Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters

Database
Language
Publication year range
1.
Med Sci Sports Exerc ; 55(10): 1812-1822, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37202869

ABSTRACT

PURPOSE: Obesity is thought to negatively impact bone quality and strength despite improving bone mineral density. We hypothesized that 1) continuous consumption of a high-fat, high-sugar (HFS) diet would impair bone quality and strength, and 2) a change from an HFS diet to a low-fat, low-sugar (LFS) would reverse HFS-induced impairments to bone quality and strength. METHODS: Six-week-old male C57Bl/6 mice ( n = 10/group) with access to a running wheel were randomized to an LFS diet or an HFS diet with simulated sugar-sweetened beverages (20% fructose in place of regular drinking water) for 13 wk. HFS mice were subsequently randomized to continuing HFS feeding (HFS/HFS) or transition to the LFS diet (HFS/LFS) for four additional weeks. RESULTS: HFS/HFS mice exhibited superior femoral cancellous microarchitecture (i.e., greater BV/TV, Tb.N, Tb.Th, and decreased Tb.Sp) and cortical bone geometry (i.e., lower Ct.CSA and pMOI) compared with all other groups. At the femoral mid-diaphysis, structural, but not material, mechanical properties were greatest in HFS/HFS mice. However, HFS/HFS exhibited greater femoral neck strength only when compared with mice assigned to diet transition (HFS/LFS). Osteoclast surface and the percentage of osteocytes staining positive for interferon-gamma were greater in HFS/LFS mice, consistent with reduced cancellous microarchitecture postdiet transition. CONCLUSIONS: HFS feeding enhanced bone anabolism and structural, but not material, mechanical properties in exercising mice. A change from an HFS to LFS diet returned the bone structure to that of continuously LFS-fed mice while compromising strength. Our results indicate rapid weight loss from obese states should be performed with caution to prevent bone fragility. A deeper analysis into the altered bone phenotype in diet-induced obesity from a metabolic standpoint is needed.


Subject(s)
Bone Density , Fructose , Animals , Male , Mice , Bone and Bones/metabolism , Diet, Fat-Restricted , Diet, High-Fat/adverse effects , Mice, Inbred C57BL , Obesity/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL