ABSTRACT
Fungi are among the most diverse and ecologically important kingdoms in life. However, the distributional ranges of fungi remain largely unknown as do the ecological mechanisms that shape their distributions1,2. To provide an integrated view of the spatial and seasonal dynamics of fungi, we implemented a globally distributed standardized aerial sampling of fungal spores3. The vast majority of operational taxonomic units were detected within only one climatic zone, and the spatiotemporal patterns of species richness and community composition were mostly explained by annual mean air temperature. Tropical regions hosted the highest fungal diversity except for lichenized, ericoid mycorrhizal and ectomycorrhizal fungi, which reached their peak diversity in temperate regions. The sensitivity in climatic responses was associated with phylogenetic relatedness, suggesting that large-scale distributions of some fungal groups are partially constrained by their ancestral niche. There was a strong phylogenetic signal in seasonal sensitivity, suggesting that some groups of fungi have retained their ancestral trait of sporulating for only a short period. Overall, our results show that the hyperdiverse kingdom of fungi follows globally highly predictable spatial and temporal dynamics, with seasonality in both species richness and community composition increasing with latitude. Our study reports patterns resembling those described for other major groups of organisms, thus making a major contribution to the long-standing debate on whether organisms with a microbial lifestyle follow the global biodiversity paradigms known for macroorganisms4,5.
Subject(s)
Air Microbiology , Biodiversity , DNA, Fungal , Fungi , Seasons , Spatio-Temporal Analysis , DNA, Fungal/analysis , DNA, Fungal/genetics , Fungi/genetics , Fungi/classification , Fungi/isolation & purification , Mycorrhizae/genetics , Mycorrhizae/classification , Mycorrhizae/isolation & purification , Phylogeny , Spores, Fungal/classification , Spores, Fungal/isolation & purification , Temperature , Tropical Climate , Geographic MappingABSTRACT
Climate change is altering aquatic environments in a complex way, and simultaneous shifts in many properties will drive evolutionary responses in primary producers at the base of both freshwater and marine ecosystems. So far, evolutionary studies have shown how changes in environmental drivers, either alone or in pairs, affect the evolution of growth and other traits in primary producers. Here, we evolve a primary producer in 96 unique environments with different combinations of between one and eight environmental drivers to understand how evolutionary responses to environmental change depend on the identity and number of drivers. Even in multidriver environments, only a few dominant drivers explain most of the evolutionary changes in population growth rates. Most populations converge on the same growth rate by the end of the evolution experiment. However, populations adapt more when these dominant drivers occur in the presence of other drivers. This is due to an increase in the intensity of selection in environments with more drivers, which are more likely to include dominant drivers. Concurrently, many of the trait changes that occur during the initial short-term response to both single and multidriver environmental change revert after about 450 generations of evolution. In future aquatic environments, populations will encounter differing combinations of drivers and intensities of selection, which will alter the adaptive potential of primary producers. Accurately gauging the intensity of selection on key primary producers will help in predicting population size and trait evolution at the base of aquatic food webs.
Subject(s)
Adaptation, Biological/physiology , Hydrobiology/methods , Biological Evolution , Chlamydomonas/growth & development , Chlamydomonas/metabolism , Climate Change , Ecosystem , Phenotype , SeawaterABSTRACT
Novel methods for sampling and characterizing biodiversity hold great promise for re-evaluating patterns of life across the planet. The sampling of airborne spores with a cyclone sampler, and the sequencing of their DNA, have been suggested as an efficient and well-calibrated tool for surveying fungal diversity across various environments. Here we present data originating from the Global Spore Sampling Project, comprising 2,768 samples collected during two years at 47 outdoor locations across the world. Each sample represents fungal DNA extracted from 24 m3 of air. We applied a conservative bioinformatics pipeline that filtered out sequences that did not show strong evidence of representing a fungal species. The pipeline yielded 27,954 species-level operational taxonomic units (OTUs). Each OTU is accompanied by a probabilistic taxonomic classification, validated through comparison with expert evaluations. To examine the potential of the data for ecological analyses, we partitioned the variation in species distributions into spatial and seasonal components, showing a strong effect of the annual mean temperature on community composition.
Subject(s)
Air Microbiology , DNA, Fungal , Spores, Fungal , DNA, Fungal/analysis , Fungi/genetics , Fungi/classification , BiodiversityABSTRACT
Over the last two decades, there has been a huge increase in our understanding of microbial diversity, structure and composition enabled by high-throughput sequencing technologies. Yet, it is unclear how the number of sequences translates to the number of cells or species within the community. In some cases, additional observational data may be required to ensure relative abundance patterns from sequence reads are biologically meaningful. The goal of DNA-based methods for biodiversity assessments is to obtain robust community abundance data, simultaneously, from environmental samples. In this issue of Molecular Ecology Resources, Pierella Karlusich et al. (2022) describe a new method for quantifying phytoplankton cell abundance. Using Tara Oceans data sets, the authors propose the photosynthetic gene psbO for reporting accurate relative abundance of the entire phytoplankton community from metagenomic data. The authors demonstrate higher correlations with traditional optical methods (including microscopy and flow cytometry), using their new method, improving upon molecular abundance assessments using multicopy marker genes. Furthermore, to facilitate application of their approach, the authors curated a psbO gene database for accessible taxonomic queries. This is an important step towards improving species abundance estimates from molecular data and eventually reporting of absolute species abundance, enhancing our understanding of community dynamics.
Subject(s)
Biodiversity , Metagenomics , Metagenomics/methods , Metagenome , Ecology , Oceans and Seas , High-Throughput Nucleotide Sequencing/methodsABSTRACT
Ocean microbes are fundamental for the functioning of the Earth system. Yet, our understanding of how they are reacting to global change in terms of evolution is limited. Microbes typically grow in large populations and reproduce quickly, which may allow them to rapidly adapt to environmental stressors compared to larger organisms. However, genetic evidence of contemporary evolution in wild microbes is scarce. We must begin coordinated efforts to establish new microbial time-series and explore novel tools, experiments, and data to fill this knowledge gap. The development of coordinated microbial 'genomic' observatories will provide the unprecedented opportunity to track contemporary microbial evolution in the ocean and explore the role of evolution in enabling wild microbes to respond to global change.
Subject(s)
Adaptation, Physiological , Oceans and SeasABSTRACT
Decreasing floral resources as a result of habitat loss is one of the key factors in the decline of pollinating insects worldwide. Understanding which plants pollinators use is vital to inform the provision of appropriate floral resources to help prevent pollinator loss. Using a globally important pollinator, the honeybee, we show how changes in agricultural intensification, crop use and the spread of invasive species, have altered the nectar and pollen sources available in the UK. Using DNA metabarcoding, we analysed 441 honey samples from 2017 and compared these to a nationwide survey of honey samples from 1952. We reveal that shifts in major plants foraged by honeybees are driven by changes in the availability of these plants within the landscape. Improved grasslands are the most widespread habitat type in the UK, and management changes within this habitat have the greatest potential to increase floral resource availability.
Subject(s)
Bees/physiology , Flowers , Animals , Behavior, Animal , DNA Barcoding, Taxonomic , Honey/analysis , Pollination , United KingdomABSTRACT
Allergic rhinitis is an inflammation in the nose caused by overreaction of the immune system to allergens in the air. Managing allergic rhinitis symptoms is challenging and requires timely intervention. The following are major questions often posed by those with allergic rhinitis: How should I prepare for the forthcoming season? How will the season's severity develop over the years? No country yet provides clear guidance addressing these questions. We propose two previously unexplored approaches for forecasting the severity of the grass pollen season on the basis of statistical and mechanistic models. The results suggest annual severity is largely governed by preseasonal meteorological conditions. The mechanistic model suggests climate change will increase the season severity by up to 60%, in line with experimental chamber studies. These models can be used as forecasting tools for advising individuals with hay fever and health care professionals how to prepare for the grass pollen season.
ABSTRACT
Grass (Poaceae) pollen is the most important outdoor aeroallergen,1 exacerbating a range of respiratory conditions, including allergic asthma and rhinitis ("hay fever").2-5 Understanding the relationships between respiratory diseases and airborne grass pollen with a view to improving forecasting has broad public health and socioeconomic relevance. It is estimated that there are over 400 million people with allergic rhinitis6 and over 300 million with asthma, globally,7 often comorbidly.8 In the UK, allergic asthma has an annual cost of around US$ 2.8 billion (2017).9 The relative contributions of the >11,000 (worldwide) grass species (C. Osborne et al., 2011, Botany Conference, abstract) to respiratory health have been unresolved,10 as grass pollen cannot be readily discriminated using standard microscopy.11 Instead, here we used novel environmental DNA (eDNA) sampling and qPCR12-15 to measure the relative abundances of airborne pollen from common grass species during two grass pollen seasons (2016 and 2017) across the UK. We quantitatively demonstrate discrete spatiotemporal patterns in airborne grass pollen assemblages. Using a series of generalized additive models (GAMs), we explore the relationship between the incidences of airborne pollen and severe asthma exacerbations (sub-weekly) and prescribing rates of drugs for respiratory allergies (monthly). Our results indicate that a subset of grass species may have disproportionate influence on these population-scale respiratory health responses during peak grass pollen concentrations. The work demonstrates the need for sensitive and detailed biomonitoring of harmful aeroallergens in order to investigate and mitigate their impacts on human health.
Subject(s)
Asthma , DNA, Environmental , Rhinitis, Allergic, Seasonal , Allergens , Asthma/epidemiology , Asthma/genetics , Humans , Poaceae , Pollen , Rhinitis, Allergic, Seasonal/epidemiologyABSTRACT
Grass pollen is the world's most harmful outdoor aeroallergen. However, it is unknown how airborne pollen assemblages change across time and space. Human sensitivity varies between different species of grass that flower at different times, but it is not known whether temporal turnover in species composition match terrestrial flowering or whether species richness steadily accumulates over the grass pollen season. Here, using targeted, high-throughput sequencing, we demonstrate that all grass genera displayed discrete, temporally restricted peaks of incidence, which varied with latitude and longitude throughout Great Britain, revealing that the taxonomic composition of grass pollen exposure changes substantially across the grass pollen season.