Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 58
Filter
1.
Immunity ; 56(3): 669-686.e7, 2023 03 14.
Article in English | MEDLINE | ID: mdl-36889306

ABSTRACT

Pan-betacoronavirus neutralizing antibodies may hold the key to developing broadly protective vaccines against novel pandemic coronaviruses and to more effectively respond to SARS-CoV-2 variants. The emergence of Omicron and subvariants of SARS-CoV-2 illustrates the limitations of solely targeting the receptor-binding domain (RBD) of the spike (S) protein. Here, we isolated a large panel of broadly neutralizing antibodies (bnAbs) from SARS-CoV-2 recovered-vaccinated donors, which targets a conserved S2 region in the betacoronavirus spike fusion machinery. Select bnAbs showed broad in vivo protection against all three deadly betacoronaviruses, SARS-CoV-1, SARS-CoV-2, and MERS-CoV, which have spilled over into humans in the past two decades. Structural studies of these bnAbs delineated the molecular basis for their broad reactivity and revealed common antibody features targetable by broad vaccination strategies. These bnAbs provide new insights and opportunities for antibody-based interventions and for developing pan-betacoronavirus vaccines.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Broadly Neutralizing Antibodies , Antibodies, Neutralizing , Antibodies, Viral
2.
Cell ; 166(6): 1459-1470.e11, 2016 Sep 08.
Article in English | MEDLINE | ID: mdl-27610570

ABSTRACT

Induction of broadly neutralizing antibodies (bnAbs) is a primary goal of HIV vaccine development. VRC01-class bnAbs are important vaccine leads because their precursor B cells targeted by an engineered priming immunogen are relatively common among humans. This priming immunogen has demonstrated the ability to initiate a bnAb response in animal models, but recall and maturation toward bnAb development has not been shown. Here, we report the development of boosting immunogens designed to guide the genetic and functional maturation of previously primed VRC01-class precursors. Boosting a transgenic mouse model expressing germline VRC01 heavy chains produced broad neutralization of near-native isolates (N276A) and weak neutralization of fully native HIV. Functional and genetic characteristics indicate that the boosted mAbs are consistent with partially mature VRC01-class antibodies and place them on a maturation trajectory that leads toward mature VRC01-class bnAbs. The results show how reductionist sequential immunization can guide maturation of HIV bnAb responses.


Subject(s)
Antibodies, Neutralizing/immunology , B-Lymphocytes/immunology , HIV Antibodies/immunology , HIV-1/immunology , Vaccines, Synthetic/immunology , Adult , Amino Acid Sequence , Animals , Antibodies, Neutralizing/genetics , Antigens, Viral/immunology , Female , HIV Antibodies/blood , HIV Antibodies/genetics , Humans , Male , Mice , Mice, Transgenic , Mutation , Sequence Alignment , Vaccines, Synthetic/administration & dosage
3.
Immunity ; 51(1): 141-154.e6, 2019 07 16.
Article in English | MEDLINE | ID: mdl-31315032

ABSTRACT

The VH1-2 restricted VRC01-class of antibodies targeting the HIV envelope CD4 binding site are a major focus of HIV vaccine strategies. However, a detailed analysis of VRC01-class antibody development has been limited by the rare nature of these responses during natural infection and the lack of longitudinal sampling of such responses. To inform vaccine strategies, we mapped the development of a VRC01-class antibody lineage (PCIN63) in the subtype C infected IAVI Protocol C neutralizer PC063. PCIN63 monoclonal antibodies had the hallmark VRC01-class features and demonstrated neutralization breadth similar to the prototype VRC01 antibody, but were 2- to 3-fold less mutated. Maturation occurred rapidly within ∼24 months of emergence of the lineage and somatic hypermutations accumulated at key contact residues. This longitudinal study of broadly neutralizing VRC01-class antibody lineage reveals early binding to the N276-glycan during affinity maturation, which may have implications for vaccine design.


Subject(s)
AIDS Vaccines/immunology , Antibodies, Monoclonal/metabolism , Antibodies, Neutralizing/metabolism , Broadly Neutralizing Antibodies/metabolism , HIV Antibodies/metabolism , HIV Infections/immunology , HIV-1/physiology , AIDS Vaccines/genetics , Amino Acid Sequence , Antibodies, Monoclonal/genetics , Antibodies, Neutralizing/genetics , Antibody Affinity , B-Lymphocytes/immunology , Broadly Neutralizing Antibodies/genetics , CD4 Antigens/metabolism , Complementarity Determining Regions/genetics , HIV Antibodies/genetics , HIV Envelope Protein gp120/immunology , HIV Envelope Protein gp120/metabolism , Humans , Polysaccharides/metabolism , Protein Binding
4.
Immunity ; 47(3): 524-537.e3, 2017 09 19.
Article in English | MEDLINE | ID: mdl-28916265

ABSTRACT

Apex broadly neutralizing HIV antibodies (bnAbs) recognize glycans and protein surface close to the 3-fold axis of the envelope (Env) trimer and are among the most potent and broad Abs described. The evolution of apex bnAbs from one donor (CAP256) has been studied in detail and many Abs at different stages of maturation have been described. Using diverse engineering tools, we investigated the involvement of glycan recognition in the development of the CAP256.VRC26 Ab lineage. We found that sialic acid-bearing glycans were recognized by germline-encoded and somatically mutated residues on the Ab heavy chain. This recognition provided an "anchor" for the Abs as the core protein epitope varies, prevented complete neutralization escape, and eventually led to broadening of the response. These findings illustrate how glycan-specific maturation enables a human Ab to cope with pathogen escape mechanisms and will aid in optimization of immunization strategies to induce V2 apex bnAb responses.


Subject(s)
Antibodies, Neutralizing/immunology , HIV Antibodies/immunology , HIV Infections/immunology , HIV Infections/metabolism , HIV-1/immunology , Polysaccharides/metabolism , Amino Acid Sequence , Antibody Affinity/immunology , Antibody Formation/immunology , Binding Sites , Epitopes/immunology , HIV Antibodies/chemistry , HIV Antibodies/classification , HIV Antibodies/genetics , HIV Envelope Protein gp120/chemistry , HIV Envelope Protein gp120/immunology , HIV Infections/virology , Humans , Immunoglobulin Heavy Chains/genetics , Models, Molecular , N-Acetylneuraminic Acid/metabolism , Neutralization Tests , Peptide Fragments/immunology , Phylogeny , Protein Binding/immunology , Protein Conformation , Protein Multimerization
5.
Immunity ; 47(5): 990-1003.e9, 2017 11 21.
Article in English | MEDLINE | ID: mdl-29166592

ABSTRACT

Understanding how broadly neutralizing antibodies (bnAbs) to HIV envelope (Env) develop during natural infection can help guide the rational design of an HIV vaccine. Here, we described a bnAb lineage targeting the Env V2 apex and the Ab-Env co-evolution that led to development of neutralization breadth. The lineage Abs bore an anionic heavy chain complementarity-determining region 3 (CDRH3) of 25 amino acids, among the shortest known for this class of Abs, and achieved breadth with only 10% nucleotide somatic hypermutation and no insertions or deletions. The data suggested a role for Env glycoform heterogeneity in the activation of the lineage germline B cell. Finally, we showed that localized diversity at key V2 epitope residues drove bnAb maturation toward breadth, mirroring the Env evolution pattern described for another donor who developed V2-apex targeting bnAbs. Overall, these findings suggest potential strategies for vaccine approaches based on germline-targeting and serial immunogen design.


Subject(s)
Antibodies, Neutralizing/physiology , Cell Lineage , HIV Antibodies/physiology , env Gene Products, Human Immunodeficiency Virus/immunology , AIDS Vaccines/immunology , Antibodies, Neutralizing/chemistry , Complementarity Determining Regions , HIV Antibodies/chemistry , Humans
6.
PLoS Pathog ; 19(6): e1011416, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37384622

ABSTRACT

Vaccination strategies aimed at maturing broadly neutralizing antibodies (bnAbs) from naïve precursors are hindered by unusual features that characterize these Abs, including insertions and deletions (indels). Longitudinal studies of natural HIV infection cases shed light on the complex processes underlying bnAb development and have suggested a role for superinfection as a potential enhancer of neutralization breadth. Here we describe the development of a potent bnAb lineage that was elicited by two founder viruses to inform vaccine design. The V3-glycan targeting bnAb lineage (PC39-1) was isolated from subtype C-infected IAVI Protocol C elite neutralizer, donor PC39, and is defined by the presence of multiple independent insertions in CDRH1 that range from 1-11 amino acids in length. Memory B cell members of this lineage are predominantly atypical in phenotype yet also span the class-switched and antibody-secreting cell compartments. Development of neutralization breadth occurred concomitantly with extensive recombination between founder viruses before each virus separated into two distinct population "arms" that evolved independently to escape the PC39-1 lineage. Ab crystal structures show an extended CDRH1 that can help stabilize the CDRH3. Overall, these findings suggest that early exposure of the humoral system to multiple related Env molecules could promote the induction of bnAbs by focusing Ab responses to conserved epitopes.


Subject(s)
Dermatitis , HIV Infections , HIV-1 , Humans , Broadly Neutralizing Antibodies , HIV Antibodies , Epitopes
7.
Immunity ; 45(1): 31-45, 2016 07 19.
Article in English | MEDLINE | ID: mdl-27438765

ABSTRACT

The dense patch of high-mannose-type glycans surrounding the N332 glycan on the HIV envelope glycoprotein (Env) is targeted by multiple broadly neutralizing antibodies (bnAbs). This region is relatively conserved, implying functional importance, the origins of which are not well understood. Here we describe the isolation of new bnAbs targeting this region. Examination of these and previously described antibodies to Env revealed that four different bnAb families targeted the (324)GDIR(327) peptide stretch at the base of the gp120 V3 loop and its nearby glycans. We found that this peptide stretch constitutes part of the CCR5 co-receptor binding site, with the high-mannose patch glycans serving to camouflage it from most antibodies. GDIR-glycan bnAbs, in contrast, bound both (324)GDIR(327) peptide residues and high-mannose patch glycans, which enabled broad reactivity against diverse HIV isolates. Thus, as for the CD4 binding site, bnAb effectiveness relies on circumventing the defenses of a critical functional region on Env.


Subject(s)
Antibodies, Neutralizing/immunology , Binding Sites, Antibody/immunology , HIV Antibodies/immunology , HIV Envelope Protein gp120/metabolism , HIV Infections/immunology , HIV-1/immunology , Polysaccharides/metabolism , Amino Acid Motifs , CD4 Antigens/metabolism , Epitope Mapping , Epitopes/metabolism , Genetic Engineering , HEK293 Cells , HIV Envelope Protein gp120/immunology , Humans , Immunity, Humoral , Immunologic Memory , Peptide Fragments/metabolism , Polysaccharides/immunology , Protein Binding , Receptors, CCR5/metabolism
8.
Immunity ; 44(5): 1215-26, 2016 05 17.
Article in English | MEDLINE | ID: mdl-27192579

ABSTRACT

The high-mannose patch on HIV Env is a preferred target for broadly neutralizing antibodies (bnAbs), but to date, no vaccination regimen has elicited bnAbs against this region. Here, we present the development of a bnAb lineage targeting the high-mannose patch in an HIV-1 subtype-C-infected donor from sub-Saharan Africa. The Abs first acquired autologous neutralization, then gradually matured to achieve breadth. One Ab neutralized >47% of HIV-1 strains with only ∼11% somatic hypermutation and no insertions or deletions. By sequencing autologous env, we determined key residues that triggered the lineage and participated in Ab-Env coevolution. Next-generation sequencing of the Ab repertoire showed an early expansive diversification of the lineage followed by independent maturation of individual limbs, several of them developing notable breadth and potency. Overall, the findings are encouraging from a vaccine standpoint and suggest immunization strategies mimicking the evolution of the entire high-mannose patch and promoting maturation of multiple diverse Ab pathways.


Subject(s)
AIDS Vaccines/immunology , Antibodies, Neutralizing/immunology , B-Lymphocytes/immunology , HIV Antibodies/immunology , HIV Infections/immunology , HIV-1/immunology , Africa South of the Sahara , Antibody Diversity/genetics , Biological Evolution , Cell Differentiation , Complementarity Determining Regions/genetics , High-Throughput Nucleotide Sequencing , Humans , Immunodominant Epitopes/immunology , Lymphocyte Activation , Mannose/immunology , Mannose/metabolism , env Gene Products, Human Immunodeficiency Virus/immunology , env Gene Products, Human Immunodeficiency Virus/metabolism
9.
Immunity ; 45(3): 483-496, 2016 09 20.
Article in English | MEDLINE | ID: mdl-27617678

ABSTRACT

Broadly neutralizing antibodies (bnAbs) against the N332 supersite of the HIV envelope (Env) trimer are the most common bnAbs induced during infection, making them promising leads for vaccine design. Wild-type Env glycoproteins lack detectable affinity for supersite-bnAb germline precursors and are therefore unsuitable immunogens to prime supersite-bnAb responses. We employed mammalian cell surface display to design stabilized Env trimers with affinity for germline-reverted precursors of PGT121-class supersite bnAbs. The trimers maintained native-like antigenicity and structure, activated PGT121 inferred-germline B cells ex vivo when multimerized on liposomes, and primed PGT121-like responses in PGT121 inferred-germline knockin mice. Design intermediates have levels of epitope modification between wild-type and germline-targeting trimers; their mutation gradient suggests sequential immunization to induce bnAbs, in which the germline-targeting prime is followed by progressively less-mutated design intermediates and, lastly, with native trimers. The vaccine design strategies described could be utilized to target other epitopes on HIV or other pathogens.


Subject(s)
AIDS Vaccines/immunology , Antibodies, Neutralizing/immunology , HIV Antibodies/immunology , Polysaccharides/immunology , Amino Acid Sequence , Animals , B-Lymphocytes/immunology , Epitopes/immunology , HIV Infections/immunology , HIV-1/immunology , Immunization/methods , Mice , Mice, Knockout , Mutation/immunology , Sequence Alignment , env Gene Products, Human Immunodeficiency Virus/immunology
10.
Nature ; 566(7744): 393-397, 2019 02.
Article in English | MEDLINE | ID: mdl-30664748

ABSTRACT

In principle, humans can produce an antibody response to any non-self-antigen molecule in the appropriate context. This flexibility is achieved by the presence of a large repertoire of naive antibodies, the diversity of which is expanded by somatic hypermutation following antigen exposure1. The diversity of the naive antibody repertoire in humans is estimated to be at least 1012 unique antibodies2. Because the number of peripheral blood B cells in a healthy adult human is on the order of 5 × 109, the circulating B cell population samples only a small fraction of this diversity. Full-scale analyses of human antibody repertoires have been prohibitively difficult, primarily owing to their massive size. The amount of information encoded by all of the rearranged antibody and T cell receptor genes in one person-the 'genome' of the adaptive immune system-exceeds the size of the human genome by more than four orders of magnitude. Furthermore, because much of the B lymphocyte population is localized in organs or tissues that cannot be comprehensively sampled from living subjects, human repertoire studies have focused on circulating B cells3. Here we examine the circulating B cell populations of ten human subjects and present what is, to our knowledge, the largest single collection of adaptive immune receptor sequences described to date, comprising almost 3 billion antibody heavy-chain sequences. This dataset enables genetic study of the baseline human antibody repertoire at an unprecedented depth and granularity, which reveals largely unique repertoires for each individual studied, a subpopulation of universally shared antibody clonotypes, and an exceptional overall diversity of the antibody repertoire.


Subject(s)
Antibodies/genetics , Antibodies/immunology , Genetic Variation/genetics , Antibodies/chemistry , Antigens/immunology , B-Lymphocytes/cytology , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Base Sequence , Clone Cells/cytology , Clone Cells/immunology , Clone Cells/metabolism , Humans , Sequence Analysis, DNA
11.
Immunity ; 43(5): 959-73, 2015 Nov 17.
Article in English | MEDLINE | ID: mdl-26588781

ABSTRACT

Broadly neutralizing antibodies (bnAbs) directed to the V2 apex of the HIV envelope (Env) trimer isolated from individual HIV-infected donors potently neutralize diverse HIV strains, but strategies for designing immunogens to elicit bnAbs have not been identified. Here, we compared four prototypes (PG9, CH01, PGT145, and CAP256.VRC26.09) of V2 apex bnAbs and showed that all recognized a core epitope of basic V2 residues and the glycan-N160. Two prototype bnAbs were derived from VH-germlines that were 99% identical and used a common germline D-gene encoded YYD-motif to interact with the V2-epitope. We identified isolates that were neutralized by inferred germline (iGL) versions of three of the prototype bnAbs. Soluble Env derived from one of these isolates was shown to form a well-ordered Env trimer that could serve as an immunogen to initiate a V2-apex bnAb response. These studies illustrate a strategy to transition from panels of bnAbs to vaccine candidates.


Subject(s)
Antibodies, Neutralizing/immunology , HIV Antibodies/immunology , HIV-1/immunology , Vaccines/immunology , Viral Envelope Proteins/immunology , env Gene Products, Human Immunodeficiency Virus/immunology , Amino Acid Sequence , Epitopes/immunology , HEK293 Cells , HIV Infections/immunology , Humans , Molecular Sequence Data
12.
Bioinformatics ; 36(6): 1731-1739, 2020 03 01.
Article in English | MEDLINE | ID: mdl-31873728

ABSTRACT

SUMMARY: Antibody repertoires reveal insights into the biology of the adaptive immune system and empower diagnostics and therapeutics. There are currently multiple tools available for the annotation of antibody sequences. All downstream analyses such as choosing lead drug candidates depend on the correct annotation of these sequences; however, a thorough comparison of the performance of these tools has not been investigated. Here, we benchmark the performance of commonly used immunoinformatic tools, i.e. IMGT/HighV-QUEST, IgBLAST and MiXCR, in terms of reproducibility of annotation output, accuracy and speed using simulated and experimental high-throughput sequencing datasets.We analyzed changes in IMGT reference germline database in the last 10 years in order to assess the reproducibility of the annotation output. We found that only 73/183 (40%) V, D and J human genes were shared between the reference germline sets used by the tools. We found that the annotation results differed between tools. In terms of alignment accuracy, MiXCR had the highest average frequency of gene mishits, 0.02 mishit frequency and IgBLAST the lowest, 0.004 mishit frequency. Reproducibility in the output of complementarity determining three regions (CDR3 amino acids) ranged from 4.3% to 77.6% with preprocessed data. In addition, run time of the tools was assessed: MiXCR was the fastest tool for number of sequences processed per unit of time. These results indicate that immunoinformatic analyses greatly depend on the choice of bioinformatics tool. Our results support informed decision-making to immunoinformaticians based on repertoire composition and sequencing platforms. AVAILABILITY AND IMPLEMENTATION: All tools utilized in the paper are free for academic use. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Benchmarking , High-Throughput Nucleotide Sequencing , Antibodies , Humans , Reproducibility of Results
14.
Proc Natl Acad Sci U S A ; 113(16): 4446-51, 2016 Apr 19.
Article in English | MEDLINE | ID: mdl-27044078

ABSTRACT

Development of broadly neutralizing antibodies (bnAbs) against HIV-1 usually requires prolonged infection and induction of Abs with unusual features, such as long heavy-chain complementarity-determining region 3 (HCDR3) loops. Here we sought to determine whether the repertoires of HIV-1-naïve individuals contain Abs with long HCDR3 loops that could mediate HIV-1 neutralization. We interrogated at massive scale the structural properties of long Ab HCDR3 loops in HIV-1-naïve donors, searching for structured HCDR3s similar to those of the HIV-1 bnAb PG9. We determined the nucleotide sequences encoding 2.3 × 10(7)unique HCDR3 amino acid regions from 70 different HIV-1-naïve donors. Of the 26,917 HCDR3 loops with 30-amino acid length identified, we tested 30 for further study that were predicted to have PG9-like structure when chimerized onto PG9. Three of these 30 PG9 chimeras bound to the HIV-1 gp120 monomer, and two were neutralizing. In addition, we found 14 naturally occurring HCDR3 sequences that acquired the ability to bind to the HIV-1 gp120 monomer when adding 2- to 7-amino acid mutations via computational design. Of those 14 designed Abs, 8 neutralized HIV-1, with IC50values ranging from 0.7 to 98 µg/mL. These data suggest that the repertoire of HIV-1-naïve individuals contains rare B cells that encode HCDR3 loops that bind or neutralize HIV-1 when presented on a PG9 background with relatively few or no additional mutations. Long HCDR3 sequences are present in the HIV-naïve B-cell repertoire, suggesting that this class of bnAbs is a favorable target for rationally designed preventative vaccine efforts.


Subject(s)
Antibodies, Neutralizing , Complementarity Determining Regions , HIV Antibodies , HIV Envelope Protein gp120/immunology , HIV-1/immunology , Immunoglobulin Heavy Chains , Amino Acid Substitution , Antibodies, Neutralizing/genetics , Antibodies, Neutralizing/immunology , Blood Donors , Female , HIV Antibodies/genetics , HIV Antibodies/immunology , HIV Envelope Protein gp120/genetics , HIV-1/genetics , Humans , Immunoglobulin Heavy Chains/genetics , Immunoglobulin Heavy Chains/immunology , Male , Mutation, Missense
15.
PLoS Pathog ; 12(8): e1005815, 2016 08.
Article in English | MEDLINE | ID: mdl-27560183

ABSTRACT

An optimal HIV vaccine should induce broadly neutralizing antibodies (bnAbs) that neutralize diverse viral strains and subtypes. However, potent bnAbs develop in only a small fraction of HIV-infected individuals, all contain rare features such as extensive mutation, insertions, deletions, and/or long complementarity-determining regions, and some are polyreactive, casting doubt on whether bnAbs to HIV can be reliably induced by vaccination. We engineered two potent VRC01-class bnAbs that minimized rare features. According to a quantitative features frequency analysis, the set of features for one of these minimally mutated bnAbs compared favorably with all 68 HIV bnAbs analyzed and was similar to antibodies elicited by common vaccines. This same minimally mutated bnAb lacked polyreactivity in four different assays. We then divided the minimal mutations into spatial clusters and dissected the epitope components interacting with those clusters, by mutational and crystallographic analyses coupled with neutralization assays. Finally, by synthesizing available data, we developed a working-concept boosting strategy to select the mutation clusters in a logical order following a germline-targeting prime. We have thus developed potent HIV bnAbs that may be more tractable vaccine goals compared to existing bnAbs, and we have proposed a strategy to elicit them. This reductionist approach to vaccine design, guided by antibody and antigen structure, could be applied to design candidate vaccines for other HIV bnAbs or protective Abs against other pathogens.


Subject(s)
AIDS Vaccines/immunology , Antibodies, Neutralizing/immunology , Drug Design , HIV Antibodies/immunology , HIV-1/immunology , Amino Acid Sequence , Antibodies, Neutralizing/genetics , HIV Antibodies/genetics , HIV Infections/immunology , High-Throughput Screening Assays , Humans , Models, Molecular , Mutation
17.
Proc Natl Acad Sci U S A ; 111(49): 17624-9, 2014 Dec 09.
Article in English | MEDLINE | ID: mdl-25422458

ABSTRACT

Broadly neutralizing antibodies (bnAbs) targeting the trimer apex of HIV envelope are favored candidates for vaccine design and immunotherapy because of their great neutralization breadth and potency. However, methods of isolating bnAbs against this site have been limited by the quaternary nature of the epitope region. Here we report the use of a recombinant HIV envelope trimer, BG505 SOSIP.664 gp140, as an affinity reagent to isolate quaternary-dependent bnAbs from the peripheral blood mononuclear cells of a chronically infected donor. The newly isolated bnAbs, named "PGDM1400-1412," show a wide range of neutralization breadth and potency. One of these variants, PGDM1400, is exceptionally broad and potent with cross-clade neutralization coverage of 83% at a median IC50 of 0.003 µg/mL. Overall, our results highlight the utility of BG505 SOSIP.664 gp140 as a tool for the isolation of quaternary-dependent antibodies and reveal a mosaic of antibody responses against the trimer apex within a clonal family.


Subject(s)
Antibodies, Neutralizing/immunology , HIV Antibodies/immunology , HIV Envelope Protein gp120/immunology , Amino Acid Sequence , B-Lymphocytes/immunology , Base Sequence , Cross Reactions , Epitopes/chemistry , Genetic Variation , HIV Infections/immunology , Humans , Immunologic Memory , Inhibitory Concentration 50 , Leukocytes, Mononuclear/cytology , Models, Molecular , Molecular Conformation , Molecular Sequence Data , Neutralization Tests , Peptide Library , Phylogeny , Protein Folding , Recombinant Proteins/immunology , Sequence Homology, Amino Acid
18.
PLoS Pathog ; 9(11): e1003754, 2013.
Article in English | MEDLINE | ID: mdl-24278016

ABSTRACT

Broadly neutralizing HIV antibodies (bnAbs) are typically highly somatically mutated, raising doubts as to whether they can be elicited by vaccination. We used 454 sequencing and designed a novel phylogenetic method to model lineage evolution of the bnAbs PGT121-134 and found a positive correlation between the level of somatic hypermutation (SHM) and the development of neutralization breadth and potency. Strikingly, putative intermediates were characterized that show approximately half the mutation level of PGT121-134 but were still capable of neutralizing roughly 40-80% of PGT121-134 sensitive viruses in a 74-virus panel at median titers between 15- and 3-fold higher than PGT121-134. Such antibodies with lower levels of SHM may be more amenable to elicitation through vaccination while still providing noteworthy coverage. Binding characterization indicated a preference of inferred intermediates for native Env binding over monomeric gp120, suggesting that the PGT121-134 lineage may have been selected for binding to native Env at some point during maturation. Analysis of glycan-dependent neutralization for inferred intermediates identified additional adjacent glycans that comprise the epitope and suggests changes in glycan dependency or recognition over the course of affinity maturation for this lineage. Finally, patterns of neutralization of inferred bnAb intermediates suggest hypotheses as to how SHM may lead to potent and broad HIV neutralization and provide important clues for immunogen design.


Subject(s)
Antibodies, Neutralizing/immunology , HIV Antibodies/immunology , HIV Envelope Protein gp120/immunology , HIV-1/immunology , Antibodies, Neutralizing/genetics , Female , HIV Antibodies/genetics , HIV Envelope Protein gp120/genetics , HIV-1/genetics , Humans , Male , Polysaccharides/genetics , Polysaccharides/immunology
19.
PLoS Comput Biol ; 9(4): e1003045, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23637590

ABSTRACT

Structural flexibility in germline gene-encoded antibodies allows promiscuous binding to diverse antigens. The binding affinity and specificity for a particular epitope typically increase as antibody genes acquire somatic mutations in antigen-stimulated B cells. In this work, we investigated whether germline gene-encoded antibodies are optimal for polyspecificity by determining the basis for recognition of diverse antigens by antibodies encoded by three VH gene segments. Panels of somatically mutated antibodies encoded by a common VH gene, but each binding to a different antigen, were computationally redesigned to predict antibodies that could engage multiple antigens at once. The Rosetta multi-state design process predicted antibody sequences for the entire heavy chain variable region, including framework, CDR1, and CDR2 mutations. The predicted sequences matched the germline gene sequences to a remarkable degree, revealing by computational design the residues that are predicted to enable polyspecificity, i.e., binding of many unrelated antigens with a common sequence. The process thereby reverses antibody maturation in silico. In contrast, when designing antibodies to bind a single antigen, a sequence similar to that of the mature antibody sequence was returned, mimicking natural antibody maturation in silico. We demonstrated that the Rosetta computational design algorithm captures important aspects of antibody/antigen recognition. While the hypervariable region CDR3 often mediates much of the specificity of mature antibodies, we identified key positions in the VH gene encoding CDR1, CDR2, and the immunoglobulin framework that are critical contributors for polyspecificity in germline antibodies. Computational design of antibodies capable of binding multiple antigens may allow the rational design of antibodies that retain polyspecificity for diverse epitope binding.


Subject(s)
Antibodies/chemistry , Antigen-Antibody Complex/chemistry , Algorithms , Amino Acids/chemistry , Antigens/chemistry , Computational Biology/methods , Computer Simulation , Epitopes/chemistry , Genes, Immunoglobulin , Humans , Mutation , Programming Languages , Protein Binding , Protein Conformation , Software
20.
Patterns (N Y) ; 5(5): 100967, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38800360

ABSTRACT

Existing antibody language models are limited by their use of unpaired antibody sequence data. A recently published dataset of ∼1.6 × 106 natively paired human antibody sequences offers a unique opportunity to evaluate how antibody language models are improved by training with native pairs. We trained three baseline antibody language models (BALM), using natively paired (BALM-paired), randomly-paired (BALM-shuffled), or unpaired (BALM-unpaired) sequences from this dataset. To address the paucity of paired sequences, we additionally fine-tuned ESM (evolutionary scale modeling)-2 with natively paired antibody sequences (ft-ESM). We provide evidence that training with native pairs allows the model to learn immunologically relevant features that span the light and heavy chains, which cannot be simulated by training with random pairs. We additionally show that training with native pairs improves model performance on a variety of metrics, including the ability of the model to classify antibodies by pathogen specificity.

SELECTION OF CITATIONS
SEARCH DETAIL