the disorder was unclear, and the effects on cell membranes and the wider cell were also unknown. Using patient-derived cells, we show that cholesterol perturbation is a conserved feature of pathological ATAD3 variants that is accompanied by an expanded lysosome population containing membrane whorls characteristic of lysosomal storage diseases. Lysosomes are also more numerous in Drosophila neural progenitor cells expressing mutant Atad3, which exhibit abundant membrane-bound cholesterol aggregates, many of which co-localize with lysosomes. By subjecting the Drosophila Atad3 mutant to nutrient restriction and cholesterol supplementation, we show that the mutant displays heightened cholesterol dependence. Collectively, these findings suggest that elevated cholesterol enhances tolerance to pathological ATAD3 variants; however, this comes at the cost of inducing cholesterol aggregation in membranes, which lysosomal clearance only partly mitigates.


Subject(s)
ATPases Associated with Diverse Cellular Activities , Cholesterol , Lysosomes , Membrane Proteins , Mutation , Animals , Cholesterol/metabolism , Humans , ATPases Associated with Diverse Cellular Activities/genetics , ATPases Associated with Diverse Cellular Activities/metabolism , Lysosomes/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Drosophila , Cell Membrane/metabolism , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism
2.
J Med Genet ; 61(6): 503-519, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38471765

ABSTRACT

Rubinstein-Taybi syndrome (RTS) is an archetypical genetic syndrome that is characterised by intellectual disability, well-defined facial features, distal limb anomalies and atypical growth, among numerous other signs and symptoms. It is caused by variants in either of two genes (CREBBP, EP300) which encode for the proteins CBP and p300, which both have a function in transcription regulation and histone acetylation. As a group of international experts and national support groups dedicated to the syndrome, we realised that marked heterogeneity currently exists in clinical and molecular diagnostic approaches and care practices in various parts of the world. Here, we outline a series of recommendations that document the consensus of a group of international experts on clinical diagnostic criteria for types of RTS (RTS1: CREBBP; RTS2: EP300), molecular investigations, long-term management of various particular physical and behavioural issues and care planning. The recommendations as presented here will need to be evaluated for improvements to allow for continued optimisation of diagnostics and care.


Subject(s)
CREB-Binding Protein , E1A-Associated p300 Protein , Rubinstein-Taybi Syndrome , Rubinstein-Taybi Syndrome/genetics , Rubinstein-Taybi Syndrome/diagnosis , Rubinstein-Taybi Syndrome/therapy , Humans , CREB-Binding Protein/genetics , E1A-Associated p300 Protein/genetics , Consensus , Disease Management , Mutation
3.
Hum Mol Genet ; 30(1): 72-77, 2021 03 25.
Article in English | MEDLINE | ID: mdl-33450762

ABSTRACT

Ocular pterygium-digital keloid dysplasia (OPDKD) presents in childhood with ingrowth of vascularized connective tissue on the cornea leading to severely reduced vision. Later the patients develop keloids on digits but are otherwise healthy. The overgrowth in OPDKD affects body parts that typically have lower temperature than 37°C. We present evidence that OPDKD is associated with a temperature sensitive, activating substitution, p.(Asn666Tyr), in PDGFRB. Phosphorylation levels of PDGFRB and downstream targets were higher in OPDKD fibroblasts at 37°C but were further greatly increased at the average corneal temperature of 32°C. This suggests that the substitution cause significant constitutive autoactivation mainly at lower temperature. In contrast, a different substitution in the same codon, p.(Asn666Ser), is associated with Penttinen type of premature aging syndrome. This devastating condition is characterized by widespread tissue degeneration, including pronounced chronic ulcers and osteolytic resorption in distal limbs. In Penttinen syndrome fibroblasts, equal and high levels of phosphorylated PDGFRB was present at both 32°C and 37°C. This indicates that this substitution causes severe constitutive autoactivation of PDGFRB regardless of temperature. In line with this, most downstream targets were not affected by lower temperature. However, STAT1, important for tissue wasting, did show further increased phosphorylation at 32°C. Temperature-dependent autoactivation offers an explanation to the strikingly different clinical outcomes of substitutions in the Asn666 codon of PDGFRB.


Subject(s)
Acro-Osteolysis/genetics , Conjunctiva/abnormalities , Limb Deformities, Congenital/genetics , Progeria/genetics , Pterygium/genetics , Receptor, Platelet-Derived Growth Factor beta/genetics , Skin Abnormalities/genetics , Acro-Osteolysis/diagnostic imaging , Acro-Osteolysis/pathology , Adolescent , Adult , Amino Acid Substitution/genetics , Child , Child, Preschool , Conjunctiva/diagnostic imaging , Conjunctiva/pathology , Female , Humans , Infant , Limb Deformities, Congenital/diagnostic imaging , Limb Deformities, Congenital/pathology , Male , Mutation, Missense/genetics , Phenotype , Phosphorylation/genetics , Progeria/diagnostic imaging , Progeria/pathology , Pterygium/diagnostic imaging , Pterygium/pathology , Skin Abnormalities/pathology , Temperature , Young Adult
4.
Am J Med Genet A ; 188(4): 1233-1238, 2022 04.
Article in English | MEDLINE | ID: mdl-34894066

ABSTRACT

Penttinen type of premature aging syndrome is an autosomal-dominant disorder that can be caused by the c.1994T>A pVal665Ala pathogenic variant in platelet-derived growth factor receptor-B (PDGFRB). Imatinib, a receptor tyrosine kinase (RTK) inhibitor, has been used in Penttinen syndrome (PS) patients with good results. A 21-year-old male presented shortly after birth with a prematurely aged appearance with distinctive facial features and cutaneous atrophy with hypertrophic scar-like lesions. Generalized brachydactyly with acro-osteolysis was observed. Flexion contractures limited his daily activities. Cognitive impairment was not present. Genetic testing found a heterozygous variant c.1994T>A pVal665Ala in exon 14 of PDGFRB. A diagnosis of PS was made and imatinib treatment was started with partial response. After lack of further improvement, in vitro molecular studies with imatinib and dasatinib showed that the Val665Ala variant had greater sensitivity to dasatinib than imatinib. This was seen examining levels of P-PDGFRB directly and on downstream ligands P-AKT and P-STAT. Improved clinical response was observed after treatment with dasatinib. We report a new case of PS with clinical and molecular response to dasatinib after incomplete response to imatinib. Our work provides further molecular and clinical evidence of RTK inhibitors' efficacy in this rare disorder.


Subject(s)
Acro-Osteolysis , Skin Abnormalities , Acro-Osteolysis/genetics , Dasatinib/therapeutic use , Humans , Imatinib Mesylate/therapeutic use , Limb Deformities, Congenital , Male , Progeria , Protein Kinase Inhibitors/therapeutic use , Receptor, Platelet-Derived Growth Factor beta/genetics , Young Adult
5.
Am J Hum Genet ; 103(6): 976-983, 2018 12 06.
Article in English | MEDLINE | ID: mdl-30449416

ABSTRACT

We have investigated a distinct disorder with progressive corneal neovascularization, keloid formation, chronic skin ulcers, wasting of subcutaneous tissue, flexion contractures of the fingers, and acro-osteolysis. In six affected individuals from four families, we found one of two recurrent variants in discoidin domain receptor tyrosine kinase 2 (DDR2): c.1829T>C (p.Leu610Pro) or c.2219A>G (p.Tyr740Cys). DDR2 encodes a collagen-responsive receptor tyrosine kinase that regulates connective-tissue formation. In three of the families, affected individuals comprise singleton adult individuals, and parental samples were not available for verification of the de novo occurrence of the DDR2 variants. In the fourth family, a mother and two of her children were affected, and the c.2219A>G missense variant was proven to be de novo in the mother. Phosphorylation of DDR2 was increased in fibroblasts from affected individuals, suggesting reduced receptor autoinhibition and ligand-independent kinase activation. Evidence for activation of other growth-regulatory signaling pathways was not found. Finally, we found that the protein kinase inhibitor dasatinib prevented DDR2 autophosphorylation in fibroblasts, suggesting an approach to treatment. We propose this progressive, fibrotic condition should be designated as Warburg-Cinotti syndrome.


Subject(s)
Connective Tissue Diseases/genetics , Discoidin Domain Receptor 2/genetics , Adult , Amino Acid Sequence , Child , Child, Preschool , Collagen/genetics , Connective Tissue Diseases/drug therapy , Female , Fibroblasts/drug effects , Humans , Middle Aged , Protein Kinase Inhibitors/therapeutic use , Receptor Protein-Tyrosine Kinases/genetics , Sequence Alignment , Signal Transduction/drug effects , Signal Transduction/genetics
6.
Am J Hum Genet ; 100(2): 323-333, 2017 02 02.
Article in English | MEDLINE | ID: mdl-28089251

ABSTRACT

Nephronophthisis (NPH), an autosomal-recessive tubulointerstitial nephritis, is the most common cause of hereditary end-stage renal disease in the first three decades of life. Since most NPH gene products (NPHP) function at the primary cilium, NPH is classified as a ciliopathy. We identified mutations in a candidate gene in eight individuals from five families presenting late-onset NPH with massive renal fibrosis. This gene encodes MAPKBP1, a poorly characterized scaffolding protein for JNK signaling. Immunofluorescence analyses showed that MAPKBP1 is not present at the primary cilium and that fibroblasts from affected individuals did not display ciliogenesis defects, indicating that MAPKBP1 may represent a new family of NPHP not involved in cilia-associated functions. Instead, MAPKBP1 is recruited to mitotic spindle poles (MSPs) during the early phases of mitosis where it colocalizes with its paralog WDR62, which plays a key role at MSP. Detected mutations compromise recruitment of MAPKBP1 to the MSP and/or its interaction with JNK2 or WDR62. Additionally, we show increased DNA damage response signaling in fibroblasts from affected individuals and upon knockdown of Mapkbp1 in murine cell lines, a phenotype previously associated with NPH. In conclusion, we identified mutations in MAPKBP1 as a genetic cause of juvenile or late-onset and cilia-independent NPH.


Subject(s)
Intracellular Signaling Peptides and Proteins/genetics , Kidney Diseases, Cystic/congenital , Adolescent , Alleles , Animals , Cell Cycle Proteins , Child , Cilia/genetics , DNA Damage/genetics , Disease Models, Animal , Fibroblasts/cytology , Fibroblasts/metabolism , Fibrosis , Gene Expression Regulation , Humans , Kidney/cytology , Kidney/metabolism , Kidney Diseases, Cystic/diagnosis , Kidney Diseases, Cystic/genetics , Kidney Failure, Chronic/diagnosis , Kidney Failure, Chronic/genetics , Mice , Mice, Knockout , Mitosis , Mutation , NIH 3T3 Cells , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Pedigree , Phenotype , Signal Transduction , Spindle Poles/metabolism , Young Adult , Zebrafish
8.
Tidsskr Nor Laegeforen ; 136(11): 996-1000, 2016 Jun.
Article in English, Norwegian | MEDLINE | ID: mdl-27325032

ABSTRACT

BACKGROUND Due to failures in reporting and poor data security, the Norwegian Registry of Blindness was closed down in 1995. Since that time, no registration of visual impairment has taken place in Norway. All the other Nordic countries have registries for children and adolescents with visual impairment. The purpose of this study was to survey visual impairments and their causes in children and adolescents, and to assess the need for an ophthalmic registry.MATERIAL AND METHOD Data were collected via the county teaching centres for the visually impaired in the period from 2005 - 2010 on children and adolescents aged less than 20 years with impaired vision (n = 628). This was conducted as a point prevalence study as of 1 January 2004. Visual function, ophthalmological diagnosis, systemic diagnosis and additional functional impairments were recorded.RESULTS Approximately two-thirds of children and adolescents with visual impairment had reduced vision, while one-third were blind. The three largest diagnostic groups were neuro-ophthalmic diseases (37 %), retinal diseases (19 %) and conditions affecting the eyeball in general (14 %). The prevalence of additional functional impairments was high, at 53 %, most often in the form of motor problems or cognitive impairments.INTERPRETATION The results of the study correspond well with similar investigations in the other Nordic countries. Our study shows that the registries associated with teaching for the visually impaired are inadequate in terms of medical data, and this underlines the need for an ophthalmic registry of children and adolescents with visual impairment.


Subject(s)
Vision Disorders/epidemiology , Adolescent , Blindness/epidemiology , Child , Child, Preschool , Humans , Norway/epidemiology , Registries , Vision, Low/epidemiology , Young Adult
10.
Am J Hum Genet ; 89(5): 634-43, 2011 Nov 11.
Article in English | MEDLINE | ID: mdl-22019273

ABSTRACT

A subset of ciliopathies, including Sensenbrenner, Jeune, and short-rib polydactyly syndromes are characterized by skeletal anomalies accompanied by multiorgan defects such as chronic renal failure and retinitis pigmentosa. Through exome sequencing we identified compound heterozygous mutations in WDR19 in a Norwegian family with Sensenbrenner syndrome. In a Dutch family with the clinically overlapping Jeune syndrome, a homozygous missense mutation in the same gene was found. Both families displayed a nephronophthisis-like nephropathy. Independently, we also identified compound heterozygous WDR19 mutations by exome sequencing in a Moroccan family with isolated nephronophthisis. WDR19 encodes IFT144, a member of the intraflagellar transport (IFT) complex A that drives retrograde ciliary transport. We show that IFT144 is absent from the cilia of fibroblasts from one of the Sensenbrenner patients and that ciliary abundance and morphology is perturbed, demonstrating the ciliary pathogenesis. Our results suggest that isolated nephronophthisis, Jeune, and Sensenbrenner syndromes are clinically overlapping disorders that can result from a similar molecular cause.


Subject(s)
Cilia , Ectodermal Dysplasia/genetics , Mutation, Missense , Polycystic Kidney Diseases/genetics , Proteins/genetics , Short Rib-Polydactyly Syndrome/genetics , Thoracic Diseases/genetics , Adolescent , Adult , Child , Cilia/genetics , Cilia/pathology , Craniofacial Abnormalities/genetics , Cytoskeletal Proteins , Exome/genetics , Female , Fibroblasts/metabolism , Flagella/genetics , Flagella/pathology , Humans , Intracellular Signaling Peptides and Proteins , Male , Molecular Sequence Data , Morocco , Netherlands , Norway , Oligonucleotide Array Sequence Analysis , Pedigree , Polycystic Kidney Diseases/congenital , Young Adult
11.
Am J Med Genet A ; 164A(11): 2901-7, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25124224

ABSTRACT

We describe an adolescent Peruvian male with marked, aggressive ingrowth of conjunctiva (pterygium-like) over the cornea associated with keloid formation on his distal limbs. He has in addition camptodactyly of all fingers and to some extent of his toes, and unusual skin pigmentations. He resembles an earlier described family from Norway in which a mother and two children showed a similar combination of signs. We present the follow-up of the Norwegian family. The entity resembles the Penttinen syndrome but can be differentiated due to the early aging in the latter, which is lacking in the presently reported entity. We suggest naming this entity ocular pterygium-digital keloid dysplasia. The condition follows likely an autosomal dominant pattern of inheritance.


Subject(s)
Fingers/pathology , Keloid/pathology , Pterygium/pathology , Toes/pathology , Child , Child, Preschool , Facies , Humans , Keloid/diagnosis , Male , Phenotype , Pterygium/diagnosis , Pterygium/surgery , Skin Pigmentation
12.
Cornea ; 43(6): 784-789, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38437155

ABSTRACT

PURPOSE: The purpose of this study was to highlight characteristic clinical and microscopic findings and report the long-term follow-up of pediatric excimer laser-assisted penetrating keratoplasty (excimer-PKP) for congenital stromal corneal dystrophy (CSCD). METHODS: A 2-year-old Greek child presented with CSCD at our department. Clinical examination showed bilateral flake-like whitish corneal opacities affecting the entire corneal stroma up to the limbus. Genetic testing identified a mutation of the decorin gene (c.962delA). The variant was not present in the parents and represented a de novo mutation. The uncorrected visual acuity was 20/100 in both eyes. Excimer-PKP (8.0/8.1 mm) was performed on the right eye at the age of 2.5 years and on the left eye at the age of 3 years. Postoperatively, alternating occlusion treatment was performed. RESULTS: The light microscopic examination demonstrated a disorganized extracellular matrix of the corneal stroma characterized by a prominent irregular arrangement of stromal collagen lamellae with large interlamellar clefts containing ground substance, highlighted by periodic acid-Schiff- and Alcian blue-positive reaction detecting acid mucopolysaccharides. Electron microscopy showed disorganization and caliber variation of collagen lamellae and thin filaments within an electron-lucent ground substance. The postoperative course was unremarkable. Both grafts remained completely clear 14 years postoperatively. Corneal tomography showed moderate regular astigmatism with normal corneal thickness. The corrected distance visual acuity was 20/25 in both eyes. CONCLUSIONS: Excimer-PKP for CSCD might be associated with excellent long-term results and a good prognosis, particularly when the primary surgery is performed at a very young age. However, this requires close postoperative follow-up examinations by an experienced pediatric ophthalmologist to avoid severe amblyopia.


Subject(s)
Corneal Dystrophies, Hereditary , Keratoplasty, Penetrating , Lasers, Excimer , Visual Acuity , Child, Preschool , Humans , Corneal Dystrophies, Hereditary/surgery , Corneal Dystrophies, Hereditary/physiopathology , Corneal Stroma/surgery , Corneal Stroma/pathology , Decorin/genetics , Follow-Up Studies , Keratoplasty, Penetrating/methods , Lasers, Excimer/therapeutic use , Visual Acuity/physiology
13.
Cornea ; 43(4): 466-527, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38359414

ABSTRACT

PURPOSE: The International Committee for the Classification of Corneal Dystrophies (IC3D) was created in 2005 to develop a new classification system integrating current information on phenotype, histopathology, and genetic analysis. This update is the third edition of the IC3D nomenclature. METHODS: Peer-reviewed publications from 2014 to 2023 were evaluated. The new information was used to update the anatomic classification and each of the 22 standardized templates including the level of evidence for being a corneal dystrophy [from category 1 (most evidence) to category 4 (least evidence)]. RESULTS: Epithelial recurrent erosion dystrophies now include epithelial recurrent erosion dystrophy, category 1 ( COL17A1 mutations, chromosome 10). Signs and symptoms are similar to Franceschetti corneal dystrophy, dystrophia Smolandiensis, and dystrophia Helsinglandica, category 4. Lisch epithelial corneal dystrophy, previously reported as X-linked, has been discovered to be autosomal dominant ( MCOLN1 mutations, chromosome 19). Classic lattice corneal dystrophy (LCD) results from TGFBI R124C mutation. The LCD variant group has over 80 dystrophies with non-R124C TGFBI mutations, amyloid deposition, and often similar phenotypes to classic LCD. We propose a new nomenclature for specific LCD pathogenic variants by appending the mutation using 1-letter amino acid abbreviations to LCD. Pre-Descemet corneal dystrophies include category 1, autosomal dominant, punctiform and polychromatic pre-Descemet corneal dystrophy (PPPCD) ( PRDX3 mutations, chromosome 10). Typically asymptomatic, it can be distinguished phenotypically from pre-Descemet corneal dystrophy, category 4. We include a corneal dystrophy management table. CONCLUSIONS: The IC3D third edition provides a current summary of corneal dystrophy information. The article is available online at https://corneasociety.org/publications/ic3d .


Subject(s)
Corneal Dystrophies, Hereditary , Epithelium, Corneal/pathology , Humans , Corneal Dystrophies, Hereditary/diagnosis , Corneal Dystrophies, Hereditary/genetics , Corneal Dystrophies, Hereditary/metabolism , Mutation , Transforming Growth Factor beta/genetics , Phenotype , Extracellular Matrix Proteins/genetics , Pedigree , DNA Mutational Analysis
14.
Am J Hum Genet ; 87(3): 410-7, 2010 Sep 10.
Article in English | MEDLINE | ID: mdl-20797687

ABSTRACT

Polyneuropathy, hearing loss, ataxia, retinitis pigmentosa, and cataract (PHARC) is a neurodegenerative disease marked by early-onset cataract and hearing loss, retinitis pigmentosa, and involvement of both the central and peripheral nervous systems, including demyelinating sensorimotor polyneuropathy and cerebellar ataxia. Previously, we mapped this Refsum-like disorder to a 16 Mb region on chromosome 20. Here we report that mutations in the ABHD12 gene cause PHARC disease and we describe the clinical manifestations in a total of 19 patients from four different countries. The ABHD12 enzyme was recently shown to hydrolyze 2-arachidonoyl glycerol (2-AG), the main endocannabinoid lipid transmitter that acts on cannabinoid receptors CB1 and CB2. Our data therefore represent an example of an inherited disorder related to endocannabinoid metabolism. The endocannabinoid system is involved in a wide range of physiological processes including neurotransmission, mood, appetite, pain appreciation, addiction behavior, and inflammation, and several potential drugs targeting these pathways are in development for clinical applications. Our findings show that ABHD12 performs essential functions in both the central and peripheral nervous systems and the eye. Any future drug-mediated interference with this enzyme should consider the potential risk of long-term adverse effects.


Subject(s)
Cannabinoid Receptor Modulators/metabolism , Endocannabinoids , Metabolism, Inborn Errors/genetics , Monoacylglycerol Lipases/genetics , Mutation/genetics , Neurodegenerative Diseases/enzymology , Neurodegenerative Diseases/genetics , Abnormalities, Multiple/enzymology , Abnormalities, Multiple/genetics , Adolescent , Animals , Child , Female , Gene Expression Profiling , Gene Expression Regulation , Genotype , Humans , Male , Metabolism, Inborn Errors/enzymology , Mice , Middle Aged , Monoacylglycerol Lipases/metabolism , Phenotype , RNA, Messenger/genetics , RNA, Messenger/metabolism , Syndrome , Young Adult
15.
FEBS Open Bio ; 13(10): 1874-1886, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37530719

ABSTRACT

All-trans retinoic acid-induced differentiation (ATRAID) factor was first identified in HL60 cells. Several mRNA isoforms exist, but the respective proteins have not been fully characterized. In transfected cells expressing Myc-Flag-tagged ATRAID Isoform (Iso) A, B, and C, Iso C was found to be expressed at high levels, Iso A was found to be expressed at low levels due to rapid degradation, and the predicted protein expressed from Iso B was not detected. Iso C was present mainly in an N-glycosylated form. In subcellular fractionation experiments, Iso C localized to the membranous and nuclear fractions, while immunofluorescence analysis revealed that Iso C is located close to the plasma membrane, mainly in cytoplasmic vesicles and in the Golgi area. We confirm that Iso C colocalizes to some extent with endosomal/lysosomal markers LAMP1 and LAMP2. Furthermore, we show that ATRAID co-localizes with RAB11, a GTPase associated with recycling endosomes and implicated in regulating vesicular trafficking.

16.
Invest Ophthalmol Vis Sci ; 64(14): 9, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37934158

ABSTRACT

Purpose: The purpose of this study was to identify the genetic cause of aggressive corneal vascularization in otherwise healthy children in one family. Further, to study molecular consequences associated with the identified variant and implications for possible treatment. Methods: Exome sequencing was performed in affected individuals. HeLa cells were transduced with the identified c.1643C>A, p.(Ser548Tyr) variant in the platelet-derived growth factor receptor beta gene (PDGFRB) or wild-type PDGFRB. ELISA and immunoblot analysis were used to detect the phosphorylation levels of PDGFRß and downstream signaling proteins in untreated and ligand-stimulated cells. Sensitivity to various receptor tyrosine kinase inhibitors (TKIs) was determined. Results: A novel c.1643C>A, p.(Ser548Tyr) PDGFRB variant was found in affected family members. HeLa cells transduced with this variant did not have increased baseline levels of phosphorylated PDGFRß. However, upon stimulation with ligand, excessive activation of PDGFRß was observed compared to cells transduced with the wild-type variant. PDGFRß with the p.(Ser548Tyr) amino acid substitution was successfully inhibited with tyrosine kinase inhibitors (axitinib, dasatinib, imatinib, and sunitinib) in vitro. Conclusions: A novel c.1643C>A, p.(Ser548Tyr) PDGFRB variant was found in family members with isolated corneal vascularization. Cells transduced with the newly identified variant showed increased phosphorylation of PDGFRß upon ligand stimulation. This suggests that PDGF-PDGFRß signaling in these patients leads to overactivation of PDGFRß, which could lead to abnormal wound healing of the cornea. The examined TKIs prevented such overactivation, introducing the possibility for targeted treatment in these patients.


Subject(s)
Corneal Neovascularization , Receptor, Platelet-Derived Growth Factor beta , Humans , Cornea , HeLa Cells , Ligands
17.
FEBS Lett ; 597(9): 1290-1299, 2023 05.
Article in English | MEDLINE | ID: mdl-36776133

ABSTRACT

Ocular pterygium-digital keloid dysplasia (OPDKD) is a rare hereditary disease characterized by corneal ingrowth of vascularized conjunctival tissue early in life. Later, patients develop keloids on fingers and toes but are otherwise healthy. In a recently described family with OPDKD, we report the presence of a de novo c.770C > T, p.(Thr257Ile) variant in PELI2 in the affected individual. PELI2 encodes for the E3 ubiquitin ligase Pellino-2. In transgenic U87MG cells overexpressing Pellino-2 with the p.(Thr257Ile) amino acid substitution, constitutive activation of the NLRP3 inflammasome was observed. However, the Thr257Ile variant did not affect Pellino-2 intracellular localization, its binding to known interaction partners, nor its stability. Our findings indicate that constitutive autoactivation of the NLRP3 inflammasome contributes to the development of PELI2-associated OPDKD.


Subject(s)
Keloid , Pterygium , Humans , Inflammasomes/genetics , Inflammasomes/metabolism , Keloid/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Pterygium/genetics , Ubiquitin-Protein Ligases/metabolism
18.
19.
FEBS Lett ; 595(19): 2437-2446, 2021 10.
Article in English | MEDLINE | ID: mdl-34387857

ABSTRACT

Pellino proteins are E3 ubiquitin ligases involved in the innate immune system. Recently, Pellino-2 was reported to modulate the activation of the mouse Nlrp3 inflammasome. We examined the intracellular localization of human Pellino-2 in THP1-derived macrophages during activation with LPS and ATP. We observed that Pellino-2 changed intracellular localization and colocalized with the inflammasome proteins NLRP3 and ASC late in the assembly of the inflammasome. Colocalization with NLRP3 and ASC was also seen in cells maintained in potassium-free medium. The colocalization and inflammasome activation were abrogated by several potassium channel inhibitors, supporting a role for potassium efflux in modulating intracellular localization of Pellino-2. The data suggest that Pellino-2 is essential for mediating the effect of potassium efflux on inflammasome activation.


Subject(s)
Inflammasomes/metabolism , Macrophage Activation , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Potassium/metabolism , Cell Line , Humans , Protein Transport
20.
FEBS Lett ; 595(23): 2909-2921, 2021 12.
Article in English | MEDLINE | ID: mdl-34674267

ABSTRACT

Pellino-2 is an E3 ubiquitin ligase that mediates intracellular signaling in innate immune pathways. Most studies of endogenous Pellino-2 have been performed in macrophages, but none in nonimmune cells. Using yeast two-hybrid screening and co-immunoprecipitation, we identified six novel interaction partners of Pellino-2, with various localizations: insulin receptor substrate 1, NIMA-related kinase 9, tumor necrosis factor receptor-associated factor 7, cyclin-F, roundabout homolog 1, and disheveled homolog 2. Pellino-2 showed cytoplasmic localization in a wide range of nonimmune cells under physiological potassium concentrations. Treatment with the potassium ionophore nigericin resulted in nuclear localization of Pellino-2, which was reversed by the potassium channel blocker tetraethylammonium. Live-cell imaging revealed intracellular migration of GFP-tagged Pellino-2. In summary, Pellino-2 interacts with proteins at different cellular locations, taking part in dynamic processes that change its intracellular localization influenced by potassium efflux.


Subject(s)
Nuclear Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism , Active Transport, Cell Nucleus , Cell Nucleus/metabolism , Cells, Cultured , Fibroblasts/metabolism , HEK293 Cells , Humans , Protein Binding , Protein Interaction Maps , Two-Hybrid System Techniques
SELECTION OF CITATIONS
SEARCH DETAIL