Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Trends Immunol ; 43(10): 792-799, 2022 10.
Article in English | MEDLINE | ID: mdl-36041950

ABSTRACT

While sterols regulate immune processes key to the pathogenesis of asthma, inhibition of sterols with statin drugs has shown conflicting results in human asthma. Here, a novel understanding of the impact of sterols on type 17 immune responses and asthma lead us to hypothesize that sterols and statins may be relevant to severe asthma endotypes with neutrophil infiltration.


Subject(s)
Asthma , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Sterols
2.
Am J Physiol Lung Cell Mol Physiol ; 326(5): L651-L659, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38529552

ABSTRACT

Airway smooth muscle cell (ASM) is renowned for its involvement in airway hyperresponsiveness through impaired ASM relaxation and bronchoconstriction in asthma, which poses a significant challenge in the field. Recent studies have explored different targets in ASM to alleviate airway hyperresponsiveness, however, a sizeable portion of patients with asthma still experience poor control. In our study, we explored protein phosphatase 2 A (PP2A) in ASM as it has been reported to regulate cellular contractility by controlling intracellular calcium ([Ca2+]i), ion channels, and respective regulatory proteins. We obtained human ASM cells and lung tissues from healthy and patients with asthma and evaluated PP2A expression using RNA-Seq data, immunofluorescence, and immunoblotting. We further investigated the functional importance of PP2A by determining its role in bronchoconstriction using mouse bronchus and human ASM cell [Ca2+]i regulation. We found robust expression of PP2A isoforms in human ASM cells with PP2Aα being highly expressed. Interestingly, PP2Aα was significantly downregulated in asthmatic tissue and human ASM cells exposed to proinflammatory cytokines. Functionally, FTY720 (PP2A agonist) inhibited acetylcholine- or methacholine-induced bronchial contraction in mouse bronchus and further potentiated isoproterenol-induced bronchial relaxation. Mechanistically, FTY720 inhibited histamine-evoked [Ca2+]i response and myosin light chain (MLC) phosphorylation in the presence of interleukin-13 (IL-13) in human ASM cells. To conclude, we for the first time established PP2A signaling in ASM, which can be further explored to develop novel therapeutics to alleviate airway hyperresponsiveness in asthma.NEW & NOTEWORTHY This novel study deciphered the expression and function of protein phosphatase 2Aα (PP2Aα) in airway smooth muscle (ASM) during asthma and/or inflammation. We showed robust expression of PP2Aα in human ASM while its downregulation in asthmatic ASM. Similarly, we demonstrated reduced PP2Aα expression in ASM exposed to proinflammatory cytokines. PP2Aα activation inhibited bronchoconstriction of isolated mouse bronchi. In addition, we unveiled that PP2Aα activation inhibits the intracellular calcium release and myosin light chain phosphorylation in human ASM.


Subject(s)
Asthma , Bronchoconstriction , Down-Regulation , Myocytes, Smooth Muscle , Protein Phosphatase 2 , Asthma/metabolism , Asthma/pathology , Humans , Protein Phosphatase 2/metabolism , Protein Phosphatase 2/genetics , Animals , Mice , Down-Regulation/drug effects , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Myocytes, Smooth Muscle/drug effects , Bronchoconstriction/drug effects , Muscle, Smooth/metabolism , Muscle, Smooth/pathology , Muscle, Smooth/drug effects , Male , Bronchi/pathology , Bronchi/metabolism , Bronchi/drug effects , Calcium/metabolism , Female , Mice, Inbred C57BL
3.
Pediatr Allergy Immunol ; 35(6): e14173, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38873916

ABSTRACT

BACKGROUND: Little is known about the immune responses during acute asthma exacerbation. In this study, we examined immune responses in children following an acute asthma exacerbation. METHODS: We evaluated pro-inflammatory cytokine levels and gene expression profiles in blood samples from pediatric patients admitted for acute asthma exacerbation. Viral PCR was performed to differentiate between viral or non-viral-associated exacerbations. RESULTS: Following informed consent, clinical data were obtained from 20 children with asthma (median [interquartile range, IQR]: age 11.5 [8.0, 14.2]) years and 14 healthy age-matched controls (10.5 [7.0, 13.0]). Twelve had positive nasopharyngeal Polymerase chain reaction (PCR) for viral infection (11 rhinoviruses and 1 respiratory syncytial virus (RSV)). Nine were in the pediatric intensive care unit (PICU) and among them five required continuous positive airway pressure (CPAP). Mean (±SD) days on systemic steroids before drawing blood sample were 2.5 ± 1.6. Twelve had history of environmental allergies with 917 (274, 1396) IU/mL total IgE (median (IQR)). Compared with controls, IL-1RA and IL-10 levels were significantly increased and TNF-α significantly decreased in asthma subjects (p < .05 for all). RNA-seq analysis revealed 852 differentially expressed genes in subjects with asthma. Pathway analysis found upregulated genes and pathways involved in innate immune responses in subjects with asthma. Significantly reduced genes included pathways associated with T helper cell differentiation and activation. CONCLUSIONS: In acute asthma exacerbation, innate immune pathways remained increased while adaptive immune responses related to T helper cells are blunted and are independent of trigger or asthma severity. Our novel findings highlight the need to identify new therapies to target persistent innate immune responses to improve outcomes in acute asthma.


Subject(s)
Asthma , Cytokines , Immunity, Innate , Humans , Asthma/immunology , Child , Female , Male , Adolescent , Cytokines/blood , Acute Disease , Disease Progression , Case-Control Studies , Child, Preschool
4.
J Immunol ; 208(7): 1525-1533, 2022 04 01.
Article in English | MEDLINE | ID: mdl-35288471

ABSTRACT

Severe asthma is characterized by steroid insensitivity and poor symptom control and is responsible for most asthma-related hospital costs. Therapeutic options remain limited, in part due to limited understanding of mechanisms driving severe asthma. Increased arginine methylation, catalyzed by protein arginine methyltransferases (PRMTs), is increased in human asthmatic lungs. In this study, we show that PRMT5 drives allergic airway inflammation in a mouse model reproducing multiple aspects of human severe asthma. We find that PRMT5 is required in CD4+ T cells for chronic steroid-insensitive severe lung inflammation, with selective T cell deletion of PRMT5 robustly suppressing eosinophilic and neutrophilic lung inflammation, pathology, airway remodeling, and hyperresponsiveness. Mechanistically, we observed high pulmonary sterol metabolic activity, retinoic acid-related orphan receptor γt (RORγt), and Th17 responses, with PRMT5-dependent increases in RORγt's agonist desmosterol. Our work demonstrates that T cell PRMT5 drives severe allergic lung inflammation and has potential implications for the pathogenesis and therapeutic targeting of severe asthma.


Subject(s)
Asthma , Hypersensitivity , Animals , Asthma/metabolism , Granulocytes/metabolism , Hypersensitivity/metabolism , Inflammation/metabolism , Mice , Th17 Cells/metabolism
5.
J Allergy Clin Immunol ; 151(1): 47-59, 2023 01.
Article in English | MEDLINE | ID: mdl-37138729

ABSTRACT

The field of sterol and oxysterol biology in lung disease has recently gained attention, revealing a unique need for sterol uptake and metabolism in the lung. The presence of cholesterol transport, biosynthesis, and sterol/oxysterol-mediated signaling in immune cells suggests a role in immune regulation. In support of this idea, statin drugs that inhibit the cholesterol biosynthesis rate-limiting step enzyme, hydroxymethyl glutaryl coenzyme A reductase, show immunomodulatory activity in several models of inflammation. Studies in human asthma reveal contradicting results, whereas promising retrospective studies suggest benefits of statins in severe asthma. Here, we provide a timely review by discussing the role of sterols in immune responses in asthma, analytical tools to evaluate the role of sterols in disease, and potential mechanistic pathways and targets relevant to asthma. Our review reveals the importance of sterols in immune processes and highlights the need for further research to solve critical gaps in the field.


Subject(s)
Asthma , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Oxysterols , Humans , Sterols/metabolism , Retrospective Studies , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Cholesterol
6.
Int J Mol Sci ; 24(13)2023 Jun 21.
Article in English | MEDLINE | ID: mdl-37445635

ABSTRACT

Asthma is a heterogenous chronic inflammatory lung disease with endotypes that manifest different immune system profiles, severity, and responses to current therapies. Regardless of endotype, asthma features increased immune cell infiltration, inflammatory cytokine release, and airway remodeling. Lung macrophages are also heterogenous in that there are separate subsets and, depending on the environment, different effector functions. Lung macrophages are important in recruitment of immune cells such as eosinophils, neutrophils, and monocytes that enhance allergic inflammation and initiate T helper cell responses. Persistent lung remodeling including mucus hypersecretion, increased airway smooth muscle mass, and airway fibrosis contributes to progressive lung function decline that is insensitive to current asthma treatments. Macrophages secrete inflammatory mediators that induce airway inflammation and remodeling. Additionally, lung macrophages are instrumental in protecting against pathogens and play a critical role in resolution of inflammation and return to homeostasis. This review summarizes current literature detailing the roles and existing knowledge gaps for macrophages as key inflammatory orchestrators in asthma pathogenesis. We also raise the idea that modulating inflammatory responses in lung macrophages is important for alleviating asthma.


Subject(s)
Asthma , Humans , Lung/pathology , Inflammation/pathology , Macrophages , Cytokines , Airway Remodeling
7.
Int J Mol Sci ; 24(7)2023 Mar 28.
Article in English | MEDLINE | ID: mdl-37047327

ABSTRACT

Asthma in elderly populations is an increasing health problem that is accompanied by diminished lung function and frequent exacerbations. As potent anti-inflammatory drugs, corticosteroids are commonly used to reduce lung inflammation, improve lung function, and manage disease symptoms in asthma. Although effective for most individuals, older patients are more insensitive to corticosteroids, making it difficult to manage asthma in this population. With the number of individuals older than 65 continuing to increase, it is important to understand the distinct mechanisms that promote corticosteroid insensitivity in the aging lung. In this review, we discuss corticosteroid insensitivity in asthma with an emphasis on mechanisms that contribute to persistent inflammation and diminished lung function in older individuals.


Subject(s)
Asthma , Humans , Aged , Asthma/drug therapy , Adrenal Cortex Hormones/therapeutic use , Anti-Inflammatory Agents/therapeutic use , Lung , Aging
8.
Respir Res ; 23(1): 126, 2022 May 16.
Article in English | MEDLINE | ID: mdl-35578269

ABSTRACT

BACKGROUND: Corticosteroids remain a key therapy for treating children with asthma. Patients with severe asthma are insensitive, resistant, or refractory to corticosteroids and have poorly controlled symptoms that involve airway inflammation, airflow obstruction, and frequent exacerbations. While the pathways that mediate corticosteroid insensitivity in asthma remain poorly defined, recent studies suggest that enhanced Th1 pathways, mediated by TNFα and IFNγ, may play a role. We previously reported that the combined effects of TNFα and IFNγ promote corticosteroid insensitivity in developing human airway smooth muscle (ASM). METHODS: To further understand the effects of TNFα and IFNγ on corticosteroid sensitivity in the context of neonatal and pediatric asthma, we performed RNA sequencing (RNA-seq) on human pediatric ASM treated with fluticasone propionate (FP), TNFα, and/or IFNγ. RESULTS: We found that TNFα had a greater effect on gene expression (~ 1000 differentially expressed genes) than IFNγ (~ 500 differentially expressed genes). Pathway and transcription factor analyses revealed enrichment of several pro-inflammatory responses and signaling pathways. Interestingly, treatment with TNFα and IFNγ augmented gene expression with more than 4000 differentially expressed genes. Effects of TNFα and IFNγ enhanced several pro-inflammatory genes and pathways related to ASM and its contributions to asthma pathogenesis, which persisted in the presence of corticosteroids. Co-expression analysis revealed several gene networks related to TNFα- and IFNγ-mediated signaling, pro-inflammatory mediator production, and smooth muscle contractility. Many of the co-expression network hubs were associated with genes that are insensitive to corticosteroids. CONCLUSIONS: Together, these novel studies show the combined effects of TNFα and IFNγ on pediatric ASM and implicate Th1-associated cytokines in promoting ASM inflammation and hypercontractility in severe asthma.


Subject(s)
Asthma , Interferon-gamma , Tumor Necrosis Factor-alpha , Adrenal Cortex Hormones/pharmacology , Adrenal Cortex Hormones/therapeutic use , Asthma/drug therapy , Asthma/genetics , Asthma/metabolism , Child , Gene Expression , Humans , Infant, Newborn , Inflammation/metabolism , Interferon-gamma/metabolism , Lung/metabolism , Muscle, Smooth , Myocytes, Smooth Muscle/metabolism , Tumor Necrosis Factor-alpha/metabolism
9.
Am J Physiol Lung Cell Mol Physiol ; 321(6): L1194-L1205, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34755542

ABSTRACT

Corticosteroid insensitivity in asthma limits the ability to effectively manage severe asthma, which is characterized by persistent airway inflammation, airway hyperresponsiveness (AHR), and airflow obstruction despite corticosteroid treatment. Recent reports indicate that corticosteroid insensitivity is associated with increased interferon-γ (IFN-γ) levels and T-helper (Th) 1 lymphocyte infiltration in severe asthma. Signal transducer and activator of transcription 1 (STAT1) activation by IFN-γ is a key signaling pathway in Th1 inflammation; however, its role in the context of severe allergic airway inflammation and corticosteroid sensitivity remains unclear. In this study, we challenged wild-type (WT) and Stat1-/- mice with mixed allergens (MA) augmented with c-di-GMP [bis-(3'-5')-cyclic dimeric guanosine monophosphate], an inducer of Th1 cell infiltration with increased eosinophils, neutrophils, Th1, Th2, and Th17 cells. Compared with WT mice, Stat1-/- had reduced neutrophils, Th1, and Th17 cell infiltration. To evaluate corticosteroid sensitivity, mice were treated with either vehicle, 1 or 3 mg/kg fluticasone propionate (FP). Corticosteroids significantly reduced eosinophil infiltration and cytokine levels in both c-di-GMP + MA-challenged WT and Stat1-/- mice. However, histological and functional analyses show that corticosteroids did not reduce airway inflammation, epithelial mucous cell abundance, airway smooth muscle mass, and AHR in c-di-GMP + MA-challenged WT or Stat1-/- mice. Collectively, our data suggest that increased Th1 inflammation is associated with a decrease in corticosteroid sensitivity. However, increased airway pathology and AHR persist in the absence of STAT1 indicate corticosteroid insensitivity in structural airway cells is a STAT1 independent process.


Subject(s)
Adrenal Cortex Hormones/metabolism , Inflammation/metabolism , STAT1 Transcription Factor/metabolism , Allergens/metabolism , Animals , Asthma/metabolism , Eosinophils/metabolism , Female , Hypersensitivity/metabolism , Interferon-gamma/metabolism , Lung/metabolism , Male , Mice , Mice, Inbred C57BL , Neutrophils/metabolism , Respiratory Hypersensitivity/metabolism , T-Lymphocytes, Helper-Inducer/metabolism
10.
J Immunol ; 203(7): 1952-1960, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31471525

ABSTRACT

IL-33, an IL-1 family cytokine, is constitutively expressed in mucosal tissues and other organs in healthy humans and animals, and expression levels increase in inflammatory conditions. Although IL-33-mediated promotion of type 2 immune responses has been well established, a gap in our knowledge regarding the functional diversity of this pleiotropic cytokine remains. To address this gap, we developed a new IL-33 transgenic mouse model in which overexpression of full-length IL-33 is induced in lung epithelial cells under conditional control. In adult mice, an ∼3-fold increase in the steady-state IL-33 levels produced no pathologic effects in the lungs. When exposed to airborne allergens, adult transgenic mice released more IL-33 extracellularly and exhibited robust type 2 immune responses. In neonatal transgenic mice, up to postnatal day 14, a similar increase in steady-state IL-33 levels resulted in increased mortality, enlarged alveolar spaces resembling bronchopulmonary dysplasia, and altered expression of genes associated with tissue morphogenesis. Processed 25-kDa IL-33 protein was detected in bronchoalveolar lavage fluids without any exogenous stimuli, and pathologic changes were abolished in mice deficient in the IL-33 receptor ST2. These findings suggest that adult lungs are relatively resistant to IL-33 overexpression unless they encounter environmental insults, whereas developing lungs are highly susceptible, with IL-33 overexpression resulting in detrimental and pathologic outcomes.


Subject(s)
Allergens/immunology , Bronchopulmonary Dysplasia/immunology , Environmental Exposure/adverse effects , Interleukin-1 Receptor-Like 1 Protein/immunology , Interleukin-33/immunology , Pulmonary Alveoli/immunology , Animals , Animals, Newborn , Bronchopulmonary Dysplasia/pathology , Epithelial Cells/immunology , Epithelial Cells/pathology , Interleukin-1 Receptor-Like 1 Protein/genetics , Interleukin-33/genetics , Mice , Mice, Knockout , Pulmonary Alveoli/pathology
11.
FASEB J ; 33(2): 3024-3034, 2019 02.
Article in English | MEDLINE | ID: mdl-30351991

ABSTRACT

Recent studies have demonstrated an effect of neurotrophins, particularly brain-derived neurotrophic factor (BDNF), on airway contractility [ via increased airway smooth muscle (ASM) intracellular calcium [Ca2+]i] and remodeling (ASM proliferation and extracellular matrix formation) in the context of airway disease. In the present study, we examined the role of BDNF in allergen-induced airway inflammation using 2 transgenic models: 1) tropomyosin-related kinase B (TrkB) conditional knockin (TrkBKI) mice allowing for inducible, reversible disruption of BDNF receptor kinase activity by administration of 1NMPP1, a PP1 derivative, and 2) smooth muscle-specific BDNF knockout (BDNFfl/fl/SMMHC11Cre/0) mice. Adult mice were intranasally challenged with PBS or mixed allergen ( Alternaria alternata, Aspergillus fumigatus, house dust mite, and ovalbumin) for 4 wk. Our data show that administration of 1NMPP1 in TrkBKI mice during the 4-wk allergen challenge blunted airway hyperresponsiveness (AHR) and reduced fibronectin mRNA expression in ASM layers but did not reduce inflammation per se. Smooth muscle-specific deletion of BDNF reduced AHR and blunted airway fibrosis but did not significantly alter airway inflammation. Together, our novel data indicate that TrkB signaling is a key modulator of AHR and that smooth muscle-derived BDNF mediates these effects during allergic airway inflammation.-Britt, R. D., Jr., Thompson, M. A., Wicher, S. A., Manlove, L. J., Roesler, A., Fang, Y.-H., Roos, C., Smith, L., Miller, J. D., Pabelick, C. M., Prakash, Y. S. Smooth muscle brain-derived neurotrophic factor contributes to airway hyperreactivity in a mouse model of allergic asthma.


Subject(s)
Asthma/physiopathology , Brain-Derived Neurotrophic Factor/physiology , Bronchial Hyperreactivity/etiology , Disease Models, Animal , Membrane Glycoproteins/physiology , Muscle, Smooth/metabolism , Protein-Tyrosine Kinases/physiology , Respiratory System/physiopathology , Airway Remodeling/drug effects , Allergens/adverse effects , Animals , Asthma/chemically induced , Bronchial Hyperreactivity/metabolism , Bronchial Hyperreactivity/pathology , Female , Inflammation/etiology , Inflammation/metabolism , Inflammation/pathology , Male , Membrane Glycoproteins/antagonists & inhibitors , Mice , Mice, Knockout , Mice, Transgenic , Muscle Contraction , Muscle, Smooth/cytology , Protein-Tyrosine Kinases/antagonists & inhibitors , Pyrazoles/pharmacology , Pyrimidines/pharmacology
12.
Am J Respir Cell Mol Biol ; 61(1): 51-60, 2019 07.
Article in English | MEDLINE | ID: mdl-30508396

ABSTRACT

Supplemental O2 (hyperoxia; 30-90% O2) is a necessary intervention for premature infants, but it contributes to development of neonatal and pediatric asthma, necessitating better understanding of contributory mechanisms in hyperoxia-induced changes to airway structure and function. In adults, environmental stressors promote formation of senescent cells that secrete factors (senescence-associated secretory phenotype), which can be inflammatory and have paracrine effects that enhance chronic lung diseases. Hyperoxia-induced changes in airway structure and function are mediated in part by effects on airway smooth muscle (ASM). In the present study, using human fetal ASM cells as a model of prematurity, we ascertained the effects of clinically relevant moderate hyperoxia (40% O2) on cellular senescence. Fetal ASM exposed to 40% O2 for 7 days exhibited elevated concentrations of senescence-associated markers, including ß-galactosidase; cell cycle checkpoint proteins p16, p21, and p-p53; and the DNA damage marker p-γH2A.X (phosphorylated γ-histone family member X). The combination of dasatinib and quercetin, compounds known to eliminate senescent cells (senolytics), reduced the number of hyperoxia-exposed ß-galactosidase-, p21-, p16-, and p-γH2A.X-positive ASM cells. The senescence-associated secretory phenotype profile of hyperoxia-exposed cells included both profibrotic and proinflammatory mediators. Naive ASM exposed to media from hyperoxia-exposed senescent cells exhibited increased collagen and fibronectin and higher contractility. Our data show that induction of cellular senescence by hyperoxia leads to secretion of inflammatory factors and has a functional effect on naive ASM. Cellular senescence in the airway may thus contribute to pediatric airway disease in the context of sequelae of preterm birth.


Subject(s)
Cellular Senescence , Fetus/pathology , Hyperoxia/pathology , Lung/embryology , Myocytes, Smooth Muscle/pathology , Biomarkers/metabolism , Cell Cycle/drug effects , Cellular Senescence/drug effects , Cytokines/metabolism , DNA Damage , Dasatinib/pharmacology , Etoposide/pharmacology , Extracellular Matrix/drug effects , Extracellular Matrix/metabolism , Extracellular Matrix Proteins/metabolism , Humans , Inflammation Mediators/metabolism , Models, Biological , Myocytes, Smooth Muscle/drug effects , Phenotype , Quercetin/pharmacology
13.
J Cell Physiol ; 234(8): 14187-14197, 2019 08.
Article in English | MEDLINE | ID: mdl-30624783

ABSTRACT

Airway smooth muscle (ASM) regulation of airway structure and contractility is critical in fetal/neonatal physiology in health and disease. Fetal lungs experience higher Ca2+ environment that may impact extracellular Ca2+ ([Ca2+ ]o ) sensing receptor (CaSR). Well-known in the parathyroid gland, CaSR is also expressed in late embryonic lung mesenchyme. Using cells from 18-22 week human fetal lungs, we tested the hypothesis that CaSR regulates intracellular Ca2+ ([Ca2+ ]i ) in fetal ASM (fASM). Compared with adult ASM, CaSR expression was higher in fASM, while fluorescence Ca2+ imaging showed that [Ca2+ ]i was more sensitive to altered [Ca2+ ]o . The fASM [Ca2+ ]i responses to histamine were also more sensitive to [Ca2+ ]o (0-2 mM) compared with an adult, enhanced by calcimimetic R568 but blunted by calcilytic NPS2143. [Ca2+ ]i was enhanced by endogenous CaSR agonist spermine (again higher sensitivity compared with adult). Inhibition of phospholipase C (U73122; siRNA) or inositol 1,4,5-triphosphate receptor (Xestospongin C) blunted [Ca2+ ]o sensitivity and R568 effects. NPS2143 potentiated U73122 effects. Store-operated Ca2+ entry was potentiated by R568. Traction force microscopy showed responsiveness of fASM cellular contractility to [Ca2+ ]o and NPS2143. Separately, fASM proliferation showed sensitivity to [Ca2+ ]o and NPS2143. These results demonstrate functional CaSR in developing ASM that modulates airway contractility and proliferation.


Subject(s)
Calcium Signaling/genetics , Lung/growth & development , Myoblasts/metabolism , Receptors, Calcium-Sensing/genetics , Calcium/metabolism , Cell Proliferation/drug effects , Cell Proliferation/genetics , Fetus , Humans , Lung/embryology , Lung/metabolism , Macrocyclic Compounds/pharmacology , Muscle, Smooth/metabolism , Naphthalenes/pharmacology , Oxazoles/pharmacology , Type C Phospholipases/antagonists & inhibitors , Type C Phospholipases/genetics
14.
Am J Physiol Lung Cell Mol Physiol ; 316(5): L826-L842, 2019 05 01.
Article in English | MEDLINE | ID: mdl-30785345

ABSTRACT

Cellular senescence results in cell cycle arrest with secretion of cytokines, chemokines, growth factors, and remodeling proteins (senescence-associated secretory phenotype; SASP) that have autocrine and paracrine effects on the tissue microenvironment. SASP can promote remodeling, inflammation, infectious susceptibility, angiogenesis, and proliferation, while hindering tissue repair and regeneration. While the role of senescence and the contributions of senescent cells are increasingly recognized in the context of aging and a variety of disease states, relatively less is known regarding the portfolio and influences of senescent cells in normal lung growth and aging per se or in the induction or progression of lung diseases across the age spectrum such as bronchopulmonary dysplasia, asthma, chronic obstructive pulmonary disease, or pulmonary fibrosis. In this review, we introduce concepts of cellular senescence, the mechanisms involved in the induction of senescence, and the SASP portfolio that are relevant to lung cells, presenting the potential contribution of senescent cells and SASP to inflammation, hypercontractility, and remodeling/fibrosis: aspects critical to a range of lung diseases. The potential to blunt lung disease by targeting senescent cells using a novel class of drugs (senolytics) is discussed. Potential areas for future research on cellular senescence in the lung are identified.


Subject(s)
Aging/metabolism , Cytokines/metabolism , Lung Diseases/metabolism , Lung/metabolism , Aging/pathology , Animals , Cellular Senescence , Humans , Inflammation/metabolism , Inflammation/pathology , Lung/pathology , Lung Diseases/pathology
15.
Am J Physiol Lung Cell Mol Physiol ; 317(2): L167-L174, 2019 08 01.
Article in English | MEDLINE | ID: mdl-31042079

ABSTRACT

The effects of maternal obesity on lung development have been recognized, and speculation is that these diseases are not simply because of accelerated pulmonary decline with aging but with a failure to achieve optimal lung development during early life. These studies tested the hypothesis that maternal obesity alters signaling pathways during the course of lung development that may affect life-long pulmonary health. Adult female mice were fed 60% fat [high-fat diet (HFD)] or 10% fat [control diet (CD)] for 8 wk before mating and through weaning. Pup lung tissues were collected at postnatal days (PN) 7, 21, and 90 (after receiving HFD or CD as adults). At PN7, body weights from HFD were greater than CD but lung weight-to-body weight ratios were lower. In lung tissues, NFκB-mediated inflammation was greater in HFD pups at PN21 and phospho-/total STAT3, phospho-/total VEGF receptor 2, and total AKT protein levels were lower with maternal HFD and protein tyrosine phosphatase B1 levels were increased. Decreased platelet endothelial cell adhesion molecule levels were observed at PN21 and at PN90 in the pups exposed to maternal HFD. Morphometry indicated that the pups exposed to maternal or adult HFD had fewer alveoli, and the effect was additive. Decreases in pulmonary resistance, elastance, and compliance were observed because of adult HFD diet and decreases in airway resistance and increases in inspiratory capacity because of maternal HFD. In conclusion, maternal HFD disrupts signaling pathways in the early developing lung and may contribute to deficiencies in lung function and increased susceptibility in adults.


Subject(s)
Diet, High-Fat/adverse effects , Lung/growth & development , Obesity/etiology , Prenatal Exposure Delayed Effects/metabolism , Animals , Animals, Newborn , Female , Inflammation/complications , Lung/drug effects , Male , Mice , Pregnancy , Weaning
16.
Am J Physiol Lung Cell Mol Physiol ; 316(1): L71-L81, 2019 01 01.
Article in English | MEDLINE | ID: mdl-30335498

ABSTRACT

Corticosteroids (CSs) are commonly used to manage wheezing and asthma in pediatric populations. Although corticosteroids are effective in alleviating airway diseases, some children with more moderate-severe asthma phenotypes show CS resistance and exhibit significant airflow obstruction, persistent inflammation, and more frequent exacerbations. Previous studies have demonstrated that Th1 cytokines, such as TNF-α and IFN-γ, promote CS resistance in adult human airway smooth muscle (ASM). In the present study, using a human fetal ASM cell model, we tested the hypothesis that TNF-α/IFN-γ induces CS resistance. In contrast to TNF-α or IFN-γ alone, the combination of TNF-α/IFN-γ blunted the ability of fluticasone propionate (FP) to reduce expression of the chemokines CCL5 and CXCL10 despite expression of key anti-inflammatory glucocorticoid receptor target genes being largely unaffected by TNF-α/IFN-γ. Expression of the NF-κB subunit p65 and phosphorylation of Stat1 were elevated in cells treated with TNF-α/IFN-γ, an effect that remained in the presence of FP. siRNA knockdown studies demonstrated the effects of TNF-α/IFN-γ on increased p65 are mediated by Stat1, a transcription factor activated by IFN-γ. Expression of TNFAIP3, a negative regulator of NF-κB activity, was not altered by TNF-α/IFN-γ. However, the effects of TNF-α/IFN-γ were partially reduced by overexpression of TNFAIP3 but did not influence p65 expression. Together, these data suggest that IFN-γ augments the effects of TNF-α on chemokines by enhancing expression of key inflammatory pathways in the presence of CS. Interactions between TNF-α- and IFN-γ-mediated pathways may promote inflammation in asthmatic children resistant to CSs.


Subject(s)
Adrenal Cortex Hormones/pharmacology , Bronchi/immunology , Drug Resistance/drug effects , Fluticasone/pharmacology , Interferon-gamma/immunology , Myocytes, Smooth Muscle/immunology , Trachea/immunology , Tumor Necrosis Factor-alpha/immunology , Bronchi/growth & development , Child , Child, Preschool , Drug Resistance/immunology , Female , Humans , Male , Th1 Cells/immunology , Trachea/growth & development
18.
Am J Physiol Lung Cell Mol Physiol ; 317(1): L99-L108, 2019 07 01.
Article in English | MEDLINE | ID: mdl-31042080

ABSTRACT

Reactive airway diseases are significant sources of pulmonary morbidity in neonatal and pediatric patients. Supplemental oxygen exposure in premature infants contributes to airway diseases such as asthma and promotes development of airway remodeling, characterized by increased airway smooth muscle (ASM) mass and extracellular matrix (ECM) deposition. Decreased plasma membrane caveolin-1 (CAV1) expression has been implicated in airway disease and may contribute to airway remodeling and hyperreactivity. Here, we investigated the impact of clinically relevant moderate hyperoxia (50% O2) on airway remodeling and caveolar protein expression in a neonatal mouse model. Within 12 h of birth, litters of B6129SF2J mice were randomized to room air (RA) or 50% hyperoxia exposure for 7 days with or without caveolin-1 scaffolding domain peptide (CSD; caveolin-1 mimic; 10 µl, 0.25 mM daily via intraperitoneal injection) followed by 14 days of recovery in normoxia. Moderate hyperoxia significantly increased airway reactivity and decreased pulmonary compliance at 3 wk. Histologic assessment demonstrated airway wall thickening and increased ASM mass following hyperoxia. RNA from isolated ASM demonstrated significant decreases in CAV1 and cavin-1 in hyperoxia-exposed animals while cavin-3 was increased. Supplementation with intraperitoneal CSD mitigated both the physiologic and histologic changes observed with hyperoxia. Overall, these data show that moderate hyperoxia is detrimental to developing airway and may predispose to airway reactivity and remodeling. Loss of CAV1 is one mechanism through which hyperoxia produces these deleterious effects. Supplementation of CAV1 using CSD or similar analogs may represent a new therapeutic avenue for blunting hyperoxia-induced pulmonary damage in neonates.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Bronchial Hyperreactivity/drug therapy , Caveolin 1/pharmacology , Hyperoxia/drug therapy , Lung/drug effects , Peptide Fragments/pharmacology , Airway Remodeling/drug effects , Airway Remodeling/immunology , Animals , Animals, Newborn , Bronchial Hyperreactivity/etiology , Bronchial Hyperreactivity/genetics , Bronchial Hyperreactivity/immunology , Bronchoconstrictor Agents/pharmacology , Caveolin 1/genetics , Caveolin 1/immunology , Disease Models, Animal , Female , Gene Expression Regulation , Humans , Hyperoxia/etiology , Hyperoxia/genetics , Hyperoxia/immunology , Injections, Intraperitoneal , Lung/immunology , Lung/pathology , Male , Membrane Proteins/genetics , Membrane Proteins/immunology , Methacholine Chloride/pharmacology , Mice , Oxygen/adverse effects , RNA-Binding Proteins/genetics , RNA-Binding Proteins/immunology , Signal Transduction
19.
Am J Physiol Lung Cell Mol Physiol ; 317(5): L525-L536, 2019 11 01.
Article in English | MEDLINE | ID: mdl-31411059

ABSTRACT

Hyperoxia exposure in premature infants increases the risk of subsequent lung diseases, such as asthma and bronchopulmonary dysplasia. Fibroblasts help maintain bronchial and alveolar integrity. Thus, understanding mechanisms by which hyperoxia influences fibroblasts is critical. Cellular senescence is increasingly recognized as important to the pathophysiology of multiple diseases. We hypothesized that clinically relevant moderate hyperoxia (<50% O2) induces senescence in developing fibroblasts. Using primary human fetal lung fibroblasts, we investigated effects of 40% O2 on senescence, endoplasmic reticulum (ER) stress, and autophagy pathways. Fibroblasts were exposed to 21% or 40% O2 for 7 days with etoposide as a positive control to induce senescence, evaluated by morphological changes, ß-galactosidase activity, and DNA damage markers. Senescence-associated secretory phenotype (SASP) profile of inflammatory and profibrotic markers was further assessed. Hyperoxia decreased proliferation but increased cell size. SA-ß-gal activity and DNA damage response, cell cycle arrest in G2/M phase, and marked upregulation of phosphorylated p53 and p21 were noted. Reduced autophagy was noted with hyperoxia. mRNA expression of proinflammatory and profibrotic factors (TNF-α, IL-1, IL-8, MMP3) was elevated by hyperoxia or etoposide. Hyperoxia increased several SASP factors (PAI-1, IL1-α, IL1-ß, IL-6, LAP, TNF-α). The secretome of senescent fibroblasts promoted extracellular matrix formation by naïve fibroblasts. Overall, we demonstrate that moderate hyperoxia enhances senescence in primary human fetal lung fibroblasts with reduced autophagy but not enhanced ER stress. The resulting SASP is profibrotic and may contribute to abnormal repair in the lung following hyperoxia.


Subject(s)
Cellular Senescence/drug effects , Fibroblasts/drug effects , G2 Phase Cell Cycle Checkpoints/drug effects , Gene Expression Regulation/drug effects , Hyperoxia/genetics , Oxygen/pharmacology , Autophagy/drug effects , Autophagy/genetics , CCAAT-Enhancer-Binding Protein-beta/genetics , CCAAT-Enhancer-Binding Protein-beta/metabolism , Cell Proliferation/drug effects , Cellular Senescence/genetics , Cyclin-Dependent Kinase Inhibitor p21/genetics , Cyclin-Dependent Kinase Inhibitor p21/metabolism , DNA Damage , Endoplasmic Reticulum Stress/drug effects , Etoposide/pharmacology , Extracellular Matrix/chemistry , Extracellular Matrix/drug effects , Extracellular Matrix/metabolism , Fetus , Fibroblasts/cytology , Fibroblasts/metabolism , G2 Phase Cell Cycle Checkpoints/genetics , Humans , Hyperoxia/metabolism , Interleukin-1/genetics , Interleukin-1/metabolism , Interleukin-8/genetics , Interleukin-8/metabolism , Lung/cytology , Lung/metabolism , Matrix Metalloproteinase 3/genetics , Matrix Metalloproteinase 3/metabolism , Plasminogen Activator Inhibitor 1/genetics , Plasminogen Activator Inhibitor 1/metabolism , Primary Cell Culture , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL