Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Epilepsia ; 65(4): 1046-1059, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38410936

ABSTRACT

OBJECTIVE: SCN1A variants are associated with epilepsy syndromes ranging from mild genetic epilepsy with febrile seizures plus (GEFS+) to severe Dravet syndrome (DS). Many variants are de novo, making early phenotype prediction difficult, and genotype-phenotype associations remain poorly understood. METHODS: We assessed data from a retrospective cohort of 1018 individuals with SCN1A-related epilepsies. We explored relationships between variant characteristics (position, in silico prediction scores: Combined Annotation Dependent Depletion (CADD), Rare Exome Variant Ensemble Learner (REVEL), SCN1A genetic score), seizure characteristics, and epilepsy phenotype. RESULTS: DS had earlier seizure onset than other GEFS+ phenotypes (5.3 vs. 12.0 months, p < .001). In silico variant scores were higher in DS versus GEFS+ (p < .001). Patients with missense variants in functionally important regions (conserved N-terminus, S4-S6) exhibited earlier seizure onset (6.0 vs. 7.0 months, p = .003) and were more likely to have DS (280/340); those with missense variants in nonconserved regions had later onset (10.0 vs. 7.0 months, p = .036) and were more likely to have GEFS+ (15/29, χ2 = 19.16, p < .001). A minority of protein-truncating variants were associated with GEFS+ (10/393) and more likely to be located in the proximal first and last exon coding regions than elsewhere in the gene (9.7% vs. 1.0%, p < .001). Carriers of the same missense variant exhibited less variability in age at seizure onset compared with carriers of different missense variants for both DS (1.9 vs. 2.9 months, p = .001) and GEFS+ (8.0 vs. 11.0 months, p = .043). Status epilepticus as presenting seizure type is a highly specific (95.2%) but nonsensitive (32.7%) feature of DS. SIGNIFICANCE: Understanding genotype-phenotype associations in SCN1A-related epilepsies is critical for early diagnosis and management. We demonstrate an earlier disease onset in patients with missense variants in important functional regions, the occurrence of GEFS+ truncating variants, and the value of in silico prediction scores. Status epilepticus as initial seizure type is a highly specific, but not sensitive, early feature of DS.


Subject(s)
Epilepsies, Myoclonic , Epilepsy , Seizures, Febrile , Status Epilepticus , Humans , Retrospective Studies , NAV1.1 Voltage-Gated Sodium Channel/genetics , Epilepsy/genetics , Epilepsy/diagnosis , Epilepsies, Myoclonic/genetics , Seizures, Febrile/genetics , Phenotype , Genetic Association Studies , Mutation/genetics
2.
Epilepsy Behav ; 154: 109726, 2024 May.
Article in English | MEDLINE | ID: mdl-38513571

ABSTRACT

BACKGROUND: A pathogenic variant in SCN1A can result in a spectrum of phenotypes, including Dravet syndrome (DS) and genetic epilepsy with febrile seizures plus (GEFS + ) syndrome. Dravet syndrome (DS) is associated with refractory seizures, developmental delay, intellectual disability (ID), motor impairment, and challenging behavior(1,2). GEFS + is a less severe phenotype in which cognition is often normal and seizures are less severe. Challenging behavior largely affects quality of life of patients and their families. This study describes the profile and course of the behavioral phenotype in patients with SCN1A-related epilepsy syndromes, explores correlations between behavioral difficulties and potential risk factors. METHODS: Data were collected from questionnaires, medical records, and semi-structured interviews. Behavior difficulties were measured using the Adult/Child Behavior Checklist (C/ABCL) and Adult self-report (ASR). Other questionnaires included the Pediatric Quality of Life Inventory (PedsQL), the Functional Mobility Scale (FMS) and the Sleep Behavior Questionnaire by Simonds & Parraga (SQ-SP). To determine differences in behavioral difficulties longitudinally, paired T-tests were used. Pearson correlation and Spearman rank test were used in correlation analyses and multivariable regression analyses were employed to identify potential risk factors. RESULTS: A cohort of 147 participants, including 107 participants with DS and 40 with genetic epilepsy with febrile seizures plus (GEFS + ), was evaluated. Forty-six DS participants (43.0 %) and three GEFS + participants (7.5 %) showed behavioral problems in the clinical range on the A/CBCL total problems scale. The behavioral profile in DS exists out of withdrawn behavior, aggressive behavior, and attention problems. In DS patients, sleep disturbances (ß = 1.15, p < 0.001) and a lower age (ß = -0.21, p = 0.001) were significantly associated with behavioral difficulties. Between 2015 and 2022, behavioral difficulties significantly decreased with age (t = -2.24, CI = -6.10 - -0.15, p = 0.04) in DS participants aging from adolescence into adulthood. A decrease in intellectual functioning (ß = 3.37, p = 0.02) and using less antiseizure medications in 2022 than in 2015, (ß = -1.96, p = 0.04), were identified as possible risk factors for developing (more) behavioral difficulties. CONCLUSIONS: These findings suggest that, in addition to epilepsy, behavioral difficulties are a core feature of the DS phenotype. Behavioral problems require personalized management and treatment strategies. Further research is needed to identify effective interventions.


Subject(s)
NAV1.1 Voltage-Gated Sodium Channel , Humans , Male , Female , NAV1.1 Voltage-Gated Sodium Channel/genetics , Adult , Child , Adolescent , Young Adult , Child, Preschool , Epilepsies, Myoclonic/genetics , Epilepsies, Myoclonic/psychology , Epilepsies, Myoclonic/complications , Quality of Life , Epileptic Syndromes/genetics , Epileptic Syndromes/psychology , Neurodevelopmental Disorders/genetics , Neurodevelopmental Disorders/psychology , Neurodevelopmental Disorders/etiology , Seizures, Febrile/genetics , Seizures, Febrile/psychology , Seizures, Febrile/complications , Problem Behavior/psychology , Epilepsy/genetics , Epilepsy/psychology , Epilepsy/complications
3.
Mol Genet Genomic Med ; 12(3): e2341, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38366804

ABSTRACT

BACKGROUND: Counseling for whole-exome sequencing (WES) could benefit from aligning parents' pre- and post-disclosure attitudes. A few studies have qualitatively compared parents' pre- and post-disclosure attitudes toward receiving WES results for their child in a diagnostic setting. This study explored these attitudes in the context of children with a developmental delay. METHODS: Semi-structured interviews were conducted with parents (n = 27) of 16 children undergoing diagnostic WES in trio-analysis, both before and after receiving results. RESULTS: Three key insights emerged. First, the distinction between hoping and expecting was relevant for shaping parents' experiences with receiving results related to the primary indication. Second, parents of young children whose development of autonomous capacities was uncertain sometimes found themselves in a situation resembling a Catch-22 when confronted with decisions about unsolicited findings (UFs): an important reason for consenting to WES was to gain a better picture of how the child might develop, but in order to make responsible choices about UFs, some ideas of their child's development is needed. Third, default opt-ins and opt-outs helped parents fathom new kinds of considerations for accepting or declining UFs in different categories, thereby aiding decision-making. CONCLUSION: Results from this study are relevant for counseling and policy development.


Subject(s)
Attitude , Disclosure , Child , Humans , Child, Preschool , Exome Sequencing
4.
Orphanet J Rare Dis ; 19(1): 49, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38326858

ABSTRACT

BACKGROUND: Fahr's disease and syndrome are rare disorders leading to calcification of the small arteries in the basal ganglia of the brain, resulting in a wide range of symptoms comprising cognitive decline, movement disorders and neuropsychiatric symptoms. No disease-modifying therapies are available. Studies have shown the potential of treatment of ectopic vascular calcifications with bisphosphonates. This paper describes the rationale and design of the CALCIFADE trial which evaluates the effects of etidronate in patients with Fahr's disease or syndrome. METHODS: The CALCIFADE trial is a randomised, placebo-controlled, double-blind trial which evaluates the effects of etidronate 20 mg/kg during 12 months follow-up in patients aged ≥ 18 years with Fahr's disease or syndrome. Etidronate and placebo will be administered in capsules daily for two weeks on followed by ten weeks off. The study will be conducted at the outpatient clinic of the University Medical Center Utrecht, the Netherlands. The primary endpoint is the change in cognitive functioning after 12 months of treatment. Secondary endpoints are the change in mobility, neuropsychiatric symptoms, volume of brain calcifications, dependence in activities of daily living, and quality of life. RESULTS: Patient recruitment started in April 2023. Results are expected in 2026 and will be disseminated through peer-reviewed journals as well as presentations at national and international conferences. CONCLUSIONS: Fahr's disease and syndrome are slowly progressive disorders with a negative impact on a variety of health outcomes. Etidronate might be a new promising treatment for patients with Fahr's disease or syndrome. TRIAL REGISTRATION: ClinicalTrials.gov, NCT05662111. Registered 22 December 2022, https://clinicaltrials.gov/ct2/show/NCT01585402 .


Subject(s)
Basal Ganglia Diseases , Calcinosis , Etidronic Acid , Neurodegenerative Diseases , Humans , Etidronic Acid/therapeutic use , Activities of Daily Living , Quality of Life , Basal Ganglia Diseases/complications , Basal Ganglia Diseases/diagnosis , Basal Ganglia Diseases/psychology , Brain
5.
J Clin Med ; 13(3)2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38337525

ABSTRACT

(1) Background: Primary Familial Brain Calcification (PFBC) is a neurodegenerative disease characterized by bilateral calcifications of the basal ganglia and other intracranial areas. Many patients experience symptoms of motor dysfunction and cognitive disorders. The aim of this study was to investigate the association between the amount and location of intracranial calcifications with these symptoms. (2) Methods: Patients with suspected PFBC referred to our outpatient clinic underwent a clinical work-up. Intracranial calcifications were visualized on Computed Tomography (CT), and a Total Calcification Score (TCS) was constructed. Logistic and linear regression models were performed. (3) Results: Fifty patients with PFBC were included in this study (median age 64.0 years, 50% women). Of the forty-one symptomatic patients (82.0%), 78.8% showed motor dysfunction, and 70.7% showed cognitive disorders. In multivariate analysis, the TCS was associated with bradykinesia/hypokinesia (OR 1.07, 95%-CI 1.02-1.12, p < 0.01), gait ataxia (OR 1.06, 95%-CI 1.00-1.12, p = 0.04), increased fall risk (OR 1.04, 95%-CI 1.00-1.08, p = 0.03), and attention/processing speed disorders (OR 1.06, 95%-CI 1.01-1.12, p = 0.02). Calcifications of the lentiform nucleus and subcortical white matter were associated with motor and cognitive disorders. (4) Conclusions: cognitive and motor symptoms are common among patients with PFBC, and there is an association between intracranial calcifications and these symptoms.

6.
EBioMedicine ; 98: 104855, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38251463

ABSTRACT

BACKGROUND: Variants in SCN8A are associated with a spectrum of epilepsies and neurodevelopmental disorders. Ataxia as a predominant symptom of SCN8A variation has not been well studied. We set out to investigate disease mechanisms and genotype-phenotype correlations of SCN8A-related ataxia. METHODS: We collected genetic and electro-clinical data of ten individuals from nine unrelated families carrying novel SCN8A variants associated with chronic progressive or episodic ataxia. Electrophysiological characterizations of these variants were performed in ND7/23 cells and cultured neurons. FINDINGS: Variants associated with chronic progressive ataxia either decreased Na+ current densities and shifted activation curves towards more depolarized potentials (p.Asn995Asp, p.Lys1498Glu and p.Trp1266Cys) or resulted in a premature stop codon (p.Trp937Ter). Three variants (p.Arg847Gln and biallelic p.Arg191Trp/p.Asp1525Tyr) were associated with episodic ataxia causing loss-of-function by decreasing Na+ current densities or a hyperpolarizing shift of the inactivation curve. Two additional episodic ataxia-associated variants caused mixed gain- and loss-of function effects in ND7/23 cells and were further examined in primary murine hippocampal neuronal cultures. Neuronal firing in excitatory neurons was increased by p.Arg1629His, but decreased by p.Glu1201Lys. Neuronal firing in inhibitory neurons was decreased for both variants. No functional effect was observed for p.Arg1913Trp. In four individuals, treatment with sodium channel blockers exacerbated symptoms. INTERPRETATION: We identified episodic or chronic ataxia as predominant phenotypes caused by variants in SCN8A. Genotype-phenotype correlations revealed a more pronounced loss-of-function effect for variants causing chronic ataxia. Sodium channel blockers should be avoided under these conditions. FUNDING: BMBF, DFG, the Italian Ministry of Health, University of Tuebingen.


Subject(s)
Ataxia , Neurons , Humans , Animals , Mice , Ataxia/diagnosis , Ataxia/genetics , Codon, Nonsense , Sodium Channel Blockers , NAV1.6 Voltage-Gated Sodium Channel/genetics
SELECTION OF CITATIONS
SEARCH DETAIL