Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
J Virol ; 96(12): e0039422, 2022 06 22.
Article in English | MEDLINE | ID: mdl-35612313

ABSTRACT

The main target cells for Epstein-Barr virus (EBV) infection and persistence are B lymphocytes, although T and NK cells can also become infected. In this paper, we characterize the EBV present in 21 pediatric and adult patients who were treated in France for a range of diseases that involve infection of T or NK cells. Of these 21 cases, 5 pediatric patients (21%) and 11 adult patients (52%) were of Caucasian origin. In about 30% of the cases, some of the EBV genomes contain a large deletion. The deletions are different in every patient but tend to cluster near the BART region of the viral genome. Detailed investigation of a family in which several members have persistent T or NK cell infection by EBV indicates that the virus genome deletions arise or are selected independently in each individual patient. Genome sequence polymorphisms in the EBV in these T or NK cell diseases reflect the geographic origin of the patient and not a distinct type of EBV (the 21 cases studied included examples of both type 1 and type 2 EBV infection). Using virus produced from type 1 or type 2 EBV genomes cloned in bacterial artificial chromosome (BAC) vectors, we demonstrate infection of T cells in cord blood from healthy donors. Our results are consistent with transient infection of some T cells being part of normal asymptomatic infection by EBV in young children. IMPORTANCE EBV contributes to several types of human cancer. Some cancers and nonmalignant lymphoproliferative diseases involving T or NK cells contain EBV. These diseases are relatively frequent in Japan and China and have been shown sometimes to have deletions in the EBV genome in the disease cells. We identify further examples of deletions within the EBV genome associated with T or NK cell diseases, and we provide evidence that the virus genomes with these deletions are most likely selected in the individual cases, rather than being transmitted between people during infection. We demonstrate EBV infection of cord blood T cells by highly characterized, cloned EBV genomes and suggest that transient infection of T cells may be part of normal asymptomatic infection by EBV in young children.


Subject(s)
Epstein-Barr Virus Infections , Gene Deletion , Genome, Viral , Herpesvirus 4, Human , Lymphoproliferative Disorders , Adult , Asymptomatic Infections , Child , Herpesvirus 4, Human/genetics , Humans , Killer Cells, Natural/virology , Lymphoproliferative Disorders/virology , T-Lymphocytes/virology
2.
J Virol ; 92(22)2018 11 15.
Article in English | MEDLINE | ID: mdl-30111570

ABSTRACT

One hundred thirty-eight new Epstein-Barr virus (EBV) genome sequences have been determined. One hundred twenty-five of these and 116 from previous reports were combined to produce a multiple-sequence alignment of 241 EBV genomes, which we have used to analyze variation within the viral genome. The type 1/type 2 classification of EBV remains the major form of variation and is defined mostly by EBNA2 and EBNA3, but the type 2 single-nucleotide polymorphisms (SNPs) at the EBNA3 locus extend into the adjacent gp350 and gp42 genes, whose products mediate infection of B cells by EBV. A small insertion within the BART microRNA region of the genome was present in 21 EBV strains. EBV from saliva of U.S. patients with chronic active EBV infection aligned with the wild-type EBV genome with no evidence of WZhet rearrangements. The V3 polymorphism in the Zp promoter for BZLF1 was found to be frequent in nasopharyngeal carcinoma cases from both Hong Kong and Indonesia. Codon usage was found to differ between latent and lytic cycle EBV genes, and the main forms of variation of the EBNA1 protein have been identified.IMPORTANCE Epstein-Barr virus causes most cases of infectious mononucleosis and posttransplant lymphoproliferative disease. It contributes to several types of cancer, including Hodgkin's lymphoma, Burkitt's lymphoma, diffuse large B cell lymphoma, nasopharyngeal carcinoma, and gastric carcinoma. EBV genome variation is important because some of the diseases associated with EBV have very different incidences in different populations and geographic regions, and differences in the EBV genome might contribute to these diseases. Some specific EBV genome alterations that appear to be significant in EBV-associated cancers are already known, and current efforts to make an EBV vaccine and antiviral drugs should also take account of sequence differences in the proteins used as targets.


Subject(s)
Burkitt Lymphoma/genetics , Genome, Viral/genetics , Herpesvirus 4, Human/genetics , Infectious Mononucleosis/genetics , Polymorphism, Single Nucleotide/genetics , Stomach Neoplasms/genetics , Base Sequence , Epstein-Barr Virus Nuclear Antigens/genetics , Humans , Promoter Regions, Genetic/genetics , Sequence Alignment , Sequence Analysis, DNA , Trans-Activators/genetics , Viral Proteins/genetics
3.
Philos Trans R Soc Lond B Biol Sci ; 374(1773): 20180299, 2019 05 27.
Article in English | MEDLINE | ID: mdl-30955492

ABSTRACT

Many regions of the Epstein-Barr virus (EBV) genome, repeated and unique sequences, contribute to the geographical variation observed between strains. Here we use a large alignment of curated EBV genome sequences to identify major sites of variation in the genome of type 1 EBV strains; the CAO deletion in latent membrane protein 1 (LMP1) is the most frequent major indel present in the unique regions of EBV strains from various parts of the world. Principal component analysis was used to identify patterns of sequence variation and nucleotide positions in the sequences that can distinguish EBV from some different geographical regions. Viral genome sequence variation also affects interpretation of genetic content; known genes, origins of replication and gene expression control regions explain most of the viral genome but there are still a few sections of unknown function. One of these EBV genome regions contains a large inverted repeat sequence (invR) within the IR-1 major internal repeat array. We deleted this invR sequence and showed that this abolished the ability of the virus to transform human B cells into lymphoblastoid cell lines. This article is part of the theme issue 'Silent cancer agents: multi-disciplinary modelling of human DNA oncoviruses'.


Subject(s)
Epstein-Barr Virus Infections/virology , Genome, Viral/genetics , Herpesvirus 4, Human/genetics , Genetic Variation , Geography , Humans , Inverted Repeat Sequences , Viral Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL